AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES

Similar documents
Axial Flux Permanent Magnet Brushless Machines

Axial Flux Permanent Magnet Brushless Machines

Chapter 2 PRINCIPLES OF AFPM MACHINES. 2.1 Magnetic circuits Single-sided machines Double-sided machines with internal PM disc rotor

Chapter 1 INTRODUCTION. 1.1 Scope. 1.2 Features

Aspects of Permanent Magnet Machine Design

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

Permanent Magnet Machines for Distributed Generation: A Review

Contents. Review of Electric Circuitd. Preface ;

QUESTION BANK SPECIAL ELECTRICAL MACHINES

AFPM MACHINES WITHOUT STATOR CORES

Question Bank ( ODD)

B.E-EEE(Marine) Batch 7. Subject Code EE1704 Subject Name Special Electrical Machines

Comprehensive Technical Training

Design of Brushless Permanent-Magnet Machines. J.R. Hendershot Jr. T.J.E. Miller

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI

5. LINEAR MOTORS 5.1 INTRODUCTION

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

Axial Flux Permanent Magnet brushless machine, a new topology of electrical machines and brief about it

Improved Version of Energy Efficient Motor for Shell Eco Marathon

CHAPTER 1 INTRODUCTION

DESIGN OF AXIAL FLUX BRUSHLESS DC MOTOR BASED ON 3D FINITE ELEMENT METHOD FOR UNMANNED ELECTRIC VEHICLE APPLICATIONS

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

Brushless dc motor (BLDC) BLDC motor control & drives

Converteam: St. Mouty, A. Mirzaïan FEMTO-ST: A. Berthon, D. Depernet, Ch. Espanet, F. Gustin

2014 ELECTRICAL TECHNOLOGY

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

Page 1. Design meeting 18/03/2008. By Mohamed KOUJILI

Design & Analysis of Axial Flux Permanent Magnet Synchronous Generator

Pretest Module 21 Unit 4 Single-Phase Motors

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Design Analysis of a Novel Double-Sided Axial- Flux Permanent-Magnet Generator for Micro-Wind Power Applications

CHAPTER 5 ANALYSIS OF COGGING TORQUE

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR

Permanent Magnet Synchronous Motor. High Efficiency Industrial Motors

Modelling and Design of a 3 kw Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

VALLIAMMAI ENGINEERING COLLEGE

A novel flux-controllable vernier permanent-magnet machine

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

Electrical System Design

Halbach array-based design and simulation of disc coreless permanen-magnet integrated starter generator

University of L Aquila. Permanent Magnet-assisted Synchronous Reluctance Motors for Electric Vehicle applications

Historical Development

UNIT-I ALTERNATORS PART-A

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM


R07 SET - 1


Scope for Electrical Machine Design. Objectives. Design and Engineering. Course Description. 23-Dec-16 DESIGN OF ELECTRICAL MACHINES AN OVERVIEW

DESIGN AND IMPLEMENTATION OF THE DOUBLE-SIDED AXIAL-FLUX PMSG WITH SLOTTED STATOR BY USING SIZING EQUATION AND FEA SOFTWARE

ESO 210 Introduction to Electrical Engineering

Prototyping of Axial Flux Permanent Magnet Motors

CHAPTER 3 BRUSHLESS DC MOTOR

ST.ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY ANGUCHETTYPALAYAM, PANRUTI

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material.

86400 Parit Raja, Batu Pahat, Johor Malaysia. Keywords: Flux switching motor (FSM), permanent magnet (PM), salient rotor, electric vehicle

Technology Trends in emotor Components for Automotive Applications. Mateo Primorac , Miba AG

Electromagnetic and Thermal Modeling of a Permanent Magnet Synchronous Machine with Either a Laminated or SMC Stator

Electrical Theory. Generator Theory. PJM State & Member Training Dept. PJM /22/2018

Design of a high-speed permanent-magnet brushless generator for microturbines

Synchronous Generators I. Spring 2013

Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1

Introduction - Why Brushless? (Cont( Introduction. Brushless DC Motors. Introduction Electromechanical Systems

SYNCHRONOUS GENERATOR (ALTERNATOR)

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III UNIT - IV CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION CHAPTER - 2 :

9. Examples of hydro energy conversion

Design and Analysis of Novel Bearingless Permanent Magnet Synchronous Motor for Flywheel Energy Storage System

1.1 Electricity production on board cars.

Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities

Synchronous Generators I. EE 340 Spring 2011

A Quantitative Comparative Analysis of a Novel Flux-Modulated Permanent Magnet Motor for Low-Speed Drive

AXIAL FLUX permanent-magnet (AFPM) machines with

Thermal Analysis of Electric Machines Motor-CAD

PHY 152 (ELECTRICITY AND MAGNETISM)

