Comparative Studies on Emissions of Four Stroke Copper Coated Spark Ignition Engine with Catalytic Converter with Different Catalysts with Gasohol

Similar documents
Comparative Studies on Exhaust Emissions from Two Stroke Copper Coated Spark Ignition Engine with Alcohol Blended Gasoline with Catalytic Converter

CONTROL OF POLLUTANTS WITH CATALYTIC CONVERTER AND COPPER COATED CYLINDER HEAD IN METHANOL- GASOLINE BLEND OPERATED TWO STROKE SI ENGINE

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

Performance of copper coated spark ignition engine with methanol-blended gasoline with catalytic converter

Accepted 25 November 2013, Available online 01 December 2013, Vol.3, No.5 (December 2013)

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Research Article Studies on Exhaust Emissions from Copper-Coated Gasohol Run Spark Ignition Engine with Catalytic Converter

D.Baswaraj, 2 P.V.Krishna Murthy, 3 K.Prasanna Lakshmi 1 Jayaprakash Narayan College of Engineering, Dharmapur, Mahabubnagar.

I. INTRODUCTION. International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 6, Issue 4, April 2017

Control Of Pollution Levels of Four Stroke Spark Ignition Engine Fuelled With Methanol Blended Gasoline

COMPARATIVE STUDIES ON PERFORMANCE PARAMETERS OF TWO STROKE SPARK IGNITION ENGINE WITH COPPER COATED PISTON WITH METHANOL BLENDED GASOLINE

Vol. 2, Issue IV, April 2014 ISSN

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INVESTIGATIONS ON REDUCTION OF CARBON MONOXIDE FROM CATALYTIC COATED SPARK IGNITION ENGINE WITH CATALYTIC CONVERTER

Investigations on reduction of carbon monoxide -in spark ignition engine with catalytic converter with gasohol

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

PERFORMANCE AND EMISSION CHARACTERISTICS OF A VARIABLE COMPRESSION SI ENGINE USING ETHANOL- GASOLINE BLENDS AS FUEL

COMPARATIVE STUDIES ON MEDIUM GRADE LOW HEAT REJECTION DIESEL ENGINE AND CONVENTIONAL DIESEL ENGINE WITH CRUDE COTTON SEED OIL

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

EXPERIMENTAL ANALYSIS OF THERMAL BARRIER COATING IN TWO STROKE SI ENGINE

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

Performance Evaluation of a High Grade Low Heat Rejection Diesel Engine with Waste Fried Vegetable Oil

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

International Journal of Environmental Science: Development and Monitoring (IJESDM) ISSN No , Volume 4 No. 2 (2013)

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Experimental Investigation of Ethanol-Methanol- Gasoline Blend on Multi cylinder SI Engine using Catalytic Converter

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

EXHAUST EMISSIONS OF 4 STROKE SPARK IGNITION ENGINE WITH INDIRECT INJECTION SYSTEM USING GASOLINE-ETHANOL FUEL

Experimental Investigation on Diesel Engines by Swirl Induction with Different Manifolds

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines

International Journal of Advanced Engineering Technology E-ISSN

Experimental Investigation of Performance and Exhaust Emission Characteristics of Diesel Engine by Changing Piston Geometry

An Experimental Analysis of IC Engine by using Hydrogen Blend

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Effect of Thermal Barrier Coating on Piston Head of 4-Stroke Spark Ignition Engine

Improving The Emission Characteristics of Diesel Engine by Using EGR at Different Cooling Rates

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine

Received 13 October 2010; revised 23 January 2011; accepted 28 January 2011

Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol Oxygenated Organic Compounds

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

Influence of Injection Timing and Preheating on Exhaust Emissions of Di Diesel Engine with Air Gap Insulation with Linseed Biodiesel

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

Material Science Research India Vol. 7(1), (2010)

Ester (KOME)-Diesel blends as a Fuel

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

CHAPTER 1 INTRODUCTION

Homogeneous Charge Compression Ignition combustion and fuel composition

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

Experimental Investigation of Acceleration Test in Spark Ignition Engine

Effect Of Exhaust Gas Recirculation On The Performance And Emission Characteristics Of Diesel Engine With Orange Oil- Diesel Blend

Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine

Use of Alternative Fuel in Lower Heat Rejection Engine with Different Insulation Levels

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

Performance and Emission Characteristics of LPG-Fuelled Variable Compression Ratio SI Engine

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

Study on Emission Characteristics Test of Diesel Engine Operating on. Diesel/Methanol Blends

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

Studies on Emission Control in S.I. Engine Using Organic Fuel Additives

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

INFLUENCE OF DIETHYL ETHER BLEND IN SPARK IGNITION ENGINE PERFORMANCE AND EMISSIONS OPERATED WITH GASOLINE AND ETHANOL

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN

Studies on Performance Parameters of Di Diesel Engine with Low Grade LHR Combustion Chamber Fuelled with Linseed Biodiesel

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine

The Effect of Turbocharging on Volumetric Efficiency in Low Heat Rejection C.I. Engine fueled with Jatrophafor Improved Performance

EFFECT OF INJECTION TIMING ON EXHAUST EMISSIONS AND COMBUSTION CHARACTERISTICS OF DIRECT INJECTION DIESEL ENGINE WITH AIR GAP INSULATION

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation

Single Cylinder 4 Stroke VCR Diesel Engine Performance And Analysis At Various Blends Of Fuels Under Various Cooling Rates

Experimental Investigations on Exhaust Emissions of Low Heat Rejection Diesel Engine with Crude Mahua Oil

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

Engine Exhaust Emissions

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

The influence of thermal regime on gasoline direct injection engine performance and emissions

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

International Journal of Advanced Engineering Technology E-ISSN

Transcription:

