Below, you can see the warning symbols used throughout the manual and their meaning.

Similar documents
INTRODUCTION WARNING SIGNS AND THEIR MEANINGS

Motor Technology Mounting Design Guide

Brushless Torque Motors

Permanent Magnet Synchronous Frameless Torque Motors KSO/H Series

Mounting and Installation Guidelines

K Series Kit Motor Reliable and Compact Approach: Build your own high-performance motor

Brushless Servo Motors

Kollmorgen Frameless Motor Selection Guide

SERVO MOTORS BRUSHLESS SERVO MOTORS ATEX ZONE 2-22 OPERATING INSTRUCTIONS 2016

Product Manual. Frameless Kit Motors. Product Manual

Omni Series Motors. Applimotion Motors & Actuators TORQUE. Low-Profile Direct Drive Motors for the World s Machines and Robots PRODUCT DATA SHEET

Frameless Permanent Magnet Alternators

Kollmorgen Frameless Motor Selection Guide

LIMITED ANGLE TORQUE MOTORS

Mini-MAG Positioning Products

Data Sheet PM Generator Kit version K535S-4-11 K535S-4-12 K535S-4-14 K535S-4-17 K535S-4-22

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR

Silencer Series Brushless DC Motors

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS

Synchronous motors. Main spindle motors for SINAMICS S120 1FE1 standard type built-in motors Water cooling. 6/86 Siemens NC /2008

E180 DIAMETER FRAMES

Page 1. Design meeting 18/03/2008. By Mohamed KOUJILI

Frameless Torque Motor Series

COMPARISON OF PERFORMANCE FEATURES

Features & Benefits. Options & Accessories

Silencer Series Brushless DC Motors

SMH High Torque Density

Features & Benefits. Options & Accessories

Features & Benefits. Options & Accessories

Features & Benefits. Options & Accessories

Features & Benefits. Options & Accessories

Features & Benefits. Options & Accessories

Features & Benefits. Options & Accessories

Features & Benefits. Options & Accessories

Arm - RX series 170B family

dv Sentry TM 208V 600V INSTALLATION GUIDE Quick Reference ❶ How to Install Pages 6 14 ❷ Startup/Troubleshooting Pages WARNING

E280 DIAMETER FRAMES

ILE2T661PB1A3 brushless dc motor V - Modbus TCP interface - L = 174 mm - 54:1

Instruction Manual. Table of Contents. Powder Clutch, Brake MODEL ZKB-AN,BN Powder Clutch ZKB-YN,XN Powder Brake

SERVO MOTORS BRUSHLESS SERVO MOTORS OPERATING INSTRUCTIONS 2016

ILE2K661PC1A1 brushless dc motor V- EtherNet/IP interface - L = 174 mm- 18:1

Positioning Systems. Torque Motor Rotary Tables Product Overview and Application Areas

Commissioning Manual AC Servo Actuator LynxDrive SIEMENS SIMODRIVE

1326AS Series 460V, Low Inertia, Brushless Servo Motors Product Data

THREE PHASE AND SINGLE PHASE ASYNCHRONOUS ELECTRIC MOTORS OPERATION AND MAINTENANCE BOOKLET Rev

ILE1B661PC1A1 brushless dc motor V - Profibus DP interface - L = 174 mm - 18:1

PowerLink GW series Eddy Current Dynamometer User Manual

K Series Kit Motors. Frameless Kit Motors are the Reliable and Compact Approach to Build Your Own High-Performance Motor. Contact Information:

Quantum Series Size 17, 23, 34 and 56 Brushless Servo Motors Frameless and Housed Engineering Guide

MP-Series Integrated Gear Motors

MOONS SM servo motors offer a great combination of Power, Precision and Value:

Remy HVH250 Application Manual Remy HVH250 Application Manual

SERVICE MANUAL OF SERVOMOTORS HD/HR RANGE

Commissioning & Maintenance Instructions. for. COBRA linear stepping motors

Frameless High Torque Motors. Product Brochure

ServoRings TM - integrated rotary tables with high torque servo ring motor, high resolution ring encoder and high accuracy ring bearing

User Manual for the RAMK Rotational Absolute Magnetic Kit Encoder

ICH Linear Motors REACH. Installation Guide

Torque motors. (frameless) TGQ Torque (direct) motors

Aspects of Permanent Magnet Machine Design

Mini-MAG (MMG) Positioning Products Ultra Compact Linear Motor Stages

Service Manual #67. Installation and Service Instructions 6000, 7000 & 8000 Series Magnetically Coupled Pumps

Lumitester PD-20 Control Kit

1.4 inch (36mm) Series

High Frequency SineWave Guardian TM

1. SPECIFICATION. Altitude of motor installation. Information: Resistance and temperature specifications of the PTC thermistor / posistor/.

