Beware of Ghost Voltage

Similar documents
Why is the Breaker Tripping?

3 Phase Voltage Imbalance

The X, Y, and Z of Circuit Breaker Control

I m going to come out and say it so you keep reading. What you were taught about hard start kits decreasing inrush amperage is wrong.

Troubleshooting Guide for Limoss Systems

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 15 Troubleshooting Basic Controls

Electricity. Teacher/Parent Notes.

Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL

Electric Motor Controls BOMA Pre-Quiz

Electricity MR. BANKS 8 TH GRADE SCIENCE

Troubleshooting Guide for Okin Systems

Last month I described the basic

Science Olympiad Shock Value ~ Basic Circuits and Schematics

THE FOURTH STATE. Gaining a universal insight into the diagnosis of automotive ignition systems. By: Bernie Thompson

Welcome to the SEI presentation on the basics of electricity

BASIC ELECTRICAL MEASUREMENTS By David Navone

Adapted from presentation developed by Scott Fausneaucht

Electrical Fundamentals Ed Abdo

Hydraulic Maintenance & Troubleshooting. Content - Norman Kronowitz Presenter Jim Trinkle

ECET Distribution System Protection. Overcurrent Protection

Electrical Safety For Everyone. Leader s Guide

What is Electricity? Lesson one

Energy Power and Transportation Final Exam

Selected excerpts from the book: Lab Scopes: Introductory & Advanced. Steven McAfee

Cruise Control Wiring

Ch 4 Motor Control Devices

Frog's leg Batteries. Current flow of electric charge. L 26 Electricity and Magnetism [3] Batteries use chemical energy to produce electricity

Table of Contents. CHAPTER 1 BASIC ELECTRICAL THEORY (Essential for Journeyman and Master s Licensing Exams)... 1

Building Operator Certification Level I

HOW TO USE A MULTIMETER, PART 4: MEASURING CURRENT (AMPERAGE)

Water to Water Geothermal Heat Pump 3-Phase Models Both 208 & 480

1) READ THE M500 INSTRUCTIONS CAREFULLY TO GET A FULL UNDERSTANDING OF THE M500 AND HOW IT OPERATES.

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES UNIT OBJECTIVES 3/21/2012

TONY S TECH REPORT. Basic Training

TABLE OF CONTENTS. About the Mike Holt Enterprises Team... xviii CHAPTER 1 ELECTRICAL THEORY... 1

reflect energy: the ability to do work

Electrical Service & Diagnosis. ATASA 5 th. ATASA 5 TH Study Guide Chapter 16 Pages Electrical Service & Diagnosis 70 Points

MOTORS, VOLTAGE, EFFICIENCY AND WIRING. A Deeper Understanding

Electrical Systems. Introduction

ELECTRICAL / GENERAL INFORMATION

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

Table of Contents. CHAPTER 1 ElECTRiCAl THEoRY Mike Holt enterprises, inc neC.Code ( )

Error codes Diagnostic plug Read-out Reset Signal Error codes

STARTING SYSTEMS 8B - 1 STARTING SYSTEMS CONTENTS

8.2 Electric Circuits and Electrical Power

ELECTRICAL TABLE OF CONTENTS

LEVEL 1/2 CAMBRIDGE NATIONAL AWARD/CERTIFICATE IN PRINCIPLES IN ENGINEERING AND ENGINEERING BUSINESS. Candidate Surname

Unit III-Three Phase Induction Motor:

Overcurrent protection

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it?

CSDA Best Practice. Hi-Cycle Concrete Cutting Equipment. Effective Date: Oct 1, 2010 Revised Date:

9-5/OG 9-3 Key FAQ/How-To

Lecture 19 Chapter 30 Faraday s Law Course website:

UNIT 3: GENErAL ELECTriCAL SySTEM DiAGNOSiS

Introduction: Electromagnetism:

A/C SYSTEM GENERAL DIAGNOSTIC PROCEDURES

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Mandatory Experiment: Electric conduction

TABLE OF CONTENTS CHAPTER 1 ELECTRICAL THEORY About This Textbook...xi. Passing Your Exam...xiv. How to Use the National Electrical Code...

Wiring diagrams on page 29 are for reference only. For detailed vehicle wiring refer to Navistar documents.

Electrical Circuits Discussion Questions:

45 Current Electricity. February 09, Current Electricity. What we will learn, Arc Attack. Electric Man. 1

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Goals. Background

Tutorial. Running a Simulation If you opened one of the example files, you can be pretty sure it will run correctly out-of-the-box.

Electricity. Chapter 20

3 Electricity from Magnetism

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny

Engaging Inquiry-Based Activities Grades 3-6

In the previous article we discussed KEEP THOSE TRANNYS ROLLING. P codes indicate an Engine Performance System or Transmission System problem.

Chapter 1 Electrical Theory...1

A discussion paper about why a cheap carbon battery is best to power your fuzz face pedal

1.69 Electric Conductors and Insulators

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate.

UNIT 1 ELECTRICIAN S MATH AND BASIC ELECTRICAL FORMULAS...1 Introduction...1. UNIT 2 ELECTRICAL CIRCUITS...49 Introduction...49

DISSECTIBLE TRANSFORMER - large

The Physics of the Automotive Ignition System

Power Factor Correction

Electricity Notes 3. Objectives

27/10/2015 GENERAL. A. Yes. Z21 is a single phase unit, it will however operate correctly on any phase.