Y. Nagini et al. / International Energy Journal 13 (2012) 161-168 161 Comparative Studies on Emissions of Four Stroke Copper Coated Spark Ignition Engine with Catalytic Converter with Different Catalysts with Gasohol Y. Nagini *, S. Naga Sarada +, M.V.S. Murali Krishna * and P.V.K. Murthy #1 Abstract Experiments were carried out to study the exhaust emissions of variable speed, variable compression ratio, four- stroke, single cylinder, spark ignition (SI) engine having copper coated engine [CCE, copper-(thickness, 300 μ) coated on piston crown and inner side of cylinder head] provided with catalytic converter with different catalysts of sponge iron and manganese ore with different test fuels of pure gasoline and gasohol (80% gasoline and 20% ethanol by volume) and compared with conventional engine (CE) with pure gasoline operation. Exhaust emissions of carbon monoxide (CO) and un-burnt hydro carbon (UBHC) were varied with different values of brake mean effective pressure (BMEP), speed, compression ratio with different operating conditions of catalytic converter with different catalyst. Aldehyde emissions were measured at peak load operation. CO and UBHC) were measured with Netel Chromatograph CO/UBHC analyzer. The engine was provided with catalytic converter with sponge iron and manganese ore as catalysts. There was provision for injection of air into the catalytic converter. The performance of the catalyst was compared with one over the other. Gasohol operation on CCE decreased exhaust emissions effectively in comparison with pure gasoline operation on CE. Catalytic converter with air injection significantly reduced pollutants with different test fuels on both configurations of the engine. Keywords Catalytic converter, CCE, CE, exhaust emissions, gasohol, and SI engine. 1. INTRODUCTION The civilization of a particular country depends on number of automotive vehicles being used by the public of the country. In view of heavy consumption of gasoline fuel due to individual transport and also fast depletion of fossil fuels, the search for alternate fuels has become pertinent apart from effective fuel utilization which has been the concern of the engine manufacturers, users and researchers involved in combustion and alternate fuel research. Alcohols are probable candidates as alternate fuels for SI engines, as their properties are compatible close to gasoline fuels. That too their octane ratings are very high. If alcohols are blended in small quantities with gasoline fuels, no engine modification is necessary. Carbon monoxide (CO) and un-burnt hydrocarbons (UBHC), major exhaust pollutants formed due to incomplete combustion of fuel, cause many human health disorders [1]-[7]. Inhaling of these pollutants cause severe headache, vomiting sensation, loss of hemoglobin in the blood, respiratory problems etc, Such pollutants also cause detrimental effects [7] on animal and plant life, besides environmental disorders. If the engine is run with alcohol, aldehydes are also to be checked. These aldehydes are carcinogenic in nature. *Mechanical Engineering Department, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad- 500 075, Andhra Pradesh, India. + Mechanical Engineering Department, College of Engineering, J.N.T. University, Hyderabad- 500 085, Andhra Pradaesh, India. # Jaya Prakash Narayan Educational Society Group of Institutions, Bhoothpur Road, Mahabubnagar-509001, India 1 Corresponding author Tel.: +91 949 011 6544. E-mail address: Krishnamurthy_venkata@yahoo.co.in. The amount of exhaust emissions from the engine depends [3] on driving engine condition, driving methodology, road layout, traffic density, etc, If the engine is run with alcohol, aldehydes are to be checked. These aldehydes are carcinogenic in nature. Control of aldehyde emissions was not sufficiently reported in literature. Hence control of these emissions is immediate and an urgent task. There are many methods to control exhaust emissions from the engine, out of which engine modification [8]-[12] and provision of catalytic converter [13]-[20] to the engine are simple techniques. Copper is coated on piston crown and inner side of cylinder head because copper coating improves preflame reactions and hence combustion as copper is a good conductor of heat. With the provision of the catalytic converter to the engine, the reduction of CO and UBHC depends on mass of the catalyst, void ratio (defined as ratio of the volume of the catalyst to the volume of catalytic chamber), temperature of the catalyst, air flow rate, and speed and compression ratio of the engine. Alcohols [21]-[23] are blended with gasoline and used in CE and CCE [24]-[27] so as to improve the performance of the engine. However, no systematic studies were made on control of exhaust emissions from copper coated engine with the use of gasoline blended with ethanol with varied parameters of the engine and catalytic converter. The present paper reported the performance evaluation of CCE, with different test fuels of pure gasoline and gasohol (gasoline 80% and methanol 20% by volume) with varied speed, compression ratio and compared with CE with pure gasoline operation. The exhaust emissions of carbon monoxide (CO), un-burnt hydro carbons (UBHC) and aldehydes were controlled by catalytic converter with different catalysts of sponge

162 iron and manganese ore and the performance of the catalyst was compared with one over the other. 2. METHODOLOGY Figure 1 shows experimental set-up used for investigations on CCE with alcohol blended gasoline. A four- stroke, single-cylinder, water-cooled, SI engine (brake power 2.2 kw, at the speed 3000 rpm) was coupled to an eddy current dynamometer for measuring its brake power. Compression ratio of engine was varied (3-9) with change of clearance volume by adjustment of cylinder head, threaded to cylinder of the engine. Engine speeds were varied from 2000 to 3000 rpm. Exhaust gas temperature was measured with ironconstantan thermocouples. In catalytic coated engine, piston crown and inner surface of cylinder head were coated with copper by plasma spraying. A bond coating of Ni-Co-Cr alloy was applied (thickness, 100 μ) using a 80 kw METCO (Company trade name) plasma spray gun. Over bond coating, copper (89.5%), aluminum (9.5%) and iron (1.0%) were coated (thickness 300 μ). The coating has very high bond strength and does not wear off even after 50 h of operation [9]. CO and UBHC emissions in engine exhaust were measured with Netel Chromatograph analyzer. DNPH method (dinitrophenyl hydrazine) [15] was employed for Y. Nagini et al. / International Energy Journal 13 (2012) 161-168 measuring aldehydes in the experimentation. The exhaust of the engine was bubbled through 2, 4 DNPH solution. The hydrazones formed were extracted into chloroform and were analyzed by employing high performance liquid chromatography (HPLC) to find the percentage concentration of formaldehyde and acetaldehyde in the exhaust of the engine. A catalytic converter [13] (Figure 2) was fitted to exhaust pipe of engine. Provision was also made to inject a definite quantity of air into catalytic converter. Air quantity drawn from compressor and injected into converter was kept constant so that backpressure does not increase. Experiments were carried out on CE and CCE with different test fuels under different operating conditions of catalytic converter like set-a, without catalytic converter and without air injection; set-b, with catalytic converter and without air injection; and set-c, with catalytic converter and with air injection. The accuracy of the instrumentation used in the experimentation is 0.1%. The test fuels used in the experimentation were pure gasoline and gasohol. The various configurations used in the experimentations were CE and CCE. The various catalyst used in the experimentation were sponge iron (S) and manganese ore (M). 1. Engine, 2.Eddy current dynamometer, 3. Loading arrangement, 4. Orifice meter, 5. U-tube water monometer, 6. Air box, 7. Fuel tank, 8. Three-way valve, 9. Burette, 10. Exhaust gas temperature indicator, 11. CO analyzer, 12. Air compressor, 13. Outlet jacket water temperature indicator, 14. Outlet jacket water flow meter, 15. Directional valve, 16. Rotometer, 17. Air chamber 18. Catalyst chamber 19. Filter, 20. Rotometer, 21. Heater, 22. Round bottom flasks containing DNPH solution Fig. 1. Experimental set-up.

