Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Size: px
Start display at page:

Download "Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is"

Transcription

1 Aaron Paternoster CHEM D Prof. Laurie Grove January 30, 2015 Biodiesel Introduction As fossil fuels become increasingly expensive to extract and produce, bio-diesel is proving to be an economically and environmentally friendly alternative to traditional fuels. Because it is synthesized from waste vegetable oil, biodiesel is much cheaper to produce and leaves less of a carbon footprint during the refining process. Simple unrefined waste oil is full of impurities and is too viscous to be used directly in diesel engines and must therefore be cleaned and broken down into pure methyl ester. The fundamental process of refining biodiesel involves reacting used vegetable oil with methanol (MeOH) via a catalyst, potassium hydroxide (KOH) in the case of this experiment. MeOH breaks down the vegetable oil to form biodiesel and glycerol. Additionally, the catalyst also reacts with the free fatty acids contained in the oil that are a byproduct of the cooking process, therefore it is important for the reaction to contain an excess of KOH. The purpose of this lab was to discover through experimentation the most efficient way to refine waste vegetable oil into clean burning biodiesel. Several experiments were performed over four days to determine the ideal conditions for refining biodiesel. Day 1 involved multiple experiments altering specific variables during the refining process to determine which conditions resulted in the highest and most pure yields. Day 2 involved titrating a sample of the waste oil to determine the amount of free fatty acids present in the larger source. Day 3 was spent upscaling

2 the synthesis process to yield large amounts of biodiesel. On Day 4 the final product was tested to determine its purity and further refined to remove glycerol byproducts. Procedure Day 1 - Exploration Before beginning the experiment, several variables involved in synthesizing biodiesel were identified, such as the amounts of methanol, catalyst, and oil used, the reaction time allowed, and the reaction temperature. Different experiments were performed altering each variable. The following procedure was performed on both clean, unused vegetable oil and used dirty vegetable oil with the purpose of determining if using twice the recommended amount of methanol affected the synthesis of biodiesel. After massing a gram pellet of KOH and dissolving it in 1 ml of MeOH in a 50 ml test tube, the volume of oil required for synthesis was calculated as follows: volume of oil = grams KOH 1 Liter oil 4.9 grams KOH g KOH 1 L Oil = 13.3 ml oil 4.9 g KOH The remaining MeOH required could be calculated as follows: additional MeOH = (volume of oil 0.44) 1mL MeOH (13.3 ml oil 0.44) 1 ml MeOH = 4.85 ml additional MeOH Note that the control conditions called for the total MeOH required to be calculated at 22% of the volume of oil, rather than the 44% used in this experiment. For the dirty oil, g

3 of KOH were dissolved in 1.1 ml of MeOH ml of oil was required, as was an additional 4.06 ml MeOH. After the remaining methanol was added to the KOH, the solution was mixed with the clean and dirty oil, which had been heated to a temperature of 60 C. The mixtures were shaken vigorously for 15 minutes then allowed to separate. Once the mixtures settled, two tests were performed on both the clean and dirty processed oil to measure the success of the biodiesel conversion (see Data and Results for test results). The first test was a 3/27 test, which refers to the ratio of oil to MeOH used for the test. 1 ml of the processed oil was measured into a test tube and combined with 9 ml of MeOH. The solution was shaken and then allowed to settle again. Any oil separation indicated unreacted vegetable oil. The second test was an emulsion test. Equal amounts of processed oil and water were added to a test tube and the solution was shaken. Any foamy material that formed indicated the presence of soap. Day 2 Titration To determine the amount of free fatty acids (FFA) present in the used vegetable oil, a series of four titrations were performed by measuring the volume of KOH solution required to react with all of the FFA in a solution of 1 ml oil and 10 ml isopropyl (see Table 1 in Data and Analysis ). The titrating solution was a mixture of g KOH and 100 ml H2O. The KOH solution was added by burette to the oil and isopropyl mixture until the phenolphthalein indicator turned pink indicating that he FFA had been neutralized. The total volume of KOH used in each titration was recorded as the change in volume in the burette (see Table 1 for titration results).

4 Day 3 Synthesis g of KOH (see Data and Results for how the required mass was calculated) were massed and dissolved in 22 ml MeOH which was then added to 100 ml used vegetable oil. The mixture was heated to 60 C and stirred for 50 minutes. The processed oil was then set aside to settle for 1 week. Day 4 Purification and Testing Before the biodiesel was purified, a 10 ml sample was taken from the top layer of the processed oil and a 3/27 test, an emulsion test, and a cloud point test were performed on the crude biodiesel (see Data and Results for test results). After testing, the remaining processed oil was poured into a separation funnel. Once the glycerol settled to the bottom of the funnel, it was drained into a 50 ml flask and set aside. The crude biodiesel was then washed by adding an equal volume of water to the separation funnel. The funnel was then agitated slightly so as to gently mix the water with the crude oil. During this process, approximately 80% of the remaining glycerol and impurities were removed from the crude oil. After the oil was washed, the water was allowed to separate out again and was then drained off the bottom into a waste container. This process was repeated 4 more times with increasing vigor, with 50 ml of 1% acetic acid added after the 4 th and 5 th washes to speed up separation. Once purified, the biodiesel was then poured into a container and placed on a hot plate set to 120 C. This allowed any water left in the biodiesel to evaporate, leaving pure biodiesel. A 3/27 test and an emulsion test were then performed on the purified biodiesel (time did not allow for a cloud point test). Data and Results Day 1 - Exploration

