Capabilities of airborne infrared remote sensing systems to detect hotspots

Similar documents
Chapter URL:

631 ALLOWANES AND TOLERANCES

TECHNICAL INSIGHT INTERNAL CLEARANCE - TYPES AND NORMS

As an example of the type of analyses included

330mm (13") MAXIMUM WALL THICKNESS IN AREA OF UNIT. 330mm (13") MAXIMUM WALL THICKNESS IN AREA OF UNIT TYPICAL ACCESS TO LEVELING 15

DIEBOLD 3700 LOBBY CASH RECYCLER- FRONT LOAD 15" DISPLAY OR 19" DISPLAY CEN I, CEN III GAS, CEN IV GAS or CEN IV GAS EX SAFES

Report of Progress 961

CS 7750 FULL FUNCTION TERMINAL 15" OR 19" DISPLAY - THROUGH THE WALL 330mm (13")

Prediction of NO X Emissions

STANDARD AND FULL HEIGHT - REAR LOAD - WITH 40mm (1 16") CEN I, CEN III GAS or CEN IV GAS SAFES

SEE PAGES 3 AND 4 OF 7 FOR 3700 CASH RECYCLER THROUGH THE WALL WITH VESTIBULE TRIM KIT REFERENCE FRONT EDGE OF BEZEL FOR DEPTH DIMENSIONS

OPTIONAL 178mm (7") SPACER AVAILABLE FOR WALL THICKNESSES UP TO 152mm (6") 330mm (13") MAXIMUM WALL THICKNESS IN AREA OF UNIT

330mm (13") MAXIMUM WALL THICKNESS IN AREA OF UNIT. 330mm (13") MAXIMUM WALL THICKNESS IN AREA OF UNIT (2) EACH SIDE OF SAFE CEN I SAFE ONLY

203mm (8") MAXIMUM WALL THICKNESS IN AREA OF UNIT NOTE: 203mm (8") MAXIMUM WALL THICKNESS IN AREA OF UNIT (2) EACH SIDE OF SAFE CEN I SAFE ONLY

* * * DIEBOLD 3700 LOBBY CASH RECYCLER- FRONT LOAD 15" DISPLAY OR 19" DISPLAY CONSUMER ACCESS DIMENSIONS PLAN VIEW 19" DISPLAY FRONT ELEVATION

DIEBOLD 3750 CASH RECYCLER TERMINAL. 13mm ( 2") UL SAFE - 15" OR 19" DISPLAY THROUGH THE WALL 330mm (13") PLAN VIEW FRONT ELEVATION SECTION

Unit 2. DC Motors and Generators UNIT OBJECTIVE DISCUSSION OF FUNDAMENTALS. Operating principle of dc motors

DIEBOLD 5550 CASH DISPENSER THROUGH 330mm (13") MAXIMUM WALL PLAN VIEW FRONT ELEVATION SIDE ELEVATION CONSUMER ACCESS DIMENSIONS

POWER TRIM. Table of Contents. Section 5D - Auto Trim II

POWER TRIM. Table of Contents. Section 5D - Auto Trim II

Installation and Operational Instructions for ROBA -slip hubs Sizes 0 12 (B.1.0.GB)

* * * 3700 LOBBY CASH RECYCLER. REAR LOAD 13mm ( 2") UL SAFE - 15" DISPLAY OR 19" DISPLAY WITH DETAILS FOR OPTIONAL VESTIBULE INSTALLATION

Safety Relay Unit. Ordering Information. Ultra Slim Safety Relay

Precision Pressure Transmitter with Switching Contacts and Display. Interface Setup program. Display 4 characters. Switching output 1.

Research and Implementation of Tractor Power Shift Clutch Control System

Lincoln Under-cabinet Light Installation Instructions

CCD-493 KIT SERIES INSTRUCTION SHEET

JUMO MIDAS C18 SW. OEM seawater pressure transmitter. Applications. Brief description. Customer benefits. Special features. Approvals/approval marks

(mω) 1. Temperature ( C) Voltage (V) ULRG1 /

Transmission and Driveline. Section 2A - Transmission and Driveline

Spark Plug Fouling 3.0 Liter OptiMax

CS 7780 FULL FUNCTION DRIVE-UP TERMINAL

3700 LOBBY CASH RECYCLER. REAR LOAD 13mm ( 2") UL SAFE - 15" DISPLAY OR 19" DISPLAY WITH DETAILS FOR OPTIONAL VESTIBULE INSTALLATION