User Manual. Solar Charge Controller 3KW

ILE1F661PC1A0 brushless dc motor V - CANopen DS301 interface - L = 122 mm - w/o gearbox

.63 (16mm) Series. High performance slotless brushless motors for military, aerospace, medical/dental, and industrial applications

INTRODUCTION GENERAL GUIDELINES ATTACHING THE DRIVE PARTS

Rotary Series Rotary Series: Direct Drive Precision Stages

Datasheet. Pitch Motor PMSM SP190F8

ASYNCHRONOUS MOTORS THREE-PHASE MOTORS SINGLE-PHASE MOTORS BRAKE MOTORS INSTRUCCIONES DE SERVICIO OPERATING INSTRUCTIONS 2016

FRAMELESS MOTORS AND GEARMOTO

Brushless servo motors as replacements for conventional disk armature motors

Advantages of a Magnetically Driven Gear Pump By Steven E. Owen, P.E.

Typical Technical Requirements for Electrical Machines and Components

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES

VEM motors Thurm GmbH

OPERATING AND MAINTENANCE MANUAL. Primary Current Injection Test Set. 750ADM-H mk2

Frameless High Torque Motors. Product Brochure

TORQUE-MOTORS. as Actuators in Intake and Exhaust System. SONCEBOZ Rue Rosselet-Challandes 5 CH-2605 Sonceboz.

FM motor 230V & 460V. FM motor 230V. FM motor 460V. Performance AC Brushless Servo Motor. Servomotors.

QMOT Motor QSH4218 Manual 42mm QMOT motor family

Actuators are the muscles of robots.

Product Information ECN 425 EQN 437. Absolute Rotary Encoders with Hollow Shaft and Expanding Ring Coupling for Safety-Related Applications

Arm - TX series 40 family

Linear Motors. 5/14 Installation & Operating Manual MN1800

Technical Explanation for Inverters

Kollmorgen Frameless Motor Selection Guide

BoWex FLE-PA. BoWex FLE-PAC. KTR-N Sheet: Edition: EN 1 of BoWex FLE-PA / FLE-PAC Operating/Assembly instructions

INSTALLATION OPERATION & MAINTENANCE INSTRUCTIONS For THREE-PHASE INDUCTION MOTORS TYPE HJN / HJA

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

CRYOGENIC MOTORS FOR HERSCHEL/PACS AND JAMES WEBB/MIRI AND NIRSPEC

CHAPTER 1 INTRODUCTION

INTRODUCTION BENEFITS OF USING DDR (DIRECT DRIVE ROTARY) TECHNOLOGY

CARLYLE JOHNSON MAXITORQ MODEL HTB

ILA1F572PB1F0 integrated drive ILA with servo motor V - CANopen - PCB connector

SLM/SLG SERIES. SLM Series Motors/SLG Series Gearmotors BRUSHLESS AC OR DC SERVO MOTOR / INTEGRATED SERVO GEARMOTOR

Butterfly valves Figure 56 Installation & Maintenance Instructions

Transcription:

FMI60201 Frameless motors INTRODUCTION FMI-series frameless motors by Rozum Robotics are designed to provide motion as part of a motion system. Available in a range of sizes (dia. 40, 50, 60, 75 mm), FMI motors are suitable for a wide spectrum of applications robotics, industrial machinery, automatic tools, etc. This manual is intended for technicians and engineers who are responsible for integrating the FMI601201 frameless motor into a motion system, as well as operating the motor after integration. The document contains: basic features and components of FMI-series frameless motors a description of the FMI601201 supply package the specifications and operating conditions of the FMI601201 frameless motor the dimensional drawings of the FMI601201 frameless motor with coupling dimensions instructions to assemble and mount FMI frameless motors storage and transportation recommendations WARNING SIGNS AND THEIR MEANINGS Below, you can see the warning symbols used throughout the manual and their meaning. The sign denotes important information that is not directly related to safety, but that the user should be aware of. The sign indicates important safety precautions the user should follow. Page 2 17

