The use of thermally modified koalin as a heterogeneous catalyst for producing biodiesel

Size: px
Start display at page:

Download "The use of thermally modified koalin as a heterogeneous catalyst for producing biodiesel"

Transcription

1 The use of thermally modified koalin as a heterogeneous catalyst for producing biodiesel Hilary Rutto Department of Chemical Engineering, Vanderbilpark Campus, Vaal University Of Technology, Private Bag X0, Vanderbilpark, South Africa, 900 Biodiesel was produced from used waste cooking oil (WCO) using thermally modified kaolin as a heterogeneous base catalyst. Response surface methodology based on a central composite design (CCD) was used to optimize the following four transesterification variables namely: temperature, (30-0 C), reaction time, (- 6hr), methanol to oil ratio, (0-50 wt %) and amount of catalyst, (-6 grams). Important fuel properties such as viscosity, density and flash point were measured and compared with American Society for Testing and Material (ASTM) standards for biodiesel. The catalyst was reused to determine its stability. The optimum conditions for biodiesel production were found as follows: temperature 9.3 C, amount of catalyst of.03 wt %, methanol to oil ratio 8.6 wt %, reaction time of.56 hr. The optimum yield of biodiesel yield was 95.06%. The results show that the important fuel properties of the biodiesel produced at optimum conditions met the biodiesel ASTM standard. It was also observed that thermally modified kaolin heterogeneous catalyst can be recycled up to three times. Keywords: Biodiesel; WCO; central composite design; transesterification; Thermally Modified Koalin;. Introduction The depletion of fossil fuels has caused the price of petroleum to rise remarkably and also air pollution caused by vehicles is of environmental concern, therefore there is a need to find alternative energy such as biodiesel which is biodegradable, non-toxic and renewable []. Research conducted in Turkey shows the consumption of diesel fuel have reached alarming rate and that production of fossil fuel in Turkey might Turkey might diminish by 038 [-3]. Therefore there is a need to search for alternative energy. Feed stocks for biodiesel production can be classified into into edible and non-edible oils. Biodiesel production can be produced from edible vegetable oils like soybean corn and canola, result show they be good as a diesel substitute []. The non-edible oils such as animal fats, Jatropha curcas, and waste oils such as yellow grease and soybean soapstock have been used in the production of biodiesel [5-7] There are basically two types of catalyst that are used in the production of biodiesel namely Homogenous and heterogeneous. The term homogeneous means the catalysts are in the same phase with its reactants, whereas heterogeneous means that the catalysts are in a different phase from its reactant. Further homogenous catalyst can be categorised into homogenous bases and acids. In biodiesel production Potassium hydroxide, sodium hydroxide, sodium methoxide are the commonly used basic catalysts production [8]. An example of commonly used homogenous acid catalyst is sulphuric acids, sulphuric acids is commonly used esterify excess free fatty acids when the free fatty acid content is high [9]. Homogenous and heterogeneous base catalyst and have different advantages and disadvantages, generally the advantages of heterogeneous catalyst is on its noncorrosive, environmental benign and can be recycled [0-]. However the disadvantages are they require high reaction temperature, pressure and more process time as they have low micro porosity and therefore low diffusion limitation. The advantages of heterogeneous acid catalyst are they can catalyse esterification and transesterification simultaneously. The surface response methodology is a powerful statistical method, usually it includes the application of design expert software that can be used to test multiple process variables because few experimental runs are needed compared to a one factor-at-a time method []. In addition, interactions between variables can be identified and quantified. Kaolin is cheap abundant clay found in many parts of Africa, and its suitability as a catalyst as it contains very small amounts of potassium oxide is important for this study. This research investigates the impregnation kaolin using postasium hydroxide as a homogenous catalyst so as to improve it catalytic properties. The effect of process variables such temperature, amount of catalyst, amount of methanol to oil ratio and reaction time on the yield of biodiesel from waste vegatable oil are investigated using surface response methodology. A mathematical model will be developed to determine the biodiesel yield. The important fuel properties of biodiesel produced at optimum conditions are also investigated if they are within the ASTM standard of biodiesel. FORMATEX

2 . Material and method. Material Waste vegetable and kaolin was supplied by the cafeteria and GW base materials respectively. Potassium hydroxide, methanol, phenolphthalein solution, isopropyl alcohol were obtained from a Chem Lab a local chemical supplier. The XRF analysis of the Kaolin shows the chemical composition of kaolin consists of following in wt %: SiO 65.9 %, Fe O 3 0.6%, CaO 0.%, Na O 0.5 %, AI O 3.6 %, TiO 0.8%, MgO 0.% and K O.8%.. Method.. Catalyst preparation This impregnation of potassium hydroxide into kaolin was performed at different mass ratio (Potassium hydroxide: Kaolin) ranging between :-:6, this was done using a reflux condenser, at 60 C for hours with continuous stirring. A muffle furnace was used to calcine the catalyst at a temperature of 00 C for 5 hours... Experimental design The experimental design chosen for this study was a Central Composite Design (CCD) that aids in investigating linear, quadratic, cubic and cross-product effects. The reaction parameters studied were the reaction temperature, reaction period, amount of catalyst and methanol to oil ratio. The latter independent parameters are illustrated in Table. This table lists the range and levels of the four independent variables studied. The CCD comprises of a two-levels of full factorial design ( = 6), eight axial points and six centre points. The value for this CCD is fixed at. The complete design matrix employed and results are given in Table. Table : Levels of transesterification process variables employed for this study Variable Coding Units levels Reaction temperature Reaction time Amount of catalyst Methanol in oil ratio x x x 3 x C hr grams wt % All the variables at zero level constitutes the centre points while the combination of each of the variables at either lowest (-) or highest (+) level with the other variables at zero level constitutes the axial points. Each response of the transesterification process was used to develop a mathematical model correlating the yield of biodiesel with the transesterification process variables studied through first order, second order, third order and interaction terms according to the following second order polynomial equation. O = i i, = i Y= β + β X + β X X + β X + β X X X + β X = ki k, i, = k where Y is the predicted biodiesel yield, X and X i represents the parameters, B o is the offset term, B is the linear effect, B i is the first order interaction effect, and B is the squared effect while B is the cubic effect. The Design Expert software was used for regression analysis of the experimental data to fit the third order polynomial equation and also for the evaluation of the statistical significance of the equation developed. i = 3 00 FORMATEX 03

