The instantaneous torque is pulsating. The average value of the torque is

Similar documents

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities

VALLIAMMAI ENGINEERING COLLEGE

Figure 4.1.1: Cartoon View of a DC motor

PHY 152 (ELECTRICITY AND MAGNETISM)

2014 ELECTRICAL TECHNOLOGY

2 Principles of d.c. machines

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

Introduction. Introduction. Switched Reluctance Motors. Introduction

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

The Wound-Rotor Induction Motor Part I

ESO 210 Introduction to Electrical Engineering

Fachpraktikum Elektrische Maschinen. Theory of Induction Machines

Renewable Energy Systems 13

1. This question is about electrical energy and associated phenomena.

QUESTION BANK SPECIAL ELECTRICAL MACHINES

Chapter 5: DC Motors. 9/18/2003 Electromechanical Dynamics 1

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

Note 8. Electric Actuators

Regulation: R16 Course & Branch: B.Tech EEE

Synchronous Generators I. EE 340 Spring 2011

Chapter 22. Electromagnetic Induction

Electrical Machines-I (EE-241) For S.E (EE)

DC CIRCUITS ELECTROMAGNETISM

Chapter 4 DC Machines

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III UNIT - IV CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION CHAPTER - 2 :

Part- A Objective Questions (10X1=10 Marks)

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW

Synchronous Generators I. Spring 2013

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

R07 SET - 1

Physics12 Unit 8/9 Electromagnetism

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES

5. LINEAR MOTORS 5.1 INTRODUCTION

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR

ELECTRICITY: INDUCTORS QUESTIONS

The Wound-Rotor Induction Motor Part II

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

CHAPTER 2 MODELLING OF SWITCHED RELUCTANCE MOTORS

Fig Electromagnetic Actuator

EKT112 Principles of Measurement and Instrumentation. Power Measurement

Unit-II Synchronous Motor

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

Doubly fed electric machine

df Idl B (1) cst ) the resulting force acting of a F Idl B IL B (2) GOAL I. INTRODUCTION. II. OPERATION PRINCIPLE

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Principles of Electrical Engineering

Instrumental technique presentation

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

CHAPTER 8: ELECTROMAGNETISM

Dev Bhoomi Institute Of Technology LABORATORY Department of Electrical And Electronics Engg. Electro-mechanical Energy Conversion II

INDUCTANCE FM CHAPTER 6

II/IV B.Tech(Regular) DEGREE EXAMINATION. Electronics & Instrumentation Engineering

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Question 2: Around the bar magnet draw its magnetic fields. Answer:

A New Design of Permanent Magnets Reluctance Generator Andi Pawawoi, Syafii

Chapter 5. Design of Control Mechanism of Variable Suspension System. 5.1: Introduction: Objective of the Mechanism:

Principles and types of analog and digital ammeters and voltmeters

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Prepared By: Ahmad Firdaus Bin Ahmad Zaidi

Fall 1997 EE361: MIDTERM EXAM 2. This exam is open book and closed notes. Be sure to show all work clearly.

Unit-I MEASURING INSTRUMENTS

Lab 9: Faraday s and Ampere s Laws

ST.ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY ANGUCHETTYPALAYAM, PANRUTI

Universal computer aided design for electrical machines

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor

Contents. Review of Electric Circuitd. Preface ;

This chapter gives details of the design, development, and characterization of the

Like poles repel, unlike poles attract can be made into a magnet

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, March 18, ISSN

CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT

A starting method of ship electric propulsion permanent magnet synchronous motor

Lecture 20: Stator Control - Stator Voltage and Frequency Control

CONTROL SYSTEM HOW-TO GUIDE. Synchro Transmitter and Receiver

SOME FACTORS THAT INFLUENCE THE PERFORMANCE OF

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

ROTATING MAGNETIC FIELD

Electromagnetic Induction, Faraday s Experiment

Journal of Asian Scientific Research. DESIGN OF SWITCHED RELUCTANCE MOTOR FOR ELEVATOR APPLICATION T. Dinesh Kumar. A. Nagarajan