Power Quality Luis Vargas Research Engineer 9/18/2008

An unwritten rule says that when a. Cures for a sick spot welding machine. Figure 1. To test the secondary of the welding machine,

Starting Systems. State a major safety precaution when removing or working around a starting motor

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

FUN! Protected Under 18 U.S.C. 707

ALTERNATING CURRENT - PART 1

How is lightning similar to getting an electric shock when you reach for a metal door knob?

Reproduction or other use of this Manual, without the express written consent of Vulcan, is prohibited.

Full file at

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

Technical Information and Diagnostic Guide

Electricity Unit Review

TECHNICAL BULLETIN JUNE 2015 HVA/C COMMON PROBLEMS, QUICK FIXES

Troubleshooting Guide for Dewert Systems

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate.

Programmable Logic Controller. Mat Nor Mohamad

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23

A $10 Upgrade to my Harbor Freight 90 Amp Flux Wire Welder, version 2

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

Transcription:

Beware of Ghost Voltage This article serves two purposes. First, it is an article for technicians who have heard of the dreaded ghost voltage but never understood why it happens. Second, for my own apprentices and techs who I stumped this morning with a diagnosis problem that involved ghost voltage that they were unable to diagnose. If they read my tech tips they will get the answer sneaky right? So what is meant by ghost voltage? In some cases, you will be diagnosing an electrical issue, usually controls / low voltage issue. You will be measuring potential on a circuit and then when the circuit is connected to the load the voltage will disappear like a ghost.

For example, you make be measuring 24v at a condensing unit on the Y contactor circuit when the conductor (wire) is disconnected, but as soon as you connect it to the contactor/control board the voltage disappears when measured across the load (across the contactor coil) or more simply from Y to C. In other cases the voltage may not disappear completely, it may just drop way down, or in other cases the contactor may chatter, circuit board lights dim etc I have heard all of these situations called ghost Voltage, but they are actually just voltage drop and these symptoms are caused by additional resistance in the circuit OTHER than the designed load. Quick Note: there are also induced voltages that can appear as ghost voltage due to conductors running in parallel with other current carrying conductors. This is more common in Commercial and industrial applications where many wires are bundled or in close proximity over long distances. These charges are usually small and often disappear under load. Rarely do we want more than one electrical load (resistance point) in a single circuit. When this does occur it is usually undesigned and caused by of long wire lengths, improperly sized wire and poor connections. Now to CLARIFY, when referring to a circuit we mean one complete path between electrically different points (say L1 and L2 in single phase 240 or 24v hot to 24v common on a control transformer). Some think of parallel circuits as a single circuit, but while they may share conductors they have an individual load path. To cut to the chase, whenever wire is undersized, runs of wire are too long or the circuit contains poor connections there will be additional resistance introduced to the circuit. When there is more resistance added in places other than the load

(in this case a contactor coil) there will be a voltage drop and therefore the voltage applied to the load will be decreased. When a wire isn t connected to the load this drop will be invisible because the load isn t in the circuit and therefore you are simply reading across the OTHER, unintended load (resistance) which will often be the full voltage depending upon the exact issue and when you are making the measurement. In every complete and independent circuit, including a series circuit, the amperage is the same no matter where in the circuit you measure it. Before the load, between loads, after the loads it doesn t matter. The amperage is dictated by the total applied voltage and the resistance (or more accurately the impedance) of the entire circuit. The voltage applied to each load is dependant on the resistance of the load in comparison to the total resistance of the circuit. In the example below, you can see that the amperage is the same on each load and is dictated to be 500 microamps because the total circuit ohms is 18,000. The voltage drop of each load in series is equal to it s percentage of the total circuit resistance. Since loadr1 is 16.5% of the total resistance in the circuit, the voltage drop across R1 is 1.5V because 1.5 is 16.5% (0.165) of 9V.

There are a few other factors that make the trouble with voltage drop worse. Let s say you use an undersized wire to feed a lightbulb, an undersized wire means that the conductor has a lower ampacity (amp capacity) than it should have. Once the circuit is energized the wire will begin to heat up, as it heats up the molecules in the wire begin moving faster which increases the resistance of the wire. The greater the resistance of the wire the greater the voltage drop across the wire resulting in a hot, dangerous wire, increased voltage drop at the bulb, less light from the bulb and decreased circuit amperage (less total work being accomplished). In the case of many loads including inductive (magnetic) loads like a compressor contactor, the resistance in the coil isn t just resistance you can measure with the contactor deenergized. This resistance that is created within an electromagnet once it is energized is called inductive reactance and it is measured in ohms of impedance. In order for the contactor coil to properly engage it requires the correct applied voltage and without the properly applied voltage, the resistance of the coil remains low. The crudely drawn diagram below (I m no artist) shows a contactor coil circuit with no issues and a 0.5 amp current at 48 ohms

When you add in a 200 ohm bad connection or any other type of resistance, not only does it create huge voltage drop, it also drops the impedance of the contactor coil itself with the result being a very low applied voltage (3.13V) on the contactor coil with it connected and under load. Under these conditions, the contactor won t try to pull in at all. Under less extreme conditions it may chatter or become noisy.

Now, this is a hypothetical situation, but you will notice that the poor connection is AFTER the contactor coil in what we call the common circuit in 24v controls. It doesn t matter WHERE in the circuit resistance is added, whether before the switch (in this case a thermostat) in the line side or after the switch on the load side. It could even be in common or in the switch itself. Anytime additional resistance is added to a circuit it results in voltage drop when the circuit is intact. When we disconnect wires to test voltage or test voltage with a circuit that has an open switch we can create confusion and observe ghost voltage. In reality it is simply extreme voltage drop caused by additional resistance in series with the load. Bryan