3 Table : Experimental design matrix and biodiesel yield % Process variables Experimental Temperature ( C) Reaction time (min) Amount of catalyst (grams) Amount of methanol in oil (wt %) Biodiesel yield (wt %) E E E E E E E E E E E E E E E E E E E E E Biodiesel production The Waste vegetable oil (WVO) was filtered and heated at 00 C to remove solids and water respectively. The FFA was measured measure using the titration method and it was found that its value was less than %, therefore the two step alkali acid transesterification process was unnecessary: A sample was prepared at given amounts of catalysis, methanol to oil ratio, temperature and reaction shown the experimental design in Table. The catalyst was recycled three times under optimum conditions... Model fitting and statistical analysis Design expert (6.0.6) software was used as regression analysis tool to fit experimental data to the third order polynomial regression model. The evaluation of statistical significance of the model was developed...5 Characterization of fuel properties of biodiesel The biodiesel produced at optimal conditions was measured using the ASTM biodiesel standard. The following parameters were determined: Viscosity, density and flash point was determined using the ASTM D5, ASTM 98 and ASTM D93 respectively. 3. Results and discussion 3. Development of the regression model equation By using multiple regression analysis, the response obtained in Table was linked using the polynomial equation, evaluated using the Design expert software to give the above full regression model equation. The final model in terms of actual value after excluding the insignificant terms (identified using Fisher s Test) is FORMATEX 03 0

4 Y = x 9.7x 0.0x x 0.09x +.7x +.39x x x +.5x x 0.x 0.0x x 3 The negative sign in front of the terms specifies an antagonistic effect, while the positive sign indicates synergistic effect. The coefficient correlation (R ) can be used to evaluate the quality of the model. The R for Eq. ) is This suggests that 7.70 % of the total deviation in the biodiesel yield responses is clarified by the model. 8 B iodiesel yield ( mass % ) Biodiesel yield ( mass %) Methanol to oil ratio ( wt %) Time (hr) Time (hr) (a) (b) Figure : The effect of methanol to oil and reaction time on the biodiesel yield (a) response surface plot (b) two dimensional plot where methanol to oil ration is held at +.89 and wt %. 3. Effects of process variable Fig shows the effect of methanol to oil ratio and reaction times on the yield of biodiesel the amount of catalyst and reaction temperature is held constant at 3.5 g and at 75 C respectively. As seen in Fig. when high amount of methanol to oil ratio is used the biodiesel yield is low compared to when low amount of methanol to oil ratio is used. This is because there is a reverse reaction where glycerol and biodiesel are converted back to oil and methanol which causes the yield to decrease. As also depicted in Fig. 3, at long reaction period the biodiesel yield increases, this explains why heterogonous catalyst such kaolin require more time for conversion of triglyceride into fatty acid methyl esters [3]. 0 FORMATEX 03

5 (a) (b) Figure : The effect of the amount of catalyst and methanol to oil ratio on the biodiesel yield (a) response surface plot (b) two dimensional plot where methanol to oil ration is held at +.89 and wt % Biodiesel yield (mass %) Biodiesel yield ( mass %) Time (hr) Temperature ( C) Temperature ( C) (a) (b) Figure 3: The effect of reaction temperature and time on the biodiesel yield (a) response surface plot (b) two dimensional plot where the reaction time is held at and -.8 hr. Fig. shows the influence of the amount of methanol to oil ratio and the amount of catalyst on the yield of biodiesel, the reaction time and reaction temperature are held constant at hr and 75 C respectively. As seen from Fig more biodiesel is formed when less methanol is used and vice versa. When more amounts of catalysts is used the biodiesel yield decreases. High amounts of catalyst causes the formation of more soap, this reduces the yield of biodiesel. large amount of methanol to oil ratio causes a reverse transesterification reaction which leads to the formation of more oil and methanol. Fig.3 shows the variation of reaction time and temperature on the yield of biodiesel where the amount of catalyst and the amount of methanol to oil ratio area held constant at zero level. As it can be seen in Fig 3, more biodiesel is produced when the reaction period is increased. This is because at low reaction time beyond the optimum minimum FORMATEX 03 03