Fig Electromagnetic Actuator

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A

DC CIRCUITS ELECTROMAGNETISM

Transient Analysis of Offset Stator Double Sided Short Rotor Linear Induction Motor Accelerator

Modern Design for Variable Speed Motor-Generators:

Permanent Magnet Synchronous Frameless Torque Motors KSO/H Series

ELECTRIC MACHINES. Steady State, Transients, and Design with MATLAB ION BOLDEA LUCIAN TUTELEA

Whitepaper Dunkermotoren GmbH

This is a repository copy of Torque performance of axial flux permanent magnet fractional open slot machine with unequal teeth

CHAPTER 2 SELECTION OF MOTORS FOR ELECTRIC VEHICLE PROPULSION

Electromagnetic actuation. technologies. Prof Phil Mellor

Joule losses of magnets in permanent magnet synchronous machines - case concentrated winding machine

An Investigation of Advanced Magnetic Materials for Axial Field Brushless Permanent Magnet Motor Drives for Automotive Applications

Prototype of an Axial Flux Permanent Magnet Generator for Wind Energy Systems Applications

2-marks question bank UNIT I - TRANSFORMERS UNIT II: AC MACHINES

Voltage Generation of Three-Phase Double Sided Internal Stator Axial Flux Permanent Magnet (AFPM) Generator

Keywords: Hybrid electric vehicle, free-piston generator, linear magnetic-geared machine, finite element analysis

A starting method of ship electric propulsion permanent magnet synchronous motor

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR

Axial Flux. Seven-Phase Machine

DESIGN OF COMPACT PERMANENT-MAGNET SYNCHRONOUS MOTORS WITH CONCENTRATED WINDINGS

Transcription:

AXIAL FLUX PERMANENT MAGNET BRUSHLESS MACHINES Jacek F. Gieras, Rong-Jie Wang and Maarten J. Kamper Kluwer Academic Publishers, Boston-Dordrecht-London, 2004 TABLE OF CONTENETS page Preface v 1. Introduction 1 1.1. Scope 1 1.2. Features 1 1.3. Development of AFPM machines 3 1.4. Types of axial flux PM machines 4 1.5. Topologies and geometries 6 1.6. Axial magnetic field excited by PMs 10 1.7. PM eddy-current brake as the simplest AFPM brushless machine 13 1.8. AFPM machines versus RFPM machines 16 1.9. Power limitation of AFPM machines 19 Numerical examples 19 2. Principles of AFPM machines 27 2.1. Magnetic circuits 27 2.1.1. Single-sided machines 27 2.1.2. Double-sided machines with internal PM disc rotor 27 2.1.3. Double-sided machines with internal ring-shaped core stator 29 2.1.4. Double-sided machines with internal slotted stator 31 2.1.5. Double-sided machines with internal coreless stator 32 2.1.6. Multidisc machines 33 2.2. Windings 33 2.2.1. Three-phase windings distributed in slots 35 2.2.2. Drum-type winding 35 2.2.3. Coreless stator winding 37 2.2.4. Salient pole windings 37 2.3.Torque production 38 2.4. Magnetic flux 40 2.5. Electromagnetic torque and EMF 41 2.6. Losses and efficiency 42 2.6.1. Stator winding losses 42 2.6.2. Stator core losses 44 2.6.3. Core loss finite element model 46 2.6.4. Losses in permanent magnets 46 2.6.5. Rotor core losses 48 2.6.6. Eddy current losses in stator conductors 49 2.6.7. Rotational losses 50

2.6.8. Losses for nonsinusoidal current 51 2.6.9. Efficiency 51 2.7. Phasor diagrams 52 2.8. Sizing equations 55 2.9. Armature reaction 58 2.10. AFPM motor 62 2.10.1. Sine-wave motor 62 2.10.2. Square-wave motor 63 2.11. AFPM synchronous generator 67 2.11.1. Performance characteristics of a stand alone generator 67 2.11.2. Synchronization with utility grid 68 Numerical examples 70 3. Materials and fabrication 81 3.1. Stator cores 81 3.1.1. Non-oriented electrical steels 81 3.1.2. Amorphous ferromagnetic alloys 85 3.1.3. Soft magnetic powder composites 85 3.1.4. Fabrication of stator cores 89 3.1.4.1. Fabrication of laminated stator cores 89 3.1.4.2. Fabrication of soft magnetic powder stator cores 90 3.2. Rotor magnetic circuits 91 3.2.1. PM materials 92 3.2.2. Characteristics of PM materials 98 3.2.2.1. Alnico 98 3.2.2.2. Ferrites 99 3.2.2.3. Rare-earth permanent magnets 100 3.2.3. Operating diagram 103 3.2.4. Permeances for main and leakage fluxes 106 3.2.5. Calculation of magnetic circuits with PMs 110 3.2.6. Fabrication of rotor magnetic circuits 112 3.2.6.1. Halbach array 114 3.3. Windings 115 3.3.1. Conductors 115 3.3.2. Fabrication of slotted windings 116 3.3.3. Fabrication of coreless windings 117 Numerical examples 119 4. AFPM machines with iron cores 127 4.1. Geometries 127 4.2. Commercial AFPM machines with stator ferromagnetic cores 128 4.3. Some features of iron-cored AFPM machines 130 4.4. Magnetic flux density distribution in the air gap 130 4.5. Calculation of reactances 133 4,5.1. Synchronous and armature reaction reactances 133 4.5.2. Stator leakage reactance 133 4.6. Performance characteristics 137 4.7. Performance calculation 137 4.7.1. Sine-wave AFPM machine 137