Y. Nagini et al. / International Energy Journal 13 (2012) 161-168 163 Note: All dimensions are in mm. 1. Air chamber, 2. Inlet for air chamber from the engine, 3. Inlet for air chamber from the compressor, 4. Outlet for air chamber, 5. Catalytic chamber, 6. Outer cylinder, 7. Intermediate-cylinder, 8. Inner-cylinder, 9.Inner sheet, 10.Intermediate sheet, 11. Outer sheet, 12. Outlet for exhaust gases, 13. Provision to deposit the catalyst, and, 14. Insulation. Fig. 2. Details of the catalytic converter. 3. RESULTS AND DISCUSSION From Figure 3, it is noticed that as compression ratio decreased, CO emissions decreased in both versions of the engine with test fuels. This was due to increase of exhaust gas temperatures with decrease of compression ratios leading to oxidation of CO emissions in the exhaust pipe producing CO 2 emissions. Similar trends were reported [9] earlier. Curves from Figure 4 indicates that methanol blended gasoline decreased CO emissions at all loads when compared to pure gasoline operation on both versions of the engine, as fuel-cracking reactions were eliminated with ethanol. The combustion of alcohol produced more water vapor than free carbon atoms as ethanol has lower C/H ratio of 0.33 against 0.44 of gasoline. Ethanol has oxygen in its structure and hence its blends have lower stoichiometric air requirements compared to gasoline. Therefore more oxygen that was available for combustion with the blends of ethanol and gasoline, lead to reduction of CO emissions. Ethanol dissociated in the combustion chamber of the engine forming hydrogen, which helped the fuel-air mixture to burn quickly and thus increases combustion velocity, which brought about complete combustion of carbon present in the fuel to CO 2 and also CO to CO 2 thus made leaner mixture more combustible, causing reduction of CO emissions. CCE reduced CO emissions in comparison with CE. Copper or its alloys acted as catalyst in combustion chamber, whereby facilitated effective combustion of fuel leading to formation of CO 2 instead of CO. Similar trends were observed with pure gasoline operation on CCE [9]. From Figure 5 it is observed that as speed increased, un-burnt hydro carbon emissions (UBHC) decreased in both versions of the engine with test fuels. As speed increased turbulence of combustion increased. Hence catalytic activity of CCE increased as temperature increased, leading to reduction of fuel deposits and crevice deposits. It is worth to note that substantial oxidation of the hydrocarbon which escapes the primary combustion process can occur during expansion and exhaust depending upon the temperature and oxygen concentration time histories of HC as they mix with bulk gases. With gasohol, more oxygen is available as oxygen is inherently present in the fuel composition, and temperature increased with the increase of speed and turbulence, causing reduction of UBHC emissions. Figure 6 indicates that UBHC emissions followed the similar trend as CO emissions in CCE and CE with both test fuels. One of the sources of UBHC is due to bulk quenching of the flame. Such conditions arise during transient engine operation when air-fuel ratio, spark timing and fraction of the exhaust recycled for emission control may not be properly matched. Since spark plug timing is maintained constant, there is no exhaust recirculation and hence UBHC emissions depend on air fuel ratio. Air fuel ratio increased up to 80% of the peak load operation for both test fuels with different versions of the engine. Hence UBHC emissions decreased during this load and beyond this load, they increased. Thermal efficiency was found to be higher at 80% of the peak load with test fuels with different configurations of the engine. This was because of increase of fuel conversion of efficiency and reduction fuel deposits and fuel concentration at crevices. CCE decreased UBHC emissions considerably when compared with CE. This was because of improved combustion and reduction of crevice deposits.