6 reaction time leads to incomplete reaction and cause less molecular reaction of triglyceride with methanol and thus reducing biodiesel yield. As the temperature increases the biodiesel yield decreases. This is because temperature is inversely proportional to viscosity therefore high temperature will increase biodiesel flow property but reduce reaction time between reactants. This can result in low biodiesel yield because a low mass transfer is subdominant at very high temperature [-5]. The influence of one parameter was evaluated and plotted against the yield while the other parameters where kept constant. As shown in Fig. the reaction time has a positive influence on the yield of biodiesel The reaction temperature, amount of catalyst, amount of methanol to oil ratio showed a negative influence in the following order reaction temperature, methanol in oil ratio, amount of catalyst.. It can generally be observed that the biodiesel yield increases as the reaction time increase and decreases as the reaction temperature, methanol to oil ratio and amount of catalyst is increases. This is in excellent agreement with the result in literature of biofuel. 95. Biodiesel yield (mass %) A D C B D B C A Dev iation f rom Ref erence Point Figure : Individual effect of process variables on the biodiesel yield A reaction temperature; B reaction time; C Amount of catalyst; D-methanol to oil ratio. 3.3 Fuel properties of Waste vegetable oil methyl ester compared to other oil methyl ester Important fuel properties of methyl esters produced from marula oil were determined and compared to that of atropha [5] and palm oil [6] methyl ester which is shown in Table 3. The fuel properties of bioidiesel synthesized from waste vegetable oil are within the ASTM standards of biodiesel. The density of WCO biodiesel is 8886kg/m 3 slightly higher than atropha (880 kg/m 3 ) and palm methyl ester (86. kg/m 3 ) ultimately all are within the specified limit of ( kg/m 3 ). The kinematic viscosity of WCO biodiesel (. mm s - ) at 0 C is slightly lower than atropha (. mm s - ) and palm oil (.5 mm s - ) but all meet the viscosity ASTM standard of biodiesel. The flash point of biodiesel from waste cooking oil (79 C), atropha (63 C) and palm (76 C) are within the ASTM standard. Table 3: Fuel properties of waste vegetable biodiesel compared to other biodiesel and ASTM standard Parameter WCO Jatropha Palm ASTM D675-0 ( ³ m Density at 5 ºC (kg ( ¹ s Kinematic viscosity 0 ºC (mm ² Flash point ( C) >30 0 FORMATEX 03

7 3. Reusability of kaolin heterogeneous catalyst Figure 5: An illustration of the reusability of kaolin heterogeneous catalyst Fig 5. Shows that the thermaly modified and heterogenous koalin catalyst can be recycled more than three times, this is exclleent grement with that advantages of using heterogenous catalyst in comparison to homogenenous catalyst.. Conclusion This study has shown that it was possible to heterogeous kaolin using potassium hydroxide. Results shows that it was feasible to produce biodiesel from waste cooking oil using a one step alakali catalyst transesterification process. The response surface technique was used to determine the optimal condition that can be used to produce biodiesel from waste cooking oil. The optimum conditions for producing biodiesel were: reaction temperature of 9.3 C, amount of catalyst at..08 g, reaction time at.56 hr, and amount of methanol in the oil at 8.6 wt %. The optimum yield of biodiesel was 95.06%. It was found out that that important fuel properties biodiesel produced at optimum condition met the biodiesel ASTM standard. Acknowledgement The support by KT Magongwa and MM Maloka is gratefully acknowledged in this work, together with the funds from the university lab fee. Reference [] Yi-Hsu Ju., and Shaik, R.V.. Rice bran as a potential resource for biodiesel. Journal of scientific and industrial research, 005;6: [] Edigera, V.S., Akar, SARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy.007;35: [3] Edigera, V.S., Akar, S., & Ugurlu, B., Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model. Energy Policy 006; 3: [] Freedman B, Butterfield RO, Pryde EHTransesterification kinetics of soybean oil. Journal of American Oil Chemical Society.986;63: [5] Leung DYC, Guo Y. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technology,006; 87: FORMATEX 03 05

8 [6] Wang, Z.M., Lee, J.S., Park, J.Y., Wu, C.Z., Yuan, Z.H.. Novel biodiesel production technology from soybean soapstock, Korean Journal of Chemical Engineering. 007;: [7] Alcantara, A., Amores, J., Canoira, L., Fidalgo, E., Franco, M.J., & Navarro, A. Catalytic production of biodiesel from soybean oil used frying oil and tallow, Biomass and Bioenergy. 000; 8: [8] Canan, K., Candan, H., Akin, B., Osman, A., Sait, E., & Abdurrahman, S. Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy. 009; 3: [9]Schuchardta, U., Serchelia, R., and Rogério, M.V. Transesterification of Vegetable Oils: a Review. Journal of Brazilian Chemical Society. 998;: 99-0 [0] Kulkarni, M.G., Gopinath, R., Meher, L.C., and Dalai, A.K. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chemistry. 006; 8: [] Laosiripoana, N., Kiatkittipong, W., Sutthisripok, W., & Assabumrungrat, S. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts.bioresource.technology. 00; 0: [] Montgomery, Design and analysis of experiments, John Wiley and Sons Ltd, New York; 00. [3] Ma F, Hanna MA. (). Biodiesel production: a review. Bioresource Technology. 999; 70: 5. [] Eevera T, Raendran K, Saradha S. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy. 009;3:76 5. [5] Gopinath, A., Puhan, S, Nagaraan G, Renewable Energy. 009; 3: [6] Sarin, A. Arora, R., N. Singh, P. Sarin, R Malhotra, R. K., Kundu. Energy. 009;3: FORMATEX 03