5 For 13.3 ml of clean vegetable oil, 5.85 ml of MeOH, and g of KOH, no biodiesel was synthesized (see Discussion for a hypothesis as to why this happened). During the 3/27 test the methanol immediately separated on top of the vegetable oil confirming the lack of synthesis. An emulsion test resulted in significate formation of soap ml of dirty oil, 5.16 ml of MeOH, and g of KOH also resulted in no synthesis of biodiesel with similar results for the 3/27 and emulsion tests. Day 2 - Titration After analyzing the titration data from Day 2, it was determined that the amount of excess KOH required to react with the FFA in 1 L of used vegetable oil could be calculated as follows: 8.45 ml titration solution 1 ml oil g KOH 1000 ml g KOH = 100 ml MeOH 1 L oil 1 L oil Table 1 Titration results Titration Total ml KOH solution g KOH used per 1 L oil Average Day 3 Synthesis The total amount of KOH required for synthesis of 100 ml of oil was calculated as: g excess KOH g KOH 1 L oil = g KOH 100 ml oil

6 The resulting solution separated into a thin brown layer of glycerol approximately 20% by volume on the bottom and a light yellow layer of biodiesel approximately 80% by volume on top. Day 4 Purification and Testing The 3/27 test on the crude oil resulted in no separation, confirming complete synthesis of biodiesel. The emulsion test resulted in no soap formation, indicating that the FFA had been neutralized. The biodiesel began to get cloudy at approximately -3.6 C, however it was difficult to determine if the fuel was indeed freezing or if condensation was simply forming on the test tube. Once processed, the refined biodiesel returned similar results for the emulsion test. Unlike with the crude oil, the 3/27 test resulted in less than 0.2 ml of separation in the refined oil (see Discussion for implications). Unfortunately time did not allow for a cloud point test of the refined biodiesel. Discussion The fact that similar simultaneous experiments performed using twice the recommended amount of MeOH were successful in synthesizing biodiesel during the Exploration process indicated that there was potentially a flaw in the methodology of this particular group s experiment. The likely culprit was a failure to maintain the oil at a constant temperature of 60 C. Once the oil was removed from the sample jugs, due to the small sample sizes (10 ml) the heat loss was rapid. Because heat acts as a catalyst for the formation of biodiesel, if the solution was allowed to cool, 15 minutes of shaking was not nearly long enough to facilitate a reaction. This explains the 3/27 tests resulting in the MeOH separating completely from the vegetable oil.

7 The emulsion test on the clean oil resulting in soap formation could have been due to the clean oil being exposed to the moisture in the air while it was preheating resulting in the formation of FFA. Much more care was taken to maintain the oil at a constant temperature during the experiment on Day 3 which resulted in successful synthesis. Because the stoichiometric ratio of free fatty acids to KOH in this process is 1:1, the amount of FFA present in the waste vegetable oil was calculated using the titration results from Day 2: g KOH 1 L oil 1 mole KOH g KOH 1 L 1000 ml = moles FFA 1 ml oil The moles of oil in a 1 ml sample were calculated as follows: 0.88 g oil 1 ml 1 mol 800 g oil = mol oil This indicated a 13.4% ratio of FFA to oil in the used vegetable oil. This exceeded the generally accepted amount of 8% for waste oil to be considered usable. Because of the high percentage of FFA present, there was the potential for significant amounts of soap to form during synthesis. Due to the excess amounts of KOH used in the experiment, this had the potential to spoil the biodiesel turning it into a soapy mess. While the fact that the 3/27 result on the refined biodiesel indicated the presence of unprocessed vegetable oil seemed to conflict with the negative results from the crude oil, this was most likely due to the fact that the sample of crude oil was taken from the top of the processed biodiesel. Because the processed oil sat for a week, any small amount of unprocessed vegetable oil was allowed to settle towards the bottom due to its greater density, thus it was not