164 Y. Nagini et al. / International Energy Journal 13 (2012) 161-168 Fig. 3. Variation of CO emissions with compression ratio in both versions of the engine at a speed of 3000 rpm with test fuels. Fig. 4. Variation of CO emissions with BMEP of the engine in both versions of the engine with pure gasoline and gasohol at a speed of 3000 rpm and compression ratio of 9:1.

Y. Nagini et al. / International Energy Journal 13 (2012) 161-168 165 Fig. 5. Variation of UBHC emissions with speed of the engine in both versions of the engine with test fuels at a speed of 3000 rpm and compression ratio of 9:1. Fig. 6. Variation of UBHC emissions with BMEP of the engine in both versions of the engine with pure gasoline and gasohol at a speed of 3000 rpm and compression ratio of 9:1. 4. CATALYTIC CONVERTER From Table 1, it is observed that CO emissions decreased considerably with Set-B operation, while Set- C further decreased emissions in both versions of the engine with test fuels. Efficient combustion with ethanol blended gasoline coupled with catalytic activity decreased CO emissions in CCE. From the same Table, it can be noticed that UBHC emissions decreased considerably with Set-B operation, while Set-C further decreased emissions in both versions of the engine with test fuels. Improved combustion with gasohol, turbulence and catalytic activity decreases deposits in CCE causing decrease of UBHC emissions. From the Table, it can be noticed that formaldehyde emissions decreased considerably with Set-B operation, while Set- C further decreased emissions in both versions of the engine with test fuels. This was because of increase oxidation reaction leading to reduce emissions. However, gasohol increased aldehyde emissions considerably in comparison with pure gasoline operation. But CCE decreased aldehyde emissions in comparison with CE with gasohol. This was due to improved combustion so that intermediate compounds will not be formed.