OPTIMIZATION AND PRODUCTION OF BIODIESEL USING CALCIUM OXIDE AS A HETEROGENEOUS CATALYST

OPTIMIZATION AND PRODUCTION OF BIODIESEL USING CALCIUM OXIDE AS A HETEROGENEOUS CATALYST Int. J. Chem. Sci.: 13(3), 2015, 1357-1364 ISSN 0972-768X www.sadgurupublications.com OPTIMIZATION AND PRODUCTION OF BIODIESEL USING CALCIUM OXIDE AS A HETEROGENEOUS CATALYST K. MUTHU * and T. VIRUTHAGIRI

More information

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst M.O. Daramola, D. Nkazi, K. Mtshali School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built

More information

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS M.M. Zamberi 1,2 a, F.N.Ani 1,b and S. N. H. Hassan 2,c 1 Department of Thermodynamics and Fluid

More information

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PROJECT REFERENCE NO.: 39S_R_MTECH_1508 DEVELOPMENT OF AGRICULTURAL WASTE BASED HETEROGENEOUS CATALYST FOR PRODUCTION OF BIODIESEL FROM MIXED WASTE COOKING OIL AND ITS PERFORMANCE ON DIESEL ENGINE PROJECT REFERENCE NO.: 39S_R_MTECH_1508 COLLEGE

More information

Production of Biodiesel from Waste Oil via Catalytic Distillation

Production of Biodiesel from Waste Oil via Catalytic Distillation Production of Biodiesel from Waste Oil via Catalytic Distillation Zhiwen Qi, Yuanqing Liu, Blaise Pinaud, Peter Rehbein Flora T.T. Ng*, Garry L. Rempel Department of Chemical Engineering, University of

More information

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process Journal of Materials Science and Engineering A 5 (5-6) (2015) 238-244 doi: 10.17265/2161-6213/2015.5-6.008 D DAVID PUBLISHING Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step

More information

Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste Cooking Oil

Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste Cooking Oil Journal of Scientific & Industrial Research Vol. 75, March 2016, pp. 188-193 Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste

More information

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India. Preparation of Waste Cooking Oil as Alternative Fuel and Experimental Investigation Using Bio-Diesel Setup a Comparative Study with Single Cylinder Diesel Engine Mr.S.Sanyasi Rao Pradesh - 531173, India.

More information

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Kok Tat Tan*, Keat Teong Lee, Abdul Rahman Mohamed School of Chemical Engineering,

More information

Production and Evaluation of Biodiesel from Sheep Fats Waste

Production and Evaluation of Biodiesel from Sheep Fats Waste Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.13 No.1 (March 12) 11-18 ISSN: 1997-4884 University of Baghdad College of Engineering Production

More information

Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst

Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst Thembi Sithole 1, a, Kalala Jalama 1,b and Reinout Meijboom 2,c 1 Department of Chemical Engineering, University of Johannesburg,

More information

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine ICCBT28 Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine R. Adnan *, Universiti Tenaga Nasional, MALAYSIA I. M. Azree, Universiti Tenaga

More information

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel can be used as a fuel in compression ignition engines (i.e. diesels) Can be blended with petroleum

More information

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies.

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies. Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies. G Ahmad and R Patel University of Bradford Bradford UK Water and Energy Workshop 15 17 February

More information

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) using Dodecane as a Solvent V.Naresh 1,S.Phabhakar 2, K.Annamalai

More information

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL Deepu T 1, Pradeesh A.R. 2, Vishnu Viswanath K 3 1, 2, Asst. Professors, Dept. of Mechanical Engineering, Ammini College of

More information

Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process

Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process Biomass and Bioenergy 31 (2007) 569 575 www.elsevier.com/locate/biombioe Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process Alok Kumar Tiwari, Akhilesh

More information

TRANSESTERIFICATION OF RAPESEED OIL BY SOLID OXIDE CATALYSTS JERRY LUIS SOLIS VALDIVIA PHD STUDENT POKE SUMMER SCHOOL SAAREMAA, ESTONIA 2014

TRANSESTERIFICATION OF RAPESEED OIL BY SOLID OXIDE CATALYSTS JERRY LUIS SOLIS VALDIVIA PHD STUDENT POKE SUMMER SCHOOL SAAREMAA, ESTONIA 2014 TRANSESTERIFICATION OF RAPESEED OIL BY SOLID OXIDE CATALYSTS JERRY LUIS SOLIS VALDIVIA PHD STUDENT POKE SUMMER SCHOOL SAAREMAA, ESTONIA 2014 OUTLINE INTRODUCTION BACKGROUND EXPERIMENTAL METHOD RESULTS

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process, Journal of Advanced & Applied Sciences (JAAS) Volume 03, Issue 03, Pages 84-88, 2015 ISSN: 2289-6260 Optimization of Biodiesel production parameters (Pongamia pinnata oil) by transesterification process

More information

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 7 12 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 3 - Civil and Chemical Engineering

More information

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP:

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: POPLAR 13 NOVEMBER, 2015 Table of Contents Introduction

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 237-241 International Research Publication House http://www.irphouse.com Comparison of Performance

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences icbst 2014 International Conference on Business, Science and Technology which will be held at Hatyai, Thailand on the 25th and 26th of April 2014. AENSI Journals Australian Journal of Basic and Applied

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

Biodiesel production from Waste Vegetable Oil over SnO 2 /ZrO 2 Catalysts S. Dlambewu, E. Vunain, R. Meijboom, K. Jalama

Biodiesel production from Waste Vegetable Oil over SnO 2 /ZrO 2 Catalysts S. Dlambewu, E. Vunain, R. Meijboom, K. Jalama Biodiesel production from Waste Vegetable Oil over SnO 2 /ZrO 2 Catalysts S. Dlambewu, E. Vunain, R. Meijboom, K. Jalama Abstract The catalytic properties of ZrO 2 -supported SnO 2 for the conversion of

More information

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF 75 CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS Table of Contents Chapter 3: PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS S.