8 present in the initial tested sample. The refined oil, however, had been vigorously mixed during the washing process allowing any unprocessed oil to be suspended within the fuel. The fact that the biodiesel began to solidify at -3.6 C during the cloud point test indicated that it would not be a viable in the cold New England climate where winter temperatures can often dip below -6 C. While the biodiesel would work fine in the spring and summer months, some sort of anti-freezing agent would have to be added during the late fall and winter. Because the synthesis reaction in this experiment was an equilibrium reaction, an excess of methanol was used to favor the formation of the product, biodiesel. The stoichiometric formula for synthesis is as follows: 1 vegetable oil + 3 MeOH 3 biodiesel + 1 glycerol closer to 1:5: This implies a molar ratio of oil to MeOH of 1:3. This experiment however used a ratio 100 ml oil = 0.11 mol oil 0.79 g MeOH 1 ml 1 mol MeOH g 100 ml oil = 0.54 mol MeOH 22 ml MeOH Conclusion This experiment reinforced several fundamental concepts of chemistry. The failure to synthesize any biodiesel during the exploration process served as a lesson in methodology. Further experimentation was performed with much more care as to closely follow the recommended procedures. This lab also involved some rather complex stoichiometric calculations in order to derive the required amounts of reactants. The fact that the synthesis of

9 biodiesel was an equilibrium reaction also helped to further understanding of how to control different factors of a reaction in order to facilitate desired results. In general this was an engaging and thought provoking lab, however, burning the fuel in a working diesel engine would have been truly rewarding.

What s s in your Tank?

What s s in your Tank? What s s in your Tank? Biodiesel Could Be The Answer! Matthew Brown Lakewood High School Tom Hersh Golden West Community College Overview What is biodiesel? Chemistry of biodiesel Safety Making Biodiesel

More information

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

Filtertechnik Filtration, Purification & Separation Solutions

Filtertechnik Filtration, Purification & Separation Solutions Titration kit for biodiesel production Filtertechnik Filtration, Purification & Separation Solutions Using this kit will enable you to accurately determine the amount of Free Fatty Acid (FFA) in your vegetable

More information

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 7: Using Differences in Solubility to Remove Contaminants from Biodiesel

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 7: Using Differences in Solubility to Remove Contaminants from Biodiesel Laboratory 7: Using Differences in Solubility to Remove Contaminants from Biodiesel Topics Covered Solubility Polarity Like dissolves like Partition Ratio Equipment Needed (per pair or group) One graduated

More information

Chemistry of Biodiesel: The beauty of Transesterfication

Chemistry of Biodiesel: The beauty of Transesterfication Chemistry of Biodiesel: The beauty of Transesterfication Organic Chemistry Terms & Definitions Acid- A corrosive substance that liberates hydrogen ions (H + ) in water. ph lower than 7. Base- A caustic

More information

The preparation of biodiesel from rape seed oil or other suitable vegetable oils

The preparation of biodiesel from rape seed oil or other suitable vegetable oils The preparation of biodiesel from rape seed oil or other suitable vegetable oils Method Note This method produces biodiesel relatively quickly, though the product is not pure enough to burn in an engine.

More information

How to Make Biodiesel

How to Make Biodiesel How to Make Biodiesel Overview Biodiesel can me made by anyone in a simple process that is often compared to brewing beer. For this reason it is possible for nearly anyone to take control of their own

More information

Biodiesel: Making Renewable Fuel from Waste Oils

Biodiesel: Making Renewable Fuel from Waste Oils Biodiesel: Making Renewable Fuel from Waste Oils Author/School: Matt Steiman, Wilson College, Chambersburg PA Introduction Biodiesel is a renewable fuel made from any biologically based oil, and can be

More information

Biodiesel Unit Lesson 2

Biodiesel Unit Lesson 2 Terminal Objective 2: produce biodiesel Biodiesel Unit Lesson 2 Performance Objective 2: Given unused cooking oil, necessary equipment and chemicals, produce biodiesel that is free of soap, dry, and ready

More information

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article 4. Synthesis of Biodiesel from Palm Fatty Acid Distillate Research Article Abstract Tarun Kataria Third Year Bachelor of Technology Department of Oils, Oleochemicals & Surfactant Technology Palm fatty

More information

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PROJECT REFERENCE NO.: 39S_R_MTECH_1508 DEVELOPMENT OF AGRICULTURAL WASTE BASED HETEROGENEOUS CATALYST FOR PRODUCTION OF BIODIESEL FROM MIXED WASTE COOKING OIL AND ITS PERFORMANCE ON DIESEL ENGINE PROJECT REFERENCE NO.: 39S_R_MTECH_1508 COLLEGE

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

Synthesis and Evaluation of Alternative Fuels. The notion of using vegetable oil as a fuel source is as almost as old as the internal combustion

Synthesis and Evaluation of Alternative Fuels. The notion of using vegetable oil as a fuel source is as almost as old as the internal combustion Synthesis and Evaluation of Alternative Fuels The notion of using vegetable oil as a fuel source is as almost as old as the internal combustion engine itself. At the 1900 World's fair in Paris, a Diesel

More information

Experiment 4 - A Small Scale Synthesis of Biodiesel

Experiment 4 - A Small Scale Synthesis of Biodiesel Experiment 4 - A Small Scale Synthesis of Biodiesel Biodiesel has gained a lot of attention over the past decade because of its use as an alternative to fossil fuels for automobiles and trucks. Biodiesel

More information

BIODIESEL PRODUCTION FROM JATROPHA CURCAS OIL

BIODIESEL PRODUCTION FROM JATROPHA CURCAS OIL Int. J. Chem. Sci.: 9(4), 2011, 1607-1612 ISSN 0972-768X www.sadgurupublications.com BIDIESEL PRDUCTIN FRM JATRPHA CURCAS IL NIRAJ S. TPARE *, SHRUTI G. CHPADE, SUNITA J. RAUT, V. C. RENGE a, SATISH V.