FMI60201 Frameless motors TABLE OF CONTENTS INTRODUCTION... 2 WARNING SIGNS AND THEIR MEANINGS... 2 1. PRODUCT OVERVIEW... 4 1.1. Basic features and components... 4 1.2. Thermal sensors... 5 1.3. Supply package and transportation... 6 1.4. Applications... 7 1.5. Additional equipment for building a motion system... 7 Housing... 7 Power supply... 7 Bearing... 8 Controller... 8 Rotor shaft... 8 2. SPECIFICATIONS AND DIMENSIONS... 8 2.1. Technical specifications... 8 2.2. Dimensional drawings... 9 3. MOUNTING REQUIREMENTS... 12 3.1. Mechanical interfaces... 12 3.2. Stator mounting... 12 3.3. Rotor mounting... 12 3.4. Electrical interfaces... 13 Wiring... 13 Protective earthing... 14 4. ASSEMBLY... 14 4.1. Required tools and materials... 14 4.2. Assembly instructions... 15 4.3. Disassembly... 15 5. OPERATION... 16 5.1. Operating conditions... 16 6. MAINTENANCE... 16 7. TROUBLESHOOTING... 16 8. STORAGE... 17 Page 3 17

FMI60201 Frameless motors 1. PRODUCT OVERVIEW 1.1. Basic features and components FMI-series motors are frameless brushless alternating-current (AC) motors. Their basic features are as follows: Compact size and low weight High power density and high power-to-weight ratio Simple mounting and assembling A FMI-series frameless motor kit comprises two components a rotor assembly and a stator assembly. Figure 1-1: Rotor and stator assemblies with cable outputs Page 4 17

FMI60201 Frameless motors The rotor assembly The rotor assembly (1) is the moving part of the frameless motor. The assembly contains magnets with alternating poles and a support ring (3). The magnets are manufactured from rare-earth metals (neodymium or samarium-cobalt). The rotor can also be supplied assembled with a shaft. The stator assembly The stator assembly (2) is the non-moving component of the FMI frameless motor. By design, the assembly is a 20 mm high lamination stack (4) with coil-supporting teeth. The stack consists of multiple 0.5 mm thick electrical steel plates. For improving thermal conductivity, it is covered with a special polymer compound (5). The stator assembly also includes two separate cable outputs one for the power cable (7) and the other for the thermal sensor cable (6). The stator can also be supplied with a single cable output comprising both the power and the thermal sensor cables. 1.2. Thermal sensors For overheating protection, FMI-series frameless motors are equipped with a thermal sensor a negative temperature coefficient (NTC) thermistor (model NXFT15). The sensor is integrated into the stator winding and is in direct contact with it. When the thermistor senses increase in the temperature of the stator winding, its resistance decreases. The NTC thermistor provides temperature sensing with accuracy of 0.1 degree and has the following characteristics: Resistance at 25 C: 10 kohm Beta constant at 25/85: 3434 K Maximum power: 100 mw Package/case: bead For more information, refer to the manufacturer's documentation for the NXFT15 NTC thermistor. Using the special cable output (6) (see Figure 1-1), you can connect the thermistor to a controller. Based on the thermistor readings, the controller will cut the motor off in case the maximum temperature setting is exceeded. Page 5 17

FMI60201 Frameless motors Figure 1-2: NTC thermistor interface in FMI motors 1.3. Supply package and transportation The supply package of a FMI-series frameless motor comprises stator and rotor assemblies. The two assemblies are supplied separately in the same container as shown in Figure 1-3 below. Figure 1-3: A FMI-series frameless motor in a shipping container We recommend using the shipping container for any further transportation of frameless motors. Take extra care when unpacking the rotor and the stator to avoid any damage to their components. Do not handle the stator by wiring! Page 6 17

FMI60201 Frameless motors 1.4. Applications FMI-series frameless motors can be used the following applications: Robotics Automatic tools (e.g., drills, screwdrivers) Industrial machinery (e.g., packaging equipment, pumps, compressors Aircraft models The list is not exhaustive. Contact us to learn more about using the FMI601201 frameless motor for your application. 1.5. Additional equipment for building a motion system Building a complete motion system with a FMI frameless motor will require using additional equipment, such as: A housing A power supply A bearing A controller A shaft Housing The additional equipment is usually out of Rozum Robotics supply scope. It is the integrator's responsibility to provide it. The housing should be sufficiently rigid not to deform when you mount the stator in place. The inner diameter of the FMI601201 housing should be such as to comply with the ISO 51 H7 tolerance for the outer diameter of the stator (see also Figure 2-2). On the inside, the housing should have a shoulder perpendicular to the stator mounting position. The shoulder is required to provide a clearance between the housing bottom and the stator lamination stack. For the FMI601201 frameless motor, the clearance should be at least 3 mm. For better heat dissipation, you can also cut grooves on the outer surface of the housing. Power supply The power supply should have the same voltage and current ratings as indicated in the motor specifications (see Table 2-1). Page 7 17