166 Y. Nagini et al. / International Energy Journal 13 (2012) 161-168 Table 1. Data of exhaust emissions in four-stroke SI engine with different test fuels at different operating conditions of catalytic converter. Pure Gasoline Operation Gasohol Operation Emissions Set CE CCE CE CCE S M S M S M S M Set-A 3.75 3.75 3.0 3.0 2.81 2.81 1.9 1.9 CO (%) Set-B 2.25 2.79 1.8 2.22 1.54 2.16 1.4 1.5 Set-C 1.5 1.86 1.2 1.51 0.98 1.44 0.7 1.0 UBHC (ppm) Formaldehyde (% Concentration) Acetaldehyde (% Concentration) Set-A 500 500 375 375 350 350 228 228 Set-B 300 360 206 265 165 270 130 197 Set-C 200 240 105 145 122 180 80 131 Set-A 6.5 6.5 4.5 4.5 12 12 9.0 9.0 Set-B 4.5 4.9 2.5 2.9 5.6 6.1 5.1 5.6 Set-C 2.5 2.9 1.5 1.9 4.8 5.4 3.4 3.8 Set-A 5.5 5.5 3.5 3.5 10 10 6.6 6.6 Set-B 3.5 4.0 2.5 2.7 4.7 5.2 3.4 3.9 Set-C 1.5 1.9 1.0 0.95 3.7 4.1 2.3 2.7 S= Sponge iron, M= Manganese ore, Set-A= without catalytic converter and without air injection Set- B= with catalytic converter and without air injection. Set- C= with catalytic converter and with air injection, CE= Conventional engine, CCE= Copper coated engine. 5. CONCLUSIONS CO emissions increased marginally with increase of compression ratio and they were found to be lower at 80% of the peak load operation with test fuels and with different versions of the engine. CO and UBHC emissions decreased with increase of speed of the engine. These emissions decreased up to 80% of the peak load operation and beyond this load they increased in both versions of the engine with test fuels. CCE with gasohol decreased CO and UBHC emissions nearly by 50% in comparison with pure gasoline operation on CE. CCE improved combustion and decreased exhaust emissions effectively in comparison with CE with test fuels. Set-B operation of the catalytic converter decreased the pollutants by 45%, while Set- C by 60%. Sponge iron (S) was found to be more effective in reducing exhaust emissions in comparison with manganese ore (M). ACKNOWLEDGEMENTS Authors thank authorities of Chaitanya Bharathi Institute of Technology, Hyderabad for facilities provided. Financial assistance from Andhra Pradesh Council of Science and Technology (APCOST), Hyderabad, is greatly acknowledged. REFERENCES [1] David B.P., 1995. The effect of air pollution in asthma and respiratory allergy an American experience. J Allergy Chem Immunol 8:19-23. [2] Fulekar M.H., 1999. Chemical pollution a threat to human life, Indian Journal of Environmental Technology 1:353-359. [3] Usha Madhuri T., Srinivas T. and Ramakrishna K., 2003. A study on automobile exhaust pollution with regard to carbon monoxide emissions. Nature Environment and Pollution Technology 2:473-474. [4] Sastry M.S., Suneela M., Kumar N.P.S. and Hussain S.K. 2004. Air quality status at selected locations in Hyderabad City. Journal of Environmental Science and Engineering 46:86-91. [5] Environmental Pollution Analysis, 2004. Khopkar, S.M., Editor. New Age International (P) Ltd., Publishers, New Delhi. pp.180-190. [6] Ghose M.K. Paul R. and Benerjee S.K. 2004. Assessment of the impact of vehicle pollution on urban air quality. Journal of Environmental Science and Engineering 46:33-40. [7] Engineering Chemistry, 2005. Sharma B.K., Editor. Pragathi Prakashan (P) Ltd, Meerut. pp 150-160. [8] Dhandapani S. 1991. Theoretical and experimental investigation of catalytically activated lean burnt combustion. PhD Thesis, IIT, Chennai. [9] Nedunchezhian N. and S. Dhandapani. 2000. Experimental investigation of cyclic variation of combustion parameters in a catalytically activated two-stroke SI engine combustion chamber. Engineering Today 2:11-18. [10] Murali Krishna M.V.S., Kishor K., Murthy P.V.K., Gupta A.V.S.S.K.S. and Narasimha Kumar S., 2010.Performance evaluation of copper coated four stroke spark ignition engine with gasohol with catalytic converter. International Journal of Engineering Studies 2(4):465-473. [11] Murali Krishna M.V.S., Kishor K., Murthy P.V.K., Gupta A.V.S.S.K.S. and Narasimha Kumar S.