AIRCRAFT ENGINES SERVICE INSTRUCTION ENGINE START AT LOW TEMPERATURES AT ROTAX SI R1

DPST-NO None 2 channels Auto-reset Inverse 24 VAC/VDC G9SB-2002-A 4 1 channel or 2

Appendix A: Lumped Parameter Assumption Using Biot Number

Data of Traffic Accidents of Large Trucks in Japan

Department of Technology, Yinjian Automobile Repair Co., Ltd., Beijng, China

Roller and ball bars for easy and safe die change

CCS-810 KIT SERIES INSTRUCTION SHEET

Spring Return DuraDrive Two-Position Actuator

LTV 29-2 and 39-2 angle nutrunners. Higher speed, lower energy consumption

CREEK Technical Services, LLC

@ ECV Technical Data High Lift Pallet Truck. ECV 10 C ECV 10i C ECV 10

CC-410 KIT SERIES INSTRUCTION SHEET

Name Model Description/Function. Directional Control Valve Station 5914 Used to activate the Pneumatic Box Feeder B

Application Examples of Air-piloted Valves

11 263/ Radial Piston Pump Model R4 /Series 2X Fixed Displacement. Ordering Code 1 PF 1 R4 2X R Replaces:

RESEARCHES ON THE INFLUENCE OF PRESSURE WAVE COMPRESSOR ON THE INTAKE AIR TEMPERATURE AT THE SUPERCHARGED ENGINES

Some thoughts on requirements for languages in engineering Requirements for Languages for modelling big systems World Ontology Summit,

Limitations of Using Skid Number in Accident Analysis and Pavement Management

DALI electronic ballasts

Low Pressure Domestic Burners

Small footprint, high performance

COTTON VARIETY FIBER CHARACTERISTICS AND YIELD COMPARISON. King Ranch Farms, Kleberg County, 1998

UPS Pure Sinewave UPS

Hot Air Thermostats. WTHc series. Special features. Brief description. Switching function. Approval/approval marks (see "Technical data")

Data Sheet T /4/5/6 EN

Study: Draft Final Report


DRIVER MODELS TO I CREASE THE POTE TIAL OF AUTOMOTIVE ACTIVE SAFETY FU CTIO S

Shanghai University of Electric Power (SUEP)

Design and Implementation of the Performance Test System for Battery-Powered Motorcycles

EFFEKTA. Solar inverter HX-Series NEU / NEW

Schematic diagram for the 8200 vector, 230 V Schematic diagram for the 8200 vector, 400/500V 1)

COIN DISPENSER SIDE CAR FOR INSTALLATION NEXT TO DIEBOLD IN LOBBY TELLER (ILT) PLAN FRONT VIEW SIDE VIEW PAGE 1 OF 7 CALL

The Study on Mechanical Reliability Design Method and Its Application

New possibilities in late blight control

9900 IN LOBBY TELLER - (ILT) PORTRAIT AND LANDSCAPE DISPLAY PLAN FRONT VIEW SIDE VIEW PAGE 1 OF 6 CALL

DIEBOLD IN LOBBY TELLER (ILT) PORTRAIT OR LANDSCAPE INSTALLED WITH A COIN RECYCLER SIDE CAR PLAN FRONT VIEW SIDE VIEW PAGE 1 OF 7

Effectiveness of Alternative Detector Configurations for Option Zone Protection on High-speed Approaches to Traffic Signals

Fungicide Chemigation Trials

Duct LKR Bends LBR LBXR S-bend LBSR Taper LDR Rect-to-round transition LFR

Series 250 Type and Type Pneumatic Control Valves Type 3251 Globe Valve

Power electronic topologies for wind turbines

TECHNICAL REPORT Kathleen T. Williams, PhD, NCSP Overview Revisions in the New Edition

Cable Trolleys for C-Rails Program

HEATING BLANKETS FOR GENERAL COMPOSITE REPAIR

VB-7000 Series. Selection Guide. Applications. Applicable Literature. Selection Guide Contents

VARIFLUX IFS 6000 Electromagnetic Flowmeter

XVII th World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR)