FMI60201 Frameless motors Bearing It is the entire responsibility of the integrator to provide a bearing to match the application requirements. When selecting a bearing, pay foremost attention to such operating parameters, as speed, expected load, and required service life. Controller You can either order a controller from Rozum Robotics or buy one from a third-party supplier. The recommended type is a PWM controller of the following configuration: FOC sinusoidal control An absolute encoder as a feedback device Output current of 20A continuous Rotor shaft Optionally, Rozum Robotics can supply the FMI601201 frameless motors pre-assembled with a shaft. In other cases, make sure that the outer diameter of the selected shaft complies with the ISO 24 H7 tolerance as specified for the inner rotor diameter. 2. SPECIFICATIONS AND DIMENSIONS 2.1. Technical specifications Table 2-1 lists major technical specifications of FMI601201 frameless motors. Table 2-1: Technical specifications of the FMI601201 frameless motor Parameter Value Unit of measurement Mechanical Weight 130 G Rotor inertia 0.244 kg/cm² Stator diameter 51 Mm Electrical Winding type Supply voltage 48 V RMS current 3.5 A Torque constant, Kt 86 mn m/a Y Motor constant 94 mn m/ W Speed constant, Kv 125 RPM/V Terminal resistance 0.55 Ω Page 8 17

FMI60201 Frameless motors Terminal inductance 520 μh Number of pole pairs 7 Performance Power 190 W Maximum efficiency 90 % Rated torque 300 mn m Peak torque 840 mn m Rated speed 6,000 RPM No load speed 6,300 RPM 2.2. Dimensional drawings The drawings in Figure 2-1 and Figure 2-2 below contain overall and coupling dimensions. You can use them as a reference to align and assemble the rotor with the stator and integrate them into a housing. Page 9 17

FMI601201 Frameless motors Figure 2-1: Dimensional drawing (Sheet 1). The FMI601201 rotor assembled with the stator Page 10 17

FMI601201 Frameless motors Figure 2-2: Dimensional drawing (Sheet 2). The FMI601201 rotor-stator assembly in a housing Page 11 17

FMI601201 Frameless motors 3. MOUNTING REQUIREMENTS 3.1. Mechanical interfaces For safe operation, it is essential to provide an air gap of at least 0.3 mm between the rotor and the stator. For the purpose, make sure to use 0.2 mm thick shim (e.g., made from mylar) when assembling the rotor with the stator (Section 4.2). 3.2. Stator mounting The preferred method for mounting the stator is bonding. We recommend using the Loctite 648 or 638 adhesive. Before applying the adhesive, make sure to clean the bonding surface (see Figure 3-1) with a suitable cleaning agent (e.g., acetone). 3.3. Rotor mounting Figure 3-1: The bonding surface of the stator A rotor can be mounted using one of the following two methods axial clamping and bonding. Axial clamping The choice of the mounting method will depend on the application system design. Some of the possible considerations include heat transfer, stiffness, integration methods, and maintenance. This mounting method requires using a clamping ring pressed onto the rotor ring (for the clamping surface, refer to Figure 3-2). Page 12 17

FMI601201 Frameless motors Bonding The clamping ring should not contact the rotor magnets to avoid any damage to them. The recommended adhesive for bonding a stator is Loctite 648 or 638. Before applying the adhesive, make sure to clean the bonding surface with a suitable cleaning agent (e.g., acetone). Figure 3-2: The mounting surfaces of the rotor To avoid demagnetizing, never apply the temperature above 70 C when curing the adhesive. 3.4. Electrical interfaces Wiring The wiring of FMI frameless motors comprises: a 3-phase power cable of Y-configuration a 2-wire temperature sensor cable Table 3-1: The color codes for the 3-phase cable Cable Color code 3-phase Phase A Phase B Phase C Red Black White To provide electrical integration of the frameless motor into your application, use the wiring scheme in Figure 3-3. Before starting the wiring works, make sure to disconnect the motor and the application from the power supply. Page 13 17