Semi-Linear Induction Motor

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

MOTORS. Part 2: The Stepping Motor July 8, 2015 ELEC This lab must be handed in at the end of the lab period

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

Lab Electrical Power Engineering I

1. What is magnetic circuit?

Induction type Energy meter Construction

R13 SET - 1. b) Describe different braking methods employed for electrical motors. [8M]

Electromagnetic Induction

Induction machine characteristics and operation. Induction Machines


14 Single- Phase A.C. Motors I

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

Transcription:

Problems 113 2. ω m = ω s ω r. Both stator and rotor windings carry ac currents at different frequencies and the motor runs at an asynchronous speed (ω m 6¼ ω s, ω m 6¼ ω r ). From Eq. 3.50, the torque developed is T = I smi rm M sinð2ω s t + α + δþ + sinð 2ω r t α + δþ 4 + ½sinð2ω s t 2ω r t α + δþ + sinðα + δþš ð3:55þ The instantaneous torque is pulsating. The average value of the torque is T avg = L sml rm M sinðα + δþ 4 ð3:56þ This is the basic principle of operation of an induction machine, in which the stator winding is excited by an ac current and ac current is induced in the rotor winding. Note that the single-phase induction machine is also not self-starting, because at ω m = 0no average torque is developed. The machine is brought up to the speed ω m = ω s ω r so that it can produce an average torque. To eliminate pulsating torque, polyphase induction machines are used for high-power applications. The mechanism of torque production in electromagnetic systems producing both translational and rotary motions has been discussed in this chapter. In rotating machines torque can be produced by variation in the reluctance of the magnetic path or mutual inductance between the windings. Reluctance machines are simple in construction, but torque developed in these machines is small. Cylindrical machines, although more complex in construction, produce larger torques. Most electrical machines are of the cylindrical type. The performance of the various rotating electrical machines is discussed in more detail in the following chapters. PROBLEMS 3.1 In a translational motion actuator, the λ i relationship is given by i = λ 3=2 + 2:5λðx 1Þ 2 for 0 < x < 1 m, where i is the current in the coil of the actuator. Determine the force on the moving part at x = 0:6m. 3.2 The λ i relationship for an electromagnetic system is given by λ = 1:2i1=2 g where g is the air gap length. For current i = 2 A and g = 10 cm, determine the mechanical force on the moving part Using the energy of the system. Using the coenergy of the system.

114 chapter 3 Electromechanical Energy Conversion 3.3 An actuator system is shown in Fig. P3.3. All dimensions are in centimeters. The magnetic material is cast steel, whose magnetization characteristic is shown in Fig. 1.7. The magnetic core and air gap have a square cross-sectional area. The coil has 500 turns and 4:0 ohms resistance. The gap is d = 1 mm. (iii) (iv) Determine the coil current and supply voltage (dc) required to establish an air gap flux density of 0.5 tesla. Determine the stored energy in the actuator system. Determine the force of attraction on the actuator arm. Determine the inductance of the coil. The actuator arm is allowed to move and finally the air gap closes. For zero air gap determine the flux density in the core, force on the arm, and stored energy in the actuator system. Determine the energy transfer (excluding energy loss in the coil resistance) between the dc source and the actuator. Assume that the arm moved slowly. What is the direction of energy flow? How much mechanical energy is produced? FIGURE P3.3 3.4 Fig. P3.4 shows an electromagnet system for lifting a section of steel channel. The coil has 600 turns. The reluctance of the magnetic material can be neglected up to a flux density of 1.4 tesla. For a coil current of 15A (dc), determine the maximum air gap g for which the flux density is 1.4 tesla. For the air gap in part, determine the force on the steel channel. The steel channel has a mass of 1000 kg. For a coil current of 15 A, determine the largest gap at which the steel channel can be lifted magnetically against the force of gravity ð9:81 m=sec 2 Þ.