World s Leading Supplier of Fastener Inspection Equipment

Small Scale Washing Test System with a Magnetic Stirrer as a Model of Pulsator Type Washing Machine

RPEA3-06. Functional Description HA /2011. Directional Control Valves Solenoid Operated with 8W Coil. Replaces HA /2007

Brazed heat exchanger XB

ORIENTAL MOTOR GENERAL CATALOG. Linear Heads A-227. Features A-228 General Specifications A-232 Product Specifications A-233. Standard AC Motors

JUMO MIDAS C08. OEM Pressure Transmitter Basic. Applications. Brief description. Special features. Customer benefits

152mm (6") DIA. POINT TO POINT SYSTEM PVC OR STEEL TUBE SYSTEM TYPE I AND TYPE II OVERHEAD UNITS TYPE I OVERHEAD UNIT TYPE II OVERHEAD UNIT NOTES:

WATERTIGHT AIRTIGHT SPECIAL ACCESS DOORS & HATCHES, PART 1 GENERAL

TA25DU0.4 Overload Relay a. Features. Descriptions

JUMO MIDAS S05 OEM pressure transmitter - universal

CATALYST GROUP) B"sic Mech"nic"l Engineering

Selection guide. High performance fluids for precise temperature control

Job Sheet 3. Pump Installation OBJECTIVE PROCEDURE. Installation of the Motor and Centrifugal Pump on the Pump Universal Base

INSTALLATION GUIDE INSTALLATION GUIDE

THE COANDĂ VTOL-UAV AEROMECHANICAL ASPECTS

ELECTRICAL AND IGNITION

Cooling Efficiency 2017/2018 Cooling Equipment Rebate Application

Analysis of Recoverable Exhaust Energy from a Light-Duty Gasoline Engine

DEVELOPMENT OF A FAN AIRFLOW STATION FOR AIRFLOW CONTROL IN VAV SYSTEMS

Transcription:

NOT Restricted to FERIC Members nd Prtners Mrch 2004 Contents 1 Introduction 2 Objectives 2 Study methods 3 Test flight detils 4 Results nd discussion 10 Conclusions 10 References 11 Acknowledgements Cpbilities of irborne infrred remote sensing systems to detect hotspots Abstrct The Forest Engineering Reserch Institute of Cnd (FERIC) conducted study to ssess the relibility, effectiveness, nd cost of irborne infrred remote sensing, mpping, nd nlysis systems used in Albert. Field trils were conducted to develop ssessment methods nd to fcilitte preliminry tests of the hotspot detection cpbilities of two irborne infrred remote sensing systems: n AWIS (Airborne Wildfire Intelligence System) mounted on twin-engine ircrft, nd FLIR 2000 mounted on birddog ircrft. Logistic regression ws used to develop probbility of detection models for ech of the sensor nd ircrft pltforms evluted. This report lso describes the development of simple model tht llows fire mngers to ssess the cost effectiveness of lterntive technologies. Keywords Infrred, Fire control, Fire detection, AWIS, FLIR, Remote sensing, Sensors, Thermogrphy. Author Judi Beck, Protection Brnch, B.C. Ministry of Forests. Formerly with FERIC s Wildlnd Fire Opertions Reserch Group. Introduction Knowledge of the fire behviour chrcteristics t vrious loctions long the fire perimeter is vitl to the sfe nd efficient deployment of fire suppression resources, but wildfire detection nd mpping cn be difficult when smoke, hze, nd drkness reduce visibility. The infrred (IR) energy rdited by fire penetrtes smoke, drkness, nd most hze, nd this llows n infrred detector to locte fires tht would otherwise be obscured. Albert Sustinble Reserch Development s (SRD) Forest Protection Division sked FERIC to ssess the detection cpbilities nd limittions of two irborne infrred remote sensing systems: n AWIS (Airborne Wildfire Intelligence System) 1 mounted on twin-engine ircrft, nd FLIR 2000 2 mounted on SRD s birddog ircrft. In Albert, helicopters nd fixed-wing ircrft hve been used to crry infrred sensors (Niederleitner 1976; Ogilvie nd Young 1989). Airborne infrred remote sensing hs been used to support mny fire mngement ctivities such s fire detection, lrge fire reconnissnce, fire perimeter mpping, hotspot detection, nd identifiction of wek points nd breks in fire control lines (Aldrich 1979; Billings 1986; Mtthews 1997; Cmpbell et l. 2002). Hndheld infrred systems, such s severl AGA 3 models, hve been used from helicopter t low ltitude (less thn 500 feet bove ground level) to confirm tht logging residue piles burned in the spring re fully extinguished. Helicopter infrred scnning missions hve lso been 1 AWIS nd the Airborne Wildfire Intelligence System re trdemrks of Rnge nd Bering Environmentl Resource Mpping Corportion, Pender Islnd, B.C. 2 FLIR 2000 is trdemrk of FLIR Systems, Inc., Portlnd, Ore. 3 AGA is trdemrk of FLIR Systems, Inc., Portlnd, Ore.