More information

Biodiesel Production and Analysis

Biodiesel Production and Analysis Biodiesel Production and Analysis Introduction A key current focus in science and engineering is the development of technologies for generating and utilizing new sources of energy. Climate change, geopolitics,

More information

BIODIESEL Using renewable resources Introduction: Reference: Background information:

BIODIESEL Using renewable resources Introduction: Reference: Background information: BIODIESEL -Using renewable resources 2007 Science Outreach Workshop Introduction: One of the ways in which processes can be made greener is to use renewable resources to replace nonrenewable starting materials.

More information

DarkStar VI 841 St Louis Rd., Collinsville, IL Biodiesel Basics. By Phillip D. Hill (Updated March 9 th, 2006)

DarkStar VI 841 St Louis Rd., Collinsville, IL Biodiesel Basics. By Phillip D. Hill (Updated March 9 th, 2006) Biodiesel Basics By Phillip D. Hill (Updated March 9 th, 2006) Page 1 Table of Contents Biodiesel Basics... 1 Table of Contents... 2 Biodiesel... 3 Properties of Various Oils... 4 The Process Overview...

More information

Direct transesterification of lipids from Microalgae by acid catalyst

Direct transesterification of lipids from Microalgae by acid catalyst Direct transesterification of lipids from Microalgae by acid catalyst Chemistry Concepts: Acid catalysis; direct transesterification Green Chemistry Topics Alternate energy sources; renewable feedstocks;

More information

Conventional Homogeneous Catalytic Process with Continuous-typed Microwave and Mechanical Stirrer for Biodiesel Production from Palm Stearin

Conventional Homogeneous Catalytic Process with Continuous-typed Microwave and Mechanical Stirrer for Biodiesel Production from Palm Stearin 2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 2 Conventional Homogeneous Catalytic

More information

Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste Cooking Oil

Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste Cooking Oil Journal of Scientific & Industrial Research Vol. 75, March 2016, pp. 188-193 Using Response Surface Methodology in Optimisation of Biodiesel Production via Alkali Catalysed Transesterification of Waste

More information

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP:

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: POPLAR 13 NOVEMBER, 2015 Table of Contents Introduction

More information

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 22 No. 1 Dec. 2017, pp. 44-53 2017 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Transesterification

More information

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For RESEARCH PROJECT REPORT Trash to Treasure Clean Diesel Technologies for Air Pollution Reduction Submitted to The RET Site For Civil Infrastructure Renewal and Rehabilitation Sponsored by The National Science

More information

Biodiesel Production and Analysis

Biodiesel Production and Analysis Biodiesel Production and Analysis Introduction A key current focus in science and engineering is the development of technologies for generating and utilizing new sources of energy. Climate change, geopolitics,

More information

Food or Fuel? (Student Handout) (The Chemistry and Efficiency of Producing Biodiesel)

Food or Fuel? (Student Handout) (The Chemistry and Efficiency of Producing Biodiesel) Food or Fuel? (Student Handout) (The Chemistry and Efficiency of Producing Biodiesel) Name: Source: http://www.cmu.edu/cmnews/extra/050527_biodiesel.html Our lab research goal is simple: To learn how to

More information

Biodiesel Plant 30 Million Gal/Year

Biodiesel Plant 30 Million Gal/Year Biodiesel Plant 30 Million Gal/Year Plant Capacity: 30 million gal/year (30,000,000 gal/year). The plant is large in size because it is built on gravity transfer basis, which saves energy resulting in

More information

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL MR.N.BALASUBRAMANI 1, M.THANASEGAR 2, R.SRIDHAR RAJ 2, K.PRASANTH 2, A.RAJESH KUMAR 2. 1Asst. Professor, Dept. of Mechanical Engineering,

More information

TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE?

TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE? TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE? T-45 BD & T-45 BD Macro Background: Biodiesel fuel, a proven alternative to petroleum diesel, is commonly made via a transesterification

More information

The Purification Feasibilityof GlycerinProduced During

The Purification Feasibilityof GlycerinProduced During The Purification Feasibilityof GlycerinProduced During BiodieselProduction S. Soulayman, F. Mustafa, and A. Hadbah Higher Institute for Applied Sciences and technology, Damascus, P.O. Box 31983, Syria,

More information

Biodiesel production by esterification of palm fatty acid distillate

Biodiesel production by esterification of palm fatty acid distillate ARTICLE IN PRESS Biomass and Bioenergy ] (]]]]) ]]] ]]] www.elsevier.com/locate/biombioe Biodiesel production by esterification of palm fatty acid distillate S. Chongkhong, C. Tongurai, P. Chetpattananondh,

More information

Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles. Overview:

Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles. Overview: Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles Richard artmann Nazareth ollege hemistry Department verview:! What is green chemistry?! What is Biodiesel?!

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER Maša Knez Hrnčič, Mojca Škerget, Ljiljana Ilić, Ţeljko Knez*, University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory

More information

Technology Education

Technology Education Making Bio-Diesel Instructions Technology Education Statement of the Problem To create a fuel to be used in a diesel engine from a renewable feedstock and use as many by-products of the process for other

More information

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER Prof. Hitesh Muthiyan 1, Prof. Sagar Rohanakar 2, Bidgar Sandip 3, Saurabh Biradar 4 1,2,3,4 Department of Mechanical Engineering, PGMCOE,

More information

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals. PRODUCTION OF FATTY ACID METHYL ESTERS FROM SIMAROUBA OIL VIA ULTRASONIC IRRADIATION PROCESS, EFFECTIVE UTILIZATION OF BYPRODUCTS. TESTING AND EXTRACTION OF PHYTOCHEMICALS FROM SIMAROUBA OIL AND CAKE COLLEGE

More information

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process, Journal of Advanced & Applied Sciences (JAAS) Volume 03, Issue 03, Pages 84-88, 2015 ISSN: 2289-6260 Optimization of Biodiesel production parameters (Pongamia pinnata oil) by transesterification process

More information

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Kok Tat Tan*, Keat Teong Lee, Abdul Rahman Mohamed School of Chemical Engineering,

More information

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said Omar Said Introduction to myself Name: Omar Said (I am in Petroleum and Petrochemicals Engineering senior student Cairo University). Experience : Schlumberger oil service company trainee (wire line segment).

More information

International Engineering Research Journal (IERJ) Special Issue Page , June 2016, ISSN

International Engineering Research Journal (IERJ) Special Issue Page , June 2016, ISSN Experimental investigation of VCR engine by using fuel waste cooking oil/diesel blends and development model to predicating emission using semi-empirical approach #1 Swati V. Patil, #2 Dr Abhay A. Pawar

More information

Some Basic Questions about Biodiesel Production

Some Basic Questions about Biodiesel Production Some Basic Questions about Biodiesel Production Jon Van Gerpen Department of Biological and Agricultural Engineering University of Idaho 2012 Collective Biofuels Conference Temecula, CA August 17-19, 2012

More information

There s a lot of corn in the Midwest but can we use it to fly?

There s a lot of corn in the Midwest but can we use it to fly? There s a lot of corn in the Midwest but can we use it to fly? Grade Levels: 6-9 Lesson Length: Part II Making Biodiesel 1-2 class periods Problem Challenge: There is a lot of corn in the Midwest but can

More information

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014 Investigation of Diesel Engine Performance with the help of Preheated Transesterfied Cotton Seed Oil Mr. Pankaj M.Ingle*1,Mr.Shubham A.Buradkar*2,Mr.Sagar P.Dayalwar*3 *1(Student of Dr.Bhausaheb Nandurkar

More information

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF 75 CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS Table of Contents Chapter 3: PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS S.

More information

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL Ramaraju A. and Ashok Kumar T. V. Department of Mechanical Engineering, National Institute of Technology, Calicut, Kerala, India E-Mail: ashokkumarcec@gmail.com

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.4, pp 1695-1700, 2015 Microwave Assisted to Biodiesel Production From Palm Oil In Time And Material Feeding Frequency

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

CHEMISTRY 135. Biodiesel Production and Analysis

CHEMISTRY 135. Biodiesel Production and Analysis CHEMISTRY 135 General Chemistry II Biodiesel Production and Analysis The energy content of biodiesel can be roughly estimated with a simple laboratory apparatus. What features of biodiesel make it an attractive

More information

BIODIESEL EXPLORATION

BIODIESEL EXPLORATION BIODIESEL EXPLORATION MARYLAND ENVIRONMENTAL LITERACY STANDARDS: OVERVIEW Students will engage in a hands-on experimental lesson learning the benefits of Biodiesel and each class will partake in the production

More information

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Journal of KONES Powertrain and Transport, Vol. 15, No. 4 28 PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Dr (Miss) S L Sinha Mr Vinay Kumar Kar 2 Reader, National Institute of Technology

More information

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis Of The Biodiesel From Paper ID IJIFR/ V2/ E7/ 059 Page No.