FMI601201 Frameless motors Protective earthing Figure 3-3: The wiring scheme for integrating an FMI frameless motor It is the responsibility of the integrator to provide protective earthing of the motor housing. The protective earthing should comply with the following minimum requirements: Its current capacity should be at least equal to the current capacity of the motor wiring. The protective earthing wire should have the standard yellow/green insulation. Its voltage rating should correspond to the supply voltage of the motor winding as indicated in the specification (see Table 2-1). You can either bundle the protective earthing wire with the motor wiring or run it separately, if your operating conditions require so. 4. ASSEMBLY 4.1. Required tools and materials To install the stator and the rotor into a housing, you will need the following tools and materials: an installation tool as appropriate for your purposes a 0.2 mm thick shim (e.g., made from mylar) To avoid any damage to the rotor, we recommend using non-magnetic tools. For housing dimensions and other requirements, see Figure 2-1 and Figure 2-2. Page 14 17

FMI601201 Frameless motors 4.2. Assembly instructions Below, we provide a generic sequence of steps as required to install the rotor and the stator into a housing. Handle the components of the frameless motor with care, especially the rotor, since its magnets are sensitive to mechanical shock. Magnetic-sensitive objects, such as banking cards, pacemakers, or other magnetic information carriers, should be kept away at a distance of 1m from the rotor. Step 1: Position your selected housing (see recommendations in Section 1.5) on a stable surface and fix it in place to prevent any sudden movements. Step 2: Place the stator into the housing and secure it by bonding (see Section 3.2). Step 3: Prepare the rotor assembly for installation. To do that, slide the rotor ring with magnets onto the rotor shaft and secure it either by clamping or bonding (see Section 3.3). Rare-earth magnets are brittle and chip easily. Therefore, take extra care while sliding the rotor ring onto the shaft and handling the assembly. Step 4: Inside the stator ring, install a shim to prepare for fitting the rotor assembly. Step 5: Lower the rotor assembly slowly and smoothly along the axis line to position it inside the stator ring. During installation, the stator and rotor are exposed to strong attraction forces in axial and radial directions. For safe insertion, use special tooling that can provide smooth and gradual lowering of the rotor assembly along the axis line. Step 6: Remove the shims. Now, the motor is ready for further integration into your motion system. To complete the integration, you will need the additional equipment as listed in Section 1.3. The exact integration procedure will depend on the design of your system. As a pre-commissioning test, you can rotate the motor manually to make sure it moves without stalling. 4.3. Disassembly A generic disassembly practice is to follow the reverse order of the assembly sequence described in Section 4.2. Page 15 17

FMI601201 Frameless motors 5. OPERATION 5.1. Operating conditions Make sure that the location where the frameless motor is to be operated has a functional exhaust system and is free from metal dust and debris. Other environmental specifications applicable to operation of FMI-series frameless motors are as specified in Table 5-1. Table 5-1: Environmental specifications Parameter Operating temperature 0 to 35 C Operating humidity Altitude Atmosphere Specifications 80% max at 25 C (90% at 20 C) Not higher than 1,000 m above the sea Not suitable for use in explosive or hazardous atmospheres Avoid exposing the motor to any environmental conditions outside of the listed specifications as this can cause damage to it. 6. MAINTENANCE FMI-series frameless motors are essentially maintenance-free. However, it is advisable to check the motor regularly for the following: excessive or abnormal motor heating excessive motor vibrations loose couplings burning smells accumulation of debris, etc. 7. TROUBLESHOOTING Table 7-1 lists the most common problems that can occur during operation of FMI-series frameless motors and their possible causes. Table 7-1: Most common operation problems and their causes Problem Possible cause You cannot turn the frameless motor by hand during the precommissioning test. There is a mechanical blockage. Non-insulated parts of the two motor wires contact each other. Page 16 17

FMI601201 Frameless motors You have trouble starting the frameless motor. Broken wire either inside the motor or outside it. Incorrect installation of the rotor. The motor generates excessive heat. Excessive noise. Excessive load and operation outside the specifications (Table 2.1). Defect of the motor winding. To know the exact cause for sure, check operation of the motor at no load. If the motor is overheating even at no load, the cause is a winding defect. Otherwise, adjust the operation mode in accordance with the motor specifications. Bearing defect. Operation outside the motor specifications (Table 2.1). Only qualified service personnel can perform repair works. 8. STORAGE Prior to commissioning, it is advisable to store frameless motors in their shipping containers. Make sure to comply with the following storage requirements: For storing, choose a location with a controlled environment Storage temperature: +5 C to +40 C Storage humidity: 80% max at 25 C (90% at 20 C) Protect motor components from direct contact with magnetic materials or particles (e.g., iron chips, dust, etc.) The maximum storage period is 10 years, provided the storage container is protected from humidity with silica gel. Page 17 17