Y. Nagini et al. / International Energy Journal 13 (2012) 161-168 167 2011. Comparative studies on performance Journal of Scientific & Technology Research evaluation of four stroke copper coated spark 1(2):85-90. ignition engine with catalytic converter with [20] Murali Krishna M.V.S., Kishor K., Murthy P.V.K. alcohols. International Journal of Advances in and Gupta A.V.S.S.K.S. 2012. Control of exhaust Engineering Research 2(6):1-11. emissions from copper coated two stroke spark [12] Narasimha Kumar S., Murali Krishna M.V.S., ignition engine with methanol blended gasoline Murthy P.V.K., Seshagiri Rao V.V.R. and Reddy with catalytic converter. International Journal of D.N., 2011. Performance of copper coated two Engineering and Innovative Technology 1(5):9-16. stroke spark ignition engine with gasohol with [21] Pearson R.J. 2007. Alcohol based fuels in high catalytic converter. International Journal on performance engines. SAE Paper No - 2007-01- Mechanical & Automobile Engineering 12(1):36-0056. 43. [22] Bahattin Celik M., 2008. Experimental [13] Murali Krishna M.V.S., Prasad P.R.K., Ajay determination of suitable ethanol gasoline blend Kumar M., Narayana M.V. and Balu B., 2005. rate at high compression ratio for gasoline Parametric studies of catalytic converter on engine, Applied Thermal Engineering 28:396 404. reduction of carbon monoxide in spark ignition [23] Costa R.C. and J.R. Sodré. 2010. Hydrous ethanol engine with gasohol. Engineering Today V11(6), vs. gasoline-ethanol blend: engine performance and 3-7. emissions. Fuel 89:287 293. [14] Murali Krishna M.V.S., Kishor K., Prasad P.R.K. [24] Murali Krishna M.V.S. and K. Kishor. 2008. and Swathy G.V.V., 2006. Parametric studies of Investigations on catalytic coated spark ignition pollutants from copper coated spark ignition engine engine with methanol blended gasoline with with catalytic converter with gasoline blended catalytic converter. Indian Journal (CSIR) of methanol. Journal of Current Sciences 9(2):529- Scientific and Industrial Research 67:543-548. 534. [25] Murali Krishna M.V.S., Kishor K., Gupta [15] Murthy P.V.K., Narasimha Kumar S., Murali A.V.S.S.K.S., Murthy P.V.K. and Narasimha Krishna M.V.S., Seshagiri Rao V.V.R. and Reddy, Kumar S., 2012. Performance of copper coated two D.N. 2010. Aldehyde emissions from two-stroke stroke spark ignition engine with methanol blended and four-stroke spark ignition engines with gasoline with catalytic converter. International methane blended gasoline with catalytic converter. Journal of Sustainable and Renewable Energy International Journal of Engineering Research and (American Institute of Physics) 4(1): 013102.1- Technology 4(3):793 802. 013102.9. [16] Murali Krishna M.V.S., Kishor K., Murthy P.V.K. [26] Murali Krishna M.V.S., Kishor K., Murthy P.V.K. and Gupta A.V.S.S.K.S., 2011. Emissions from and Gupta A.V.S.S.K.S. and Narasimha Kumar S., copper coated two-stroke spark ignition engine 2012. Comparative studies on performance with methanol blended gasoline with catalytic evaluation of a two stroke copper coated spark converter. International Journal of Applied ignition engine with alcohols with catalytic Engineering Research 6(21):2507-2516. converter. International Journal of Renewable and [17] Murali Krishna M.V.S., Murthy P.V.K., Narasimha Sustainable Energy Reviews. 16:6333-6339. Kumar S. and Kishor K., 2011. Control of exhaust [27] Murali Krishna M.V.S., Narasimha Kumar S., emissions from copper coated gasohol run two Murthy P.V.K., Reddy D.N. and Kishor K., 2012. spark ignition engine with catalytic converter. Performance evaluation of a two-stroke copper International Journal of Mechanical Engineering coated spark ignition engine with gasohol with Research 1(1):24-37. catalytic converter with different catalysts. [18] Murali Krishna M.V.S., Murthy P.V.K., Narasimha International Journal of Emerging Technology and Kumar S. and Kishor K. 2011. Control of exhaust Advanced Engineering 2(3):165-173. emissions from copper coated gasohol run two spark ignition engine with catalytic converter. International Journal of Mechanical Engineering Research (Canadian) 1(1):24-37. [19] Murali Krishna M.V.S., Kishor K., Murthy P.V.K., Gupta A.V.S.S.K.S and Narasimha Kumar S., 2012. Comparative studies on emissions from two stroke copper coated spark ignition engine with alcohols with catalytic converter. International

168 Y. Nagini et al. / International Energy Journal 13 (2012) 161-168