pplied to confirm tht mop-up opertions on lrge fires hve completely extinguished ll hotspots. In 1991, the first gimbled forwrdlooking infrred unit (FLIR 2000) ws mounted on birddog ircrft, which is used in Albert to led n ir ttck group. The birddog crries n ir ttck officer who directs ll irtnker (wter bomber) opertions nd employs the infrred sensor technology to detect gps or wek points in the fire retrdnt line tht is lid by irtnkers long the fire perimeter. Becuse of the potentil to increse the cost effectiveness of irtnker opertions (Woodrd et l. 1993), Albert s entire fleet of birddog ircrft ws equipped with FLIR sensors in 1995. These units hve lso been used for missions to scn springburned piles nd to support hotspot detection on lrge fires. The birddog-mounted FLIR (BD FLIR) is combined with printer nd VHS recorder. Tpes for ech mission re kept for evlution nd printed imges cn be dropped to ground crews, lthough the primry function of the birddog is to support irtnker opertions rther thn incident mpping. Moreover, the ppliction of the imged informtion is limited in the bsence of trined thermogrpher or infrred interpreter. In 1999, the AWIS unit becme opertionl. AWIS cquires digitl therml infrred imges nd records of inerti using twinengine ircrft tht is IFR (Instrument Flight Rules) cpble, lthough most scnning is conducted under VFR (Visul Flight Rules) conditions. Proprietry processing softwre is pplied to perform geometric corrections nd produce geo-referenced therml imge mosics, which re then distributed vi the Internet. FERIC s study of the AWIS nd BD FLIR is prt of lrger reserch project to develop methods to evlute nd quntify the relibility, effectiveness, nd cost of vrious irborne infrred remote sensing systems used in wildfire suppression opertions in Albert. Objectives The objectives of this study were to: Develop ssessment methods nd mke preliminry quntittive tests of the detection cpbilities of AWIS nd BD FLIR infrred remote sensing systems. Develop model tht would llow fire mngers to evlute the detection cpbilities of vrious irborne infrred remote sensing systems. Develop model tht would llow fire mngers to ssess the cost effectiveness of lterntive technologies. Study methods Experimentl fieldwork ws crried out ner Colspur, 52 km south of Hinton, Albert. A col sem fire is permnently ctive within the study re. Artificil het sources were lso set up in n djcent re, in the open nd beneth cnopy of mture pine, to provide trgets of known temperture nd size. Litter nd surfce fuels in the open re were very sprse, nd the forest understorey ws comprised lrgely of moss. Trget sizes nd tempertures were vried to determine how these prmeters ffect the detection cpbilities of given sensor. Trget tempertures were designed to rech those typicl of the vrious combustion phses of forest fuels, with tempertures of bout 370, 590, nd 860 C for smouldering, glowing, nd flming combustion, respectively. Cmp Forest Engineering Reserch Institute of Cnd (FERIC) Estern Division nd Hed Office Western Division 580 boul. St-Jen 2601 Est Mll Pointe-Clire, QC, H9R 3J9 Vncouver, BC, V6T 1Z4 (514) 694-1140 (514) 694-4351 dmin@mtl.feric.c (604) 228-1555 (604) 228-0999 dmin@vcr.feric.c Disclimer Advntge is published solely to disseminte informtion to FERIC s members nd prtners. It is not intended s n endorsement or pprovl of ny product or service to the exclusion of others tht my be suitble. Copyright 2004. Printed in Cnd on recycled pper. 2 Mrch 2004 Advntge ISSN 1493-3381