More information

Tallow waste utilization from leather tanning industry for biodiesel production

Tallow waste utilization from leather tanning industry for biodiesel production International Journal of Renewable Energy, Vol. 8, No. 1, January June 2013 ABSTRACT Tallow waste utilization from leather tanning industry for biodiesel production Sujinna Karnasuta a,*, Vittaya Punsuvon

More information

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel can be used as a fuel in compression ignition engines (i.e. diesels) Can be blended with petroleum

More information

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article 4. Synthesis of Biodiesel from Palm Fatty Acid Distillate Research Article Abstract Tarun Kataria Third Year Bachelor of Technology Department of Oils, Oleochemicals & Surfactant Technology Palm fatty

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at   ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 15 (215 ) 638 645 6th BSME International Conference on Thermal Engineering (ICTE 214) Production of Biodiesel Using Alkaline

More information

Biodiesel Business Environment

Biodiesel Business Environment Biodiesel Business Environment By Patum Vegetable Oil co., ltd. February 12, 2008 Innovation on Biofuel in Thailand, Century Park Hotel Agenda Company Profile Biodiesel Technology Country Policy & Regulation

More information

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D.

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D. COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL S. Glisic 1, 2*, D. Skala 1, 2 1 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva

More information

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW Scientific Journal of Impact Factor (SJIF): 5.71 e-issn (O): 2348-4470 p-issn (P): 2348-6406 International Journal of Advance Engineering and Research Development International Conference on Momentous

More information

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Umesh Chandra Pandey 1, Tarun Soota 1 1 Department of Mechanical Engineering,

More information

Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine

Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine Manindra Singh Rathore 1, J.K. Tiwari 2, Shashank Mishra 3 Department of Mechanical Engineering, SSTC, SSGI,

More information

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends e t International Journal on Emerging Technologies (Special Issue on RTIESTM-216) 7(1): 151-157(216) ISSN No. (Print) : 975-8364 ISSN No. (Online) : 2249-3255 Emission Characteristics of Rice Bran Oil

More information

Palm Fatty Acids Esterification on Heterogeneous Catalysis

Palm Fatty Acids Esterification on Heterogeneous Catalysis Palm Fatty Acids Esterification on Heterogeneous Catalysis Prof. Donato Aranda,Ph.D Laboratório Greentec Escola Nacional de Química Federal University Rio de Janeiro Tomar, Bioenergy I March, 2006 Fossil

More information

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004)

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Biodiesel is an ester of fatty acids produced from renewable resources such as virgin vegetable oil, animal fats and used

More information

Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine

Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine International Journal of Scientific and Research Publications, Volume 3, Issue 11, November 2013 1 Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke

More information

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS Ashraf Amin, S. A. AboEl-Enin, G. El Diwani and S. Hawash Department of Chemical Engineering and Pilot Plant, National Research

More information

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol 11 2nd International Conference on Chemical Engineering and Applications IPCBEE vol. 23 (11) (11) IACSIT Press, Singapore Experimental Investigation and Modeling of Liquid-Liquid Equilibria in + + Methanol

More information

Application of the factorial design of experiments and response surface methodology to optimize biodiesel production

Application of the factorial design of experiments and response surface methodology to optimize biodiesel production Industrial Crops and Products 8 (1998) 29 35 Application of the factorial design of experiments and response surface methodology to optimize biodiesel production G. Vicente, A. Coteron, M. Martinez, J.

More information

Optimisation of integrated biodiesel production. Part II: A study of the material balance

Optimisation of integrated biodiesel production. Part II: A study of the material balance Bioresource Technology 98 (2007) 1754 1761 Optimisation of integrated biodiesel production. Part II: A study of the material balance Gemma Vicente b, *, Mercedes Martínez a, José Aracil a a Department

More information

Biodiesel Making and Experimented Results from Waste Cooking Oil, in Mongolia

Biodiesel Making and Experimented Results from Waste Cooking Oil, in Mongolia International Journal of Emerging Engineering Research and Technology Volume 3, Issue 7, July 2015, PP 48-52 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Biodiesel Making and Experimented Results from

More information

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 22 No. 1 Dec. 2017, pp. 44-53 2017 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Transesterification

More information

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 16-20 www.iosrjournals.org Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine Sumedh Ingle 1,Vilas

More information

Potential vegetable oils of Indian origin as biodiesel feedstock An experimental study

Potential vegetable oils of Indian origin as biodiesel feedstock An experimental study Journal of Scientific AGARWAL & Industrial et al: Research POTENTIAL VEGETABLE OILS OF INDIAN ORIGIN AS BIODIESEL FEEDSTOCK Vol. 71, April 212, pp. 285-289 285 Potential vegetable oils of Indian origin

More information

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL Prakash T 1 Suraj S 2, Mayilsamy E 3,Vasanth Kumar R 4, Vinoth S V 5 1 Assistant Professor, Mechanical Engineering,