4.7.2. Synchronous generator 141 4.7.3. Square-wave AFPM machine 143 4.8. Finite element calculations 144 Numerical examples 146 5. AFPM machines without stator cores 157 5.1. Advantages and disadvantages 157 5.2. Commercial coreless stator AFPM machines 157 5.3. Performance calculation 159 5.3.1. Steady-state performance 159 5.3.2. Dynamic performance 161 5.4. Calculation of coreless winding inductances 163 5.4.1. Classical approach 163 5.4.2. FEM approach 164 5.5. Performance characteristics 166 5.6. Eddy current losses in the stator windings 168 5.6.1. Eddy current loss resistance 168 5.6.2. Reduction of eddy current losses 171 5.6.3. Reduction of circulating current losses 173 5.6.4. Measurement of eddy current losses 174 5.7. Armature Reaction 176 5.8. Mechanical design features 178 5.8.1. Mechanical strength analysis 179 5.8.1.1. Attraction force between rotor discs 179 5.8.1.2. Optimum design of rotor discs 180 5.8.2. Imbalanced axial force on the stator 182 5.9. Thermal problems 184 Numerical examples 184 6. AFPM machines without stator and rotor cores 195 6.1. Advantages and disadvantages 195 6.2. Topology and construction 195 6.3. Air gap magnetic flux density 198 6.4. Electromagnetic torque and EMF 199 6.5. Commercial coreless AFPM motors 200 6.6. Case study: low-speed AFPM coreless brushless motor 202 6.6.1. Performance characteristics 202 6.6.2. Cost analysis 204 6.6.3. Comparison with cylindrical motor with laminated stator and rotor cores 205 6.7. Case study: low-speed coreless AFPM brushless generator 206 6.8. Characteristics of coreless AFPM machines 208 Numerical examples 211 7. Control 219 7.1. Control of trapezoidal AFPM machine 219 7.1.1. Voltage equations 220 7.1.2. Solid-state converter 222

7.1.3. Current control 225 7.1.4. Speed control 228 7.1.5. High speed operation 229 7.2. Control of sinusoidal AFPM machine 230 7.2.1. Mathematical model and $dq$ equivalent circuits 230 7.2.2. Current control 236 7.2.3. Speed control 237 7.2.4. Hardware of sinusoidal AFPM machine drive 241 7.3. Sensorless position control 243 Numerical examples 245 8. Cooling and Heat Transfer 257 8.1. Importance of thermal analysis 257 8.2. Heat transfer modes 257 8.2.1. Conduction 258 8.2.2. Radiation 258 8.2.3. Convection 259 8.2.3.1. Convection heat transfer in disc systems 260 8.3. Cooling of AFPM machines 263 8.3.1. AFPM machines with self-ventilation 263 8.3.1.1. The ideal radial channel 263 8.3.1.2. The actual radial channel 266 8.3.1.3. Characteristics 269 8.3.1.4. Flow and pressure measurements 270 8.3.2. AFPM machines with external ventilation 272 8.3.2.1. External fans 272 8.3.2.2. Heat pipes 274 8.3.2.3. Direct water cooling 275 8.4. Lumped parameter thermal model 276 8.4.1. Thermal equivalent circuit 276 8.4.2. Conservation of energy 278 8.5. Machine duties 279 8.5.1. Continuous duty 279 8.5.2. Short-time duty 279 8.5.3. Intermittent duty 280 Numerical examples 281 9. Applications 289 9.1. Power generation 289 9.1.1. High speed generators 289 9.1.2. Low speed generators 291 9.2. Electric vehicles 293 9.2.1. Hybrid electric vehicles 294 9.2.2. Battery electric vehicles 298 9.3. Ship propulsion 300 9.3.1. Large AFPM motors 300 9.3.2. Propulsion of unmanned submarines 301 9.3.3. Counterrotating rotor marine propulsion system 302

9.4. Electromagnetic aircraft launch system 303 9.5. Mobile drill rigs 305 9.6. Elevators 308 9.7. Miniature AFPM brushless motors 311 9.8. Vibration motors 313 9.9. Computer hard disc drives 315 Numerical examples 316 Symbols and Abbreviations 321 References 331 Index 336