fuel, propne, nd smll sterno stoves produced trgets of 150 250, 300 350, nd 400 750 C, respectively. The sterno stove yields very smll (5.2 cm in dimeter) but hot, open-flme trget. Subtler but lrger hotspots typicl of smouldering nd glowing combustion were emulted using cmp fuel nd propne stoves. To produce uniform het source of known size, round plte of cst iron ws plced on top of the cmp fuel (26.5 or 30 cm in dimeter) nd propne (20 cm in dimeter) stoves. Thermocouples nd dtloggers were used to monitor trget tempertures t one-second intervls for the durtion of the test flight. The trgets were rndomly distributed throughout the study re. The study re ws pproximtely 220 100 m, nd ws designed so tht it could be detected within single imge t the lowest flight ltitude (pproximtely 2000 feet bove ground level). This would result in minimum of two infrred imge pixels (pproximtely 20 m) between trgets. The ltitude nd longitude of ech trget were recorded using hndheld GPS unit. Smoke bombs were lit to obscure the generl study re nd to serve s generl nvigtionl id for the ircrft. Air temperture nd reltive humidity were mesured periodiclly on the ground throughout the flight trils. Test flight detils Test flights were crried out in August 2001 in the erly morning t pproximtely 05:00 DST, nd in the lte fternoon t pproximtely 17:15. Wether conditions were clm nd cler, but light cloud ws encountered t bout 8000 feet during the morning AWIS test flight. Imge cquisition for ll ltitudes smpled took plce over pproximtely one hour. The detection performnce of both AWIS nd BD FLIR ws worse in the fternoon thn in the erly morning, which confirmed tht infrred detection flights should tke plce in the erly morning. Therefore, the field tril results reflect the morning test flights only, when optimum conditions for infrred scnning existed. Sensor performnce ws evluted t ltitudes of 2000 to 6000 feet. Although AWIS is used for scnning t higher ltitudes, cloud cover precluded tests bove 6000 feet on the morning of the field tril. A summry of the key mission detils is given in Tble 1. Figures 1 nd 2 re typicl imges produced by the AWIS nd BD FLIR systems for these detection missions. Note tht results for the BD FLIR system re vilble immeditely upon ircrft lnding. However, AWIS dt must be processed before nlyticl results re mde vilble, nd imge-processing time increses with the re scnned. b Tble 1. Slient mission detils for AWIS nd FLIR infrred remote sensing field trils Infrred Flight Mission Air Reltive Assumed Ground system time ltitude temperture humidity emissivity pixel re b (ft./m) ( C) (%) (cm 2 ) AWIS 05:03 5:51 3000/915 6.0 76 0.92 2 116 4000/1220 6.4 71 0.92 3 844 6000/1830 6.4 71 0.92 8 464 BD FLIR 07:23 08:14 2000/610 2.2 77 n.. 7 410 4000/1220 2.2 77 n.. 29 641 6000/1830 2.2 77 n.. 66 692 Emissivity is the rtio of the rdition emitted by surfce to tht emitted by blck body t the sme temperture. Ground pixel re is mesure of the re viewed by single cell within detector rry of sensor on scnning system t given ltitude in given instnt in time. Advntge Mrch 2004 3

Figure 1. Morning therml imge nd hotspots identified by AWIS t 3000 feet AGL. The finl product includes colour mpping detils, not reproduced here, tht highlight fetures such s rods, rivers, nd elevtion contours. Figure 2. Morning therml imge nd hotspots identified by BD FLIR t 4000 feet AGL. N S Results nd discussion Field tril results Eleven trgets were estblished on the ground for the morning AWIS flight trils, nd twelve were estblished for the BD FLIR. The size nd temperture of ech re given t the time of imging (Tbles 2 nd 3). The detection sttus of ech trget indictes whether or not it ws successfully detected. The thermocouples nd dtloggers filed to record trget tempertures t trget sites 1, 11, nd 13 for the AWIS flight trils nd t site 3 for the BD FLIR flight trils. In the cse of dtlogger filures, those trgets not detected hve been clssified with n Unknown detection sttus becuse it could not be confirmed tht trget tempertures were bove mbient. Where stove ws not turned on or rn out of fuel, nd the thermocouple dt indicted tht the temperture of trget ws not significntly higher thn mbient, trgets were clssified s Undetectble. The methods of trget detection for these trils were S typicl of those for opertionl hotspot detection using AWIS nd BD FLIR. To identify trgets, AWIS processes rdiometric vlues utomticlly, N while locl contextul visul ssessment is used to control the qulity of the utomted clssifiction. Dt processing is pplied to detect hotspots utomticlly when trget s rdiometric vlue registers bove specified threshold for the mosic scene (clssified by Threshold detection sttus). Other trgets re identified using visul interprettion to determine when rdiometric or imge vlues exceed bckground vlues in the locl vicinity (clssified by Bckground detection sttus). Therefore, Threshold or Bckground detection sttus indictes tht the sensor ws successful in detecting trget. AWIS pplies other digitl geogrphic informtion to confirm hotspots contextully, to minimize the number of flse trgets identified. The BD FLIR only llows visul interprettion of trgets equivlent to the Bckground detection sttus of AWIS. At ll three test ltitudes, both AWIS nd BD FLIR identified lrge hotspot t the loction of the ctive col sem fire. The very 4 Mrch 2004 Advntge