More information

Effect of Nano-Fluid Additiveon Emission Reduction in Biodiesel

Effect of Nano-Fluid Additiveon Emission Reduction in Biodiesel IJIRST National Conference on Recent Advancements in Mechanical Engineering (RAME 17) March 2017 Effect of Nano-Fluid Additiveon Emission Reduction in Biodiesel A.Arun 1 V. David Anson 2 R. Manoj Kumar

More information

Cataldo De Blasio, Dr. Sc. (Tech.)

Cataldo De Blasio, Dr. Sc. (Tech.) Biodiesel Cataldo De Blasio, Dr. Sc. (Tech.) Aalto University, School of Engineering. Department of Mechanical Engineering. Laboratory of Energy Engineering and Environmental Protection. Sähkömiehentie

More information

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW Scientific Journal of Impact Factor (SJIF): 5.71 e-issn (O): 2348-4470 p-issn (P): 2348-6406 International Journal of Advance Engineering and Research Development International Conference on Momentous

More information

Extraction of Biofuel from Chicken Waste

Extraction of Biofuel from Chicken Waste Extraction of Biofuel from Chicken Waste A.Husain Ahmed 1, M.Mayoran 2, K.G.Logeshwaran 3, S.Balakumaran 4, K.A.Mohammed Ashiq 5 Assistant Professor, Department of Mechanical Engineering, Park College

More information

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae R.Velappan 1, and S.Sivaprakasam 2 1 Assistant Professor, Department of Mechanical Engineering, Annamalai University. Annamalai

More information

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS M.M. Zamberi 1,2 a, F.N.Ani 1,b and S. N. H. Hassan 2,c 1 Department of Thermodynamics and Fluid

More information

While each lab can stand on its own, each also builds on the previous labs, so using them in sequence can provide a richer experience.

While each lab can stand on its own, each also builds on the previous labs, so using them in sequence can provide a richer experience. Notes to the Instructor These labs are designed to be used during the second semester of a standard high school chemistry class. We hope to show students how chemistry principles can be used in the real-world

More information

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY BIODIESEL PRODUCTION IN A BATCH REACTOR Date: September-November, 2017. Biodiesel is obtained through transesterification reaction of soybean oil by methanol, using sodium hydroxide as a catalyst. The

More information

Production of Biodiesel from Waste Oil via Catalytic Distillation

Production of Biodiesel from Waste Oil via Catalytic Distillation Production of Biodiesel from Waste Oil via Catalytic Distillation Zhiwen Qi, Yuanqing Liu, Blaise Pinaud, Peter Rehbein Flora T.T. Ng*, Garry L. Rempel Department of Chemical Engineering, University of

More information

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine CMU.J.Nat.Sci.Special Issue on Agricultural & Natural Resources (2012) Vol.11 (1) 157 Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine Adisorn Settapong * and Chaiyawan

More information

Study of Transesterification Reaction Using Batch Reactor

Study of Transesterification Reaction Using Batch Reactor Study of Transesterification Reaction Using Batch Reactor 1 Mehul M. Marvania, 2 Prof. Milap G. Nayak 1 PG. Student, 2 Assistant professor Chemical engineering department Vishwakarma Government engineering

More information

PRODUCTION OF BIODIESEL FROM CHICKEN FAT

PRODUCTION OF BIODIESEL FROM CHICKEN FAT PRODUCTION OF BIODIESEL FROM CHICKEN FAT Talha Ahmad Bin Faizal 1, Nur Liana Anira Bt Muhammad Raus 2, Mohd Hafizarif Bin Mokhtar 3, Mohd Arif Bin Abd. Shukor 4,Ariffin Anuar Bin Ahmad Khuzi 5, Zainal

More information

Introduction During a time of foreign fuel dependency and high green house gas emissions, it is

Introduction During a time of foreign fuel dependency and high green house gas emissions, it is University of Tennessee at Chattanooga MOLAR RATIO STUDY FOR THE REACTION OF FREE FATTY ACIDS WITH METHANOL TO FORM FATTY ACID METHYL ESTERS OR BIODIESEL FUEL by Trip Dacus ENCH 435 Course: Ench435 Section:

More information

Emission Analysis of Biodiesel from Chicken Bone Powder

Emission Analysis of Biodiesel from Chicken Bone Powder Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis of Biodiesel from Chicken Paper ID IJIFR/ V2/ E7/ 058 Page

More information

Material Science Research India Vol. 7(1), (2010)

Material Science Research India Vol. 7(1), (2010) Material Science Research India Vol. 7(1), 201-207 (2010) Influence of injection timing on the performance, emissions, combustion analysis and sound characteristics of Nerium biodiesel operated single

More information

Biodiesel from soybean oil in supercritical methanol with co-solvent

Biodiesel from soybean oil in supercritical methanol with co-solvent Available online at www.sciencedirect.com Energy Conversion and Management 49 (28) 98 912 www.elsevier.com/locate/enconman Biodiesel from soybean oil in supercritical methanol with co-solvent Jian-Zhong