Problems 115 FIGURE P3.4 3.5 An electromagnet lift system is shown in Fig. P3.5. The coil has 2500 turns. The flux density in the air gap is 1:25 T. Assume that the core material is ideal. For an air gap, g = 10 mm: (iii) Determine the coil current. Determine the energy stored in the magnetic system. Determine the force on the load (sheet of steel). (iv) Determine the mass of the load (acceleration due to gravity = 9:81 m=sec 2 ). If the air gap is 2 mm, determine the coil current required to lift the load. FIGURE P3.5 3.6 The cross section of a cylindrical magnetic actuator is shown in Fig. P3.6. The plunger has a crosssectional area 0:0016 m 2. The coil has 2500 turns and a resistance of 10 Ω. A voltage of 15 V (dc) is applied to the coil terminals. Assume that the magnetic material is ideal. Determine the air gap g in mm for which the flux density in the air gap is 1.5 T. Determine the stored energy for this condition.

116 chapter 3 Electromechanical Energy Conversion Obtain an expression for the force on the plunger as a function of the air gap length g. Determine the force on the plunger for the condition of part. (d) Suppose the plunger moves quickly from an initial gap of 5 mm to the fully closed position. The plunger moves so quickly that the flux linkage of the coil (and hence the flux density in the air gap) hardly changes during the motion. Determine the force during the motion. Determine the amount of mechanical energy produced during the motion. FIGURE P3.6 3.7 The electromagnet shown in Fig. P3.7 can be used to lift a sheet of steel. The coil has 400 turns and a resistance of 5 ohms. The reluctance of the magnetic material is negligible. The magnetic core has a square cross section of 5 cm by 5 cm. When the sheet of steel is fitted to the electromagnet, air gaps, each of length g = 1 mm, separate them. An average force of 550 newtons is required to lift the sheet of steel. For dc supply, Determine the dc source voltage. Determine the energy stored in the magnetic field. For ac supply at 60 Hz, determine the ac source voltage. FIGURE P3.7

Problems 117 3.8 The features of a moving-iron ammeter are shown in Fig. P3.8. When current flows through the curved solenoid coil, a curved ferromagnetic rod is pulled into the solenoid against the torque of a restraining spring. The inductance of the coil is L = 4:5 + 18θμH, where θ is angle of deflection in radians. The spring constant is 0:65 10 3 N m=rad. Show that the ammeter measures the root-mean-square value of the current. Determine the deflection in degrees for a current of 10 amperes (rms). Determine the voltage drop across the ammeter terminal when 10A (rms) at 60 Hz flows through the ammeter. The coil resistance is 0:015 Ω. FIGURE P3.8 3.9 A reluctance machine of the form shown in Fig. 3.6 has no rotor winding. The inductance of the stator winding is L ss = 0:1 0:3 cos 2θ 0:2cos 4θH A current of 10 A (rms) at 60 Hz is passed through the stator coil. Determine the values of speed (ω m ) of the rotor at which the machine will develop an average torque. Determine the maximum torque and power (mechanical) that could be developed by the machine at each speed. Determine the maximum torque at zero speed. 3.10 A reluctance motor with four rotor poles is shown in Fig. P3.10. The reluctance (R) of the magnetic system can be assumed to be a sinusoidally varying function of θ and is given by RðθÞ = 2 10 5 10 5 cosð4θþ The coil has 200 turns and negligible resistance and is connected to a 120 V, 60 Hz, single-phase supply.

118 chapter 3 Electromechanical Energy Conversion FIGURE P3.10 (d) Obtain an expression for the flux (Φ) as a function of time. (Hint: v = NdΦ=dt.) Show that the torque developed is T = 1 dr Φ2 2 dθ Determine the values of speed (ω m ) of the rotor at which the machine will develop an average torque. Determine the maximum torque and power (mechanical) that could be developed by the machine at each speed. 3.11 The rotating machine of Fig. 3.7 has the following parameters. L ss L rr L sr = 0:15 H = 0:06 H = 0:08 cos θh The rotor is driven at 3600 rpm. If the stator winding carries a current of 5 A (rms) at 60 Hz, determine the instantaneous voltage and rms voltage induced in the rotor coil. Determine the frequency of the rotor induced voltage. Suppose the stator and rotor coils are connected in series, and a current of 5 A (rms) at 60 Hz is passed through them. Determine the speeds at which the machine will produce an average torque. Also determine the maximum torque that the machine will produce at each speed.