Tble 2. Size nd temperture of ech trget s reported t the time of imging by AWIS Trget Actul Imged Mission Trget Trget Time of Trget Trget to pixel trget trget Detection ltitude identifier exposure smple dimeter re re rtio temperture temperture sttus (feet) (cm) (cm 2 ) (%) ( C) ( C) 3000 1 Open 5:46:22 20.0 314.2 14.85 Unknown 40.1 Threshold 2 Open 5:46:23 26.5 551.5 26.07 88 11.9 Not detected 3 Open 5:46:00 5.2 21.2 1.00 641 Not detected 6 Open 5:46:00 5.2 21.2 1.00 7 Undetectble 7 Open 5:46:25 20.0 314.2 14.85 355 33.1 Threshold 8 Beneth cnopy 5:51:52 20.0 314.2 14.85 295 35.6 Threshold 9 Beneth cnopy 5:51:52 30.0 706.9 33.41 235 23.6 Threshold 10 Beneth cnopy 5:46:00 5.2 21.2 1.00 6 Undetectble 11 Beneth cnopy 5:46:24 20.0 314.2 14.85 Unknown 34.8 Threshold 12 Beneth cnopy 5:46:23 30.0 706.9 33.41 157 18.1 Bckground 13 Beneth cnopy 5:46:00 5.2 21.2 1.00 Unknown Unknown 4000 1 Open 5:25:06 20.0 314.2 8.17 Unknown 28.2 Threshold 2 Open 5:25:07 26.5 551.5 14.35 165 14.6 Bckground 3 Open 5:25:00 5.2 21.2 0.55 645 Not detected 6 Open 5:25:00 5.2 21.2 0.55 8 Undetectble 7 Open 5:25:09 20.0 314.2 8.17 348 24.1 Threshold 8 Beneth cnopy 5:25:09 20.0 314.2 8.17 316 25.5 Threshold 9 Beneth cnopy 5:25:08 30.0 706.9 18.39 224 13.7 Bckground 10 Beneth cnopy 5:25:00 5.2 21.2 0.55 259 Not detected 11 Beneth cnopy 5:25:07 20.0 314.2 8.17 Unknown 27.1 Threshold 12 Beneth cnopy 5:25:07 30.0 706.9 18.39 143 14.3 Bckground 13 Beneth cnopy 5:25:00 5.2 21.2 0.55 Unknown Unknown 6000 1 Open 5:03:13 20.0 314.2 3.71 Unknown 13.0 Threshold 2 Open 5:03:13 26.5 551.5 6.52 176 8.6 Bckground 3 Open 5:03:00 5.2 21.2 0.25 322 Not detected 6 Open 5:03:00 5.2 21.2 0.25 603 Not detected 7 Open 5:03:15 20.0 314.2 3.71 325 11.9 Bckground 8 Beneth cnopy 5:03:15 20.0 314.2 3.71 303 13.1 Bckground 9 Beneth cnopy 5:03:15 30.0 706.9 8.35 172 6.1 Not detected 10 Beneth cnopy 5:03:00 5.2 21.2 0.25 176 Not detected 11 Beneth cnopy 5:03:13 20.0 314.2 3.71 Unknown 12.5 Bckground 12 Beneth cnopy 5:03:13 30.0 706.9 8.35 140 6.1 Not detected 13 Beneth cnopy 5:03:00 5.2 21.2 0.25 Unknown Unknown Trget number 4 filed completely, nd trget 5 ws non-trget. rough terrin (70% slope) ssocited with the col sem precluded ccurte mesurements, but it ws pproximtely 30 70 m on the ground with highly vrible ctul surfce tempertures of 55 to 250 C. Of the confirmed detectble rtificil trgets, AWIS detected 75, 78, nd 50% of the confirmed detectble rtificil trgets t ltitudes of 3000, 4000, nd 6000 feet, respectively. BD FLIR detected 60, 30, nd 11% of the trgets t ltitudes of 2000, 4000, nd 6000 feet, respectively. The interprettion of BD FLIR informtion lso resulted in the identifiction of one flse trget t 4000 feet nd nother t 6000 feet, wheres no flse trgets were identified by AWIS. Tril results suggest tht hotspot detection cpbilities decline rpidly with ltitude (Tbles 2 nd 3). Mny of the detection filures cn be ttributed to AWIS s inbility to detect the smllest (5.2 cm in dimeter) yet hottest (greter thn 600 C) trgets t ll test ltitudes. The presence or bsence of forest cnopy did not pper to gretly influence detectbility during these trils (Tble 2), lthough trgets were intention- Advntge Mrch 2004 5