More information

Simulation of Reactive Distillation Column for Biodiesel Production at Optimum Conditions

Simulation of Reactive Distillation Column for Biodiesel Production at Optimum Conditions 1705 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

Production of Biodiesel Fuel From Cooking Oil Waste

Production of Biodiesel Fuel From Cooking Oil Waste Production of Biodiesel Fuel From Cooking Oil Waste B. G. Mohammed, A. M. Badiea *, S. Q. Moad Department of Industrial and Manufacturing System Engineering, Faculty of Engineering and Information Technology,

More information

Transesterification of Palm Oil to Biodiesel and Optimization of Production Conditions i.e. Methanol, Sodium Hydroxide and Temperature

Transesterification of Palm Oil to Biodiesel and Optimization of Production Conditions i.e. Methanol, Sodium Hydroxide and Temperature Journal of Energy and Natural Resources 2015; 4(3): 45-51 Published online June 18, 2015 (http://www.sciencepublishinggroup.com/j/jenr) doi: 10.11648/j.jenr.20150403.12 ISSN: 2330-7366 (Print); ISSN: 2330-7404

More information

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For RESEARCH PROJECT REPORT Trash to Treasure Clean Diesel Technologies for Air Pollution Reduction Submitted to The RET Site For Civil Infrastructure Renewal and Rehabilitation Sponsored by The National Science

More information

Effect of Amount of Catalyst, Agitation Rate, and Methanol to Oil Molar Ratio using Mixed Catalyst Derived from Coconut Waste and Eggshells

Effect of Amount of Catalyst, Agitation Rate, and Methanol to Oil Molar Ratio using Mixed Catalyst Derived from Coconut Waste and Eggshells Journal of Advanced Research in Biofuel and Bioenergy 1, Issue 1 (2017) 1-5 Journal of Advanced Research in Biofuel and Bioenergy Journal homepage: www.akademiabaru.com/arbb.html ISSN: 2600-8459 Effect

More information

Biodiesel Production over ZnO/TiO 2 Catalyst: Effect of Co-solvent, Temperature and Reaction Time

Biodiesel Production over ZnO/TiO 2 Catalyst: Effect of Co-solvent, Temperature and Reaction Time , July 1-3, 2015, London, U.K. Biodiesel Production over ZnO/TiO 2 Catalyst: Effect of Co-solvent, Temperature and Reaction Time Ndanganeni Mahangani, Ephraim Vunain, Reinout Meijboom, Kalala Jalama Abstract

More information

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Journal of KONES Powertrain and Transport, Vol. 15, No. 4 28 PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Dr (Miss) S L Sinha Mr Vinay Kumar Kar 2 Reader, National Institute of Technology

More information

Chemical Modification of Palm Oil for Low Temperature Applications and its Study on Tribological Properties

Chemical Modification of Palm Oil for Low Temperature Applications and its Study on Tribological Properties Journal of Advanced Engineering Research ISSN: 2393-8447 Volume 4, Issue 2, 2017, pp.109-113 Chemical Modification of Palm Oil for Low Temperature Applications and its Study on Tribological Properties

More information

Automotive Technology

Automotive Technology International Conference on Automotive Technology An Experimental Study on the Performance and Emission Characteristics of a Single Cylinder Diesel Engine Using CME- Diesel Blends. Hari Vasudevan a*,sandip

More information

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is Aaron Paternoster CHEM 380 10D Prof. Laurie Grove January 30, 2015 Biodiesel Introduction As fossil fuels become increasingly expensive to extract and produce, bio-diesel is proving to be an economically

More information

EXCESS METHANOL RECOVERY IN BIODIESEL PRODUCTION PROCESS USING A DISTILLATION COLUMN: A SIMULATION STUDY

EXCESS METHANOL RECOVERY IN BIODIESEL PRODUCTION PROCESS USING A DISTILLATION COLUMN: A SIMULATION STUDY Chemical Engineering Research Bulletin 13 (2009) 55-60 Available online at http://www.banglajol.info/index.php/cerb EXCESS METHANOL RECOVERY IN BIODIESEL PRODUCTION PROCESS USING A DISTILLATION COLUMN:

More information

An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil

An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil Lakshmi T. R. 1, Shamnamol G. K. 2 P. G. Student, Department of Biotechnology and Biochemical Engineering, Sree Buddha College

More information

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling University of Malaya From the SelectedWorks of Abdul Aziz Abdul Raman 2010 Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network

More information

OPTIMIZATION OF IN-SITU TRANSESTERIFICATION PROCESS OF BIODIESEL FROM NYAMPLUNG (Calophyllum inophyllum L.) SEED USING MICROWAVE

OPTIMIZATION OF IN-SITU TRANSESTERIFICATION PROCESS OF BIODIESEL FROM NYAMPLUNG (Calophyllum inophyllum L.) SEED USING MICROWAVE Rasayan J. Chem., 10(3), 952-958(2017) http://dx.doi.org/10.7324/rjc.2017.1031803 Vol. 10 No. 3 952-958 July - September 2017 ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com

More information

Biodiesel from soybean oil in supercritical methanol with co-solvent

Biodiesel from soybean oil in supercritical methanol with co-solvent Available online at www.sciencedirect.com Energy Conversion and Management 49 (28) 98 912 www.elsevier.com/locate/enconman Biodiesel from soybean oil in supercritical methanol with co-solvent Jian-Zhong