More information

Viscosity Reduction of Karanja Oil Using Peltier Element and Analysing the Performance Characteristics of the Engine with the Blended Oil

Viscosity Reduction of Karanja Oil Using Peltier Element and Analysing the Performance Characteristics of the Engine with the Blended Oil Viscosity Reduction of Karanja Oil Using Peltier Element and Analysing the Performance Characteristics of the Engine with the Blended Oil K.Kanagaraja 1, G.Saikrishnan 2, S.Srinivasan 3, M.R.Saroj Nitin

More information

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL SHYAM KUMAR RANGANATHAN 1, ANIL GANDAMWAD 2 & MAYUR BAWANKURE 3 1,2&3 Mechanical Engineering, Jawaharlal Darda Engineering College, Yavatmal,

More information

4001 Transesterification of castor oil to ricinoleic acid methyl ester

4001 Transesterification of castor oil to ricinoleic acid methyl ester 4001 Transesterification of castor oil to ricinoleic acid methyl ester castor oil + MeH Na-methylate H Me CH 4 (32.0) C 19 H 36 3 (312.5) Classification Reaction types and substance classes reaction of

More information

Automation of Biodiesel Reactor for the Production of Biodiesel from WVO Using PLC & Small Scale Continuous Ultrasonic Processor

Automation of Biodiesel Reactor for the Production of Biodiesel from WVO Using PLC & Small Scale Continuous Ultrasonic Processor Automation of Biodiesel Reactor for the Production of Biodiesel from WVO Using PLC & Small Scale Continuous Ultrasonic Processor Chase Malone Tennessee Technological University Camalone42@students.tntech.edu

More information

Biodiesel Making and Experimented Results from Waste Cooking Oil, in Mongolia

Biodiesel Making and Experimented Results from Waste Cooking Oil, in Mongolia International Journal of Emerging Engineering Research and Technology Volume 3, Issue 7, July 2015, PP 48-52 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Biodiesel Making and Experimented Results from

More information

Sustainable Solutions Study Guide 2. A CLEAN BURN. General Biodiesel. Sample Only (Not for Distribution) ONE BUSINESS S WASTE IS ANOTHER S LIQUID GOLD

Sustainable Solutions Study Guide 2. A CLEAN BURN. General Biodiesel. Sample Only (Not for Distribution) ONE BUSINESS S WASTE IS ANOTHER S LIQUID GOLD 2. A CLEAN BURN General Biodiesel ONE BUSINESS S WASTE IS ANOTHER S LIQUID GOLD 26 CHAPTER SUMMARY CASE NUMBER TWO A CLEAN BURN General Biodiesel The transportation sector is crucial to our economy and

More information

Effect of Catalysts and their Concentrations on Biodiesel Production from Waste Cooking Oil via Ultrasonic-Assisted Transesterification

Effect of Catalysts and their Concentrations on Biodiesel Production from Waste Cooking Oil via Ultrasonic-Assisted Transesterification Paper Code: ee016 TIChE International Conference 2011 Effect of Catalysts and their Concentrations on Biodiesel Production from Waste Cooking Oil via Ultrasonic-Assisted Transesterification Prince N. Amaniampong

More information

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds Radhakrishnan.C 1, Yogeshwaran.K 1, Karunaraja.N 1, Tamilselvan.R 2, Sriram Gopal 2, Kavin Prasanth.K 2, Assistant

More information

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst M.O. Daramola, D. Nkazi, K. Mtshali School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built

More information

Food or Fuel? (Teacher Notes) (The Chemistry and Efficiency of Producing Biodiesel)

Food or Fuel? (Teacher Notes) (The Chemistry and Efficiency of Producing Biodiesel) Food or Fuel? (Teacher Notes) (The Chemistry and Efficiency of Producing Biodiesel) Background on Biodiesel Production (It is strongly suggested that the materials adapted for this background: http://www.unh.edu/p2/biodiesel/media/nhsta-handout.doc

More information

Soybean Oil: Powering A High School Investigation of Biodiesel. 1. Northview High School, Covina, CA 91722

Soybean Oil: Powering A High School Investigation of Biodiesel. 1. Northview High School, Covina, CA 91722 Soybean Oil: Powering A High School Investigation of Biodiesel Paul De La Rosa 1, Katherine A. Azurin 2, and Michael F. Z. Page 2 * 1. Northview High School, Covina, CA 91722 2. Chemistry Department, California

More information

Phase Distribution of Ethanol, and Water in Ethyl Esters at K and K

Phase Distribution of Ethanol, and Water in Ethyl Esters at K and K Phase Distribution of Ethanol, and Water in Ethyl Esters at 298.15 K and 333.15 K Luis A. Follegatti Romero, F. R. M. Batista, M. Lanza, E.A.C. Batista, and Antonio J.A. Meirelles a ExTrAE Laboratory of