More information

CALCIUM RICH FOOD WASTES BASED CATALYSTS FOR BIODIESEL PRODUCTION

CALCIUM RICH FOOD WASTES BASED CATALYSTS FOR BIODIESEL PRODUCTION 4th International Conference on Sustainable Solid Waste Management 24th June 2016 CALCIUM RICH FOOD WASTES BASED CATALYSTS FOR BIODIESEL PRODUCTION M. RAMOS, A. P. SOARES DIAS, M. CATARINO, M. T. SANTOS,

More information

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD SINTEI EBITEI AND TRUST PROSPER GBORIENEMI Department of Chemical Engineering, Federal Polytechnic, Ekowe Bayelsa State, Nigeria. ABSTRACT

More information

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST J. Curr. Chem. Pharm. Sc.: 2(1), 2012, 12-16 ISSN 2277-2871 BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST SHARDA D. NAGE *, K. S. KULKARNI, A. D. KULKARNI and NIRAJ S. TOPARE

More information

Application Of Response Surface Methodology In The Optimization Of Biodiesel Production From Microalgae Oil

Application Of Response Surface Methodology In The Optimization Of Biodiesel Production From Microalgae Oil Journal of Multidisciplinary Engineering Science and Technology (JMEST) Application Of Response Surface Methodology In The Optimization Of Biodiesel Production From Microalgae Oil * Kamen, F.L; Ejim, I.F;

More information

Engineer Luiz Englert Str., Blue Building N12104-Central campus, District Farroupilha, CEP: Porto Alegre-RS, Brazil

Engineer Luiz Englert Str., Blue Building N12104-Central campus, District Farroupilha, CEP: Porto Alegre-RS, Brazil Modelling Chemical inetics of Soybean Oil Transesterification Process for Biodiesel Production: An Analysis of Molar Ratio between Alcohol and Soybean Oil Temperature Changes on the Process Conversion

More information

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine Journal of Scientific & Industrial Research Vol. 74, June 2015, pp. 343-347 Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine R Kumar*, A

More information

Study on the Production of Biodiesel from Sunflower Oil

Study on the Production of Biodiesel from Sunflower Oil 33 Study on the Production of Biodiesel from Sunflower Oil Aye Hnin Khine 1, Aye Aye Tun 2 1 Department of Chemistry, Yangon University, Myanmar; ahkhine2012@gmail.com 2 Dagon University, Myanmar; ayeayetun1961@gmail.com

More information

APPLICATION OF MICROWAVE RADIATION TECHNIQUE IN PRODUCTION OF BIODIESEL TO ENHANCE THE PROPERTIES AND ECONOMIZATION OF BIODIESEL

APPLICATION OF MICROWAVE RADIATION TECHNIQUE IN PRODUCTION OF BIODIESEL TO ENHANCE THE PROPERTIES AND ECONOMIZATION OF BIODIESEL APPLICATION OF MICROWAVE RADIATION TECHNIQUE IN PRODUCTION OF BIODIESEL TO ENHANCE THE PROPERTIES AND ECONOMIZATION OF BIODIESEL Shaik Rauhon Ahmed 1, Mohd Misbahauddin Junaid 2, Satyanarayana MGV 3 1,2

More information

Application of Response Surface Methodology in the Statistical Analysis of Biodiesel Production from Microalgae Oil

Application of Response Surface Methodology in the Statistical Analysis of Biodiesel Production from Microalgae Oil Application of Response Surface Methodology in the Statistical Analysis of Biodiesel Production from Microalgae Oil Ikechukwu Fabian Ejim Chemical Engineering Department, Institute of Management and Technology,

More information

Energy requirement estimates for two step ethanolysis of waste vegetable oils for biodiesel production

Energy requirement estimates for two step ethanolysis of waste vegetable oils for biodiesel production Energy requirement estimates for two step ethanolysis of waste vegetable oils for biodiesel production Nikolas Ligeris 1, a and Kalala Jalama 1,b 1 Department of Chemical Engineering, University of Johannesburg,

More information

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel U. Santhan Kumar 1, K. Ravi Kumar 2 1 M.Tech Student, Thermal engineering, V.R Siddhartha Engineering College, JNTU

More information

Optimization of Biodiesel (MOME) Using Response Surface Methodology (RSM)

Optimization of Biodiesel (MOME) Using Response Surface Methodology (RSM) International Journal of Emerging Trends in Science and Technology Impact Factor: 2.838 DOI: https://dx.doi.org/10.18535/ijetst/v3i11.02 Optimization of Biodiesel (MOME) Using Response Surface Methodology

More information

Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles. Overview:

Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles. Overview: Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles Richard artmann Nazareth ollege hemistry Department verview:! What is green chemistry?! What is Biodiesel?!

More information

Investigation of Fuel Properties of Crude Rice Bran Oil Methyl Ester and Their Blends with Diesel and Kerosene

Investigation of Fuel Properties of Crude Rice Bran Oil Methyl Ester and Their Blends with Diesel and Kerosene International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 6ǁ June 2014 ǁ PP.04-09 Investigation of Fuel Properties of Crude Rice Bran Oil Methyl

More information

SIMULATION AND PROCESS DESIGN OF BIODIESEL PRODUCTION

SIMULATION AND PROCESS DESIGN OF BIODIESEL PRODUCTION Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015) 26 29 November, 2015, Chittagong, Bangladesh ICMERE2015-PI-049 SIMULATION AND PROCESS DESIGN

More information

Biodiesel Production from Mahua Oil by using Two-Step Trans-esterification Process

Biodiesel Production from Mahua Oil by using Two-Step Trans-esterification Process Research Article Biodiesel Production from Mahua Oil by using Two-Step Trans-esterification Process Kandasamy Sabariswaran, Sundararaj Selvakumar, Alagupandian Kathirselvi Department of Natural Resources

More information

Synthesis of biodiesel from second-used cooking oil

Synthesis of biodiesel from second-used cooking oil Available online at www.sciencedirect.com Energy Procedia 32 (2013 ) 190 199 International Conference on Sustainable Energy Engineering and Application [ICSEEA 2012] Synthesis of biodiesel from second-used

More information

Temperature-Viscosity Correlation for Biodiesel Blends Derived from Corn, Olive and Palm Oil

Temperature-Viscosity Correlation for Biodiesel Blends Derived from Corn, Olive and Palm Oil Temperature-Viscosity Correlation for Biodiesel Blends Derived from Corn, Olive and Palm Oil Rashid Humaid Al Naumi and Sudhir Chitrapady Vishweshwara Abstract As the use of biodiesel becomes more wide

More information

A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project

A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project Shiro Saka * and Eiji Minami Graduate School of Energy Science, Kyoto University,

More information

Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil

Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil Debarpita Ghosal 1, Ranjan R. Pradhan 2 1 Assistant Professor, 2 Associate Professor, Department

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.4, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.4, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.4, pp 2112-2116, 2014-2015 Production of Biodiesel by Transesterification of Algae Oil with an assistance of Nano-CaO

More information

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014 Investigation of Diesel Engine Performance with the help of Preheated Transesterfied Cotton Seed Oil Mr. Pankaj M.Ingle*1,Mr.Shubham A.Buradkar*2,Mr.Sagar P.Dayalwar*3 *1(Student of Dr.Bhausaheb Nandurkar

More information

Synthesis of Biolubricants from Non Edible Oils

Synthesis of Biolubricants from Non Edible Oils Synthesis of Biolubricants from Non Edible Oils A. J. Agrawal 1, Dr. V. Y. Karadbhajne 2, Dr. P. S. Agrawal 3, P. S. Arekar 4, N. P. Chakole 5 1 Assistant Professor, Dept. of Petrochemical Technology LIT

More information

PARAMETER DESIGN FOR OPTIMUM PERCENTAGE YIELD FOR BIO- DIESEL FROM COTTONSEED USING DOE (TAGUCHI TECHNIQUE)

PARAMETER DESIGN FOR OPTIMUM PERCENTAGE YIELD FOR BIO- DIESEL FROM COTTONSEED USING DOE (TAGUCHI TECHNIQUE) Volume: 04 Issue: 04 Apr -2017 www.irjet.net p-issn: 2395-0072 PARAMETER DESIGN FOR OPTIMUM PERCENTAGE YIELD FOR BIO- DIESEL FROM COTTONSEED USING DOE (TAGUCHI TECHNIQUE) Balendra veer Singh 1, Shailendra

More information

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An experimental

More information

Transesterification of Waste Cooking Oil into Biodiesel Using Aspen HYSYS

Transesterification of Waste Cooking Oil into Biodiesel Using Aspen HYSYS 2017 IJSRST Volume 3 Issue 3 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Transesterification of Waste Cooking Oil into Biodiesel Using Aspen HYSYS Süleyman Karacan

More information

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said Omar Said Introduction to myself Name: Omar Said (I am in Petroleum and Petrochemicals Engineering senior student Cairo University). Experience : Schlumberger oil service company trainee (wire line segment).

More information

Material Science Research India Vol. 7(1), (2010)

Material Science Research India Vol. 7(1), (2010) Material Science Research India Vol. 7(1), 201-207 (2010) Influence of injection timing on the performance, emissions, combustion analysis and sound characteristics of Nerium biodiesel operated single

More information

address: (K. A. Younis), (J. L. Ismail Agha), (K. S.

address: (K. A. Younis), (J. L. Ismail Agha), (K. S. American Journal of Applied Chemistry 2014; 2(6): 105-111 Published online November 28, 2014 (http://www.sciencepublishinggroup.com/j/ajac) doi: 10.11648/j.ajac.20140206.12 ISSN: 2330-8753 (Print); ISSN:

More information

Performance Testing On an Agricultural Diesel Engine Using Waste Cooking Oil Biodiesel

Performance Testing On an Agricultural Diesel Engine Using Waste Cooking Oil Biodiesel International Conference of Advance Research and Innovation (-2014) Performance Testing On an Agricultural Diesel Engine Using Waste Cooking Oil Biodiesel Dhananjay Trivedi a, Amit Pal b a Department of

More information

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL Vishwanath V K 1, Pradhan Aiyappa M R 2, Aravind S Desai 3 1 Graduate student, Dept. of Mechanical Engineering, Nitte Meenakshi Institute

More information

About the authors xi. Woodhead Publishing Series in Energy. Preface

About the authors xi. Woodhead Publishing Series in Energy. Preface v Contents About the authors xi Woodhead Publishing Series in Energy Preface xiii xv 1 Biodiesel as a renewable energy source 1 1.1 Introduction 1 1.2 Energy policy 2 1.3 Transformation of biomass 20 1.4

More information