More information

Methanolysis of Jatropha Oil Using Conventional Heating

Methanolysis of Jatropha Oil Using Conventional Heating Science Journal Publication Science Journal of Chemical Engineering Research Methanolysis of Jatropha Oil Using Conventional Heating Susan A. Roces*, Raymond Tan, Francisco Jose T. Da Cruz, Shuren C. Gong,

More information

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Otu, F.I 1,a ; Otoikhian, S.K. 2,b and Ohiro, E. 3,c 1 Department of Mechanical Engineering, Federal University

More information

An Analysis of Alternative Fuels for Automotive Engines. Joey Dille

An Analysis of Alternative Fuels for Automotive Engines. Joey Dille An Analysis of Alternative Fuels for Automotive Engines Joey Dille 1 Problem Hundreds of millions of people use the car as their preferred method of transportation, but cars pollute the air and contribute

More information

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol 11 2nd International Conference on Chemical Engineering and Applications IPCBEE vol. 23 (11) (11) IACSIT Press, Singapore Experimental Investigation and Modeling of Liquid-Liquid Equilibria in + + Methanol

More information

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) using Dodecane as a Solvent V.Naresh 1,S.Phabhakar 2, K.Annamalai

More information

Utah Biodiesel Supply Phone:

Utah Biodiesel Supply Phone: The BioPro And The BioPro EX Automated Biodiesel Processors & Dry Wash Systems (Pricing as of 8/2/2013, subject to change) Capacities And Prices Of The BioPro Units: BioPro 150: Up to 40 gallons every

More information

Waste cooking oil as an alternative fuel in compression ignition engine

Waste cooking oil as an alternative fuel in compression ignition engine Waste cooking oil as an alternative fuel in compression ignition engine 1 Kashinath Swami, 2 Ramanagauda C. Biradar, 3 Rahul Patil Research Scholars Department of Mechanical Engineering, W.I.T. Solapur,

More information

Synthesis of Biolubricants from Non Edible Oils

Synthesis of Biolubricants from Non Edible Oils Synthesis of Biolubricants from Non Edible Oils A. J. Agrawal 1, Dr. V. Y. Karadbhajne 2, Dr. P. S. Agrawal 3, P. S. Arekar 4, N. P. Chakole 5 1 Assistant Professor, Dept. of Petrochemical Technology LIT

More information

Research Article. Bio diesel production by transesterification in presence of two different catalysts and engine performance of the biodiesels

Research Article. Bio diesel production by transesterification in presence of two different catalysts and engine performance of the biodiesels Available online wwwjocprcom Journal of Chemical and Pharmaceutical Research, 214, 6(1):788-793 Research Article ISSN : 975-7384 CODEN(USA) : JCPRC5 Bio diesel production by transesterification in presence

More information

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling University of Malaya From the SelectedWorks of Abdul Aziz Abdul Raman 2010 Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network

More information

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD SINTEI EBITEI AND TRUST PROSPER GBORIENEMI Department of Chemical Engineering, Federal Polytechnic, Ekowe Bayelsa State, Nigeria. ABSTRACT

More information

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification Research Journal of Chemical Sciences ISSN 2231-606X Use of Sunflower and Oil to prepare Biodiesel by catalyst assisted Transesterification Abstract *Patni Neha, Bhomia Chintan, Dasgupta Pallavi and Tripathi

More information

CHAPTER 4 PRODUCTION OF BIODIESEL

CHAPTER 4 PRODUCTION OF BIODIESEL 56 CHAPTER 4 PRODUCTION OF BIODIESEL 4.1 INTRODUCTION Biodiesel has been produced on a large scale in the European Union (EU) since 1992 (European Biodiesel Board 2008) and in the United States of America

More information

CHEMICAL ENGINEERING LABORATORY CHEG 237W

CHEMICAL ENGINEERING LABORATORY CHEG 237W HEMIAL ENGINEERING LABRATRY HEG 237W BIDIESEL PREPARATIN LAB BAKGRUND: Global warming will become one of the most challenging tasks for man to overcome over the next century. As with any task, when viewed

More information

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An experimental

More information

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process Journal of Materials Science and Engineering A 5 (5-6) (2015) 238-244 doi: 10.17265/2161-6213/2015.5-6.008 D DAVID PUBLISHING Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID MAROTTI OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID MAROTTI OIL International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print) ISSN 0976 6359(Online) Volume 1 Number 1, July - Aug (2010), pp. 227-237 IAEME, http://www.iaeme.com/ijmet.html

More information

Sequence n 4: Syntheses and the environment

Sequence n 4: Syntheses and the environment Sequence n 4: Syntheses and the environment ACTIVITY 1 : KITCHEN SCIENCE, MAKING FUEL FROM VEGETABLE OIL Part 1: Study of a recording Scientists at Bath University, UK, have a found a simple way to use

More information