Tble 3. Size nd temperture of ech trget s reported t the time of imging by BD FLIR Trget Actul Mission Trget Trget Time of Trget Trget to pixel trget Detection ltitude identifier exposure smple dimeter re re rtio temperture sttus (feet) (cm) (cm 2 ) (%) (C) 2000 1 Open 7:32:31 20.0 314.2 4.24 459 Bckground 2 Open 7:32:31 26.5 551.5 7.44 124 Not detected 3 Open 7:32:31 5.2 21.2 0.29 Unknown Unknown 4 Open 7:32:31 30.0 706.9 9.54 241 Bckground 6 Open 7:32:31 5.2 21.2 0.29 5.6 Undetected 7 Open 7:32:31 20.0 314.2 4.24 238 Bckground 8 Beneth cnopy 7:32:31 20.0 314.2 4.24 424 Bckground 9 Beneth cnopy 7:32:31 30.0 706.9 9.54 87 Not detected 10 Beneth cnopy 7:32:31 5.2 21.2 0.29 226 Not detected 11 Beneth cnopy 7:32:31 20.0 314.2 4.24 361 Bckground 12 Beneth cnopy 7:32:31 30.0 706.9 9.54 196 Bckground 13 Beneth cnopy 7:32:31 5.2 21.2 0.29 667 Not detected 4000 1 Open 7:56:03 20.0 314.2 1.06 452 Bckground 2 Open 7:56:03 26.5 551.5 1.86 125 Not detected 3 Open 7:56:03 5.2 21.2 0.07 Unknown Unknown 4 Open 7:56:03 30.0 706.9 2.38 228 Not detected 6 Open 7:56:03 5.2 21.2 0.07 7.5 Undetected 7 Open 7:56:03 20.0 314.2 1.06 255 Not detected 8 Beneth cnopy 7:56:03 20.0 314.2 1.06 422 Bckground 9 Beneth cnopy 7:56:03 30.0 706.9 2.38 87 Not detected 10 Beneth cnopy 7:56:03 5.2 21.2 0.07 238 Not detected 11 Beneth cnopy 7:56:03 20.0 314.2 1.06 388 Not detected 12 Beneth cnopy 7:56:03 30.0 706.9 2.38 190 Bckground 13 Beneth cnopy 7:56:03 5.2 21.2 0.07 618 Not detected 6000 1 Open 8:08:39 20.0 314.2 0.47 444 Bckground 2 Open 8:08:39 26.5 551.5 0.83 127 Not detected 3 Open 8:08:39 5.2 21.2 0.03 Unknown Unknown 4 Open 8:08:39 30.0 706.9 1.06 223 Not detected 6 Open 8:08:39 5.2 21.2 0.03 8.7 Undetectble 7 Open 8:08:39 20.0 314.2 0.47 256 Not detected 8 Beneth cnopy 8:08:39 20.0 314.2 0.47 421 Not detected 9 Beneth cnopy 8:08:39 30.0 706.9 1.06 89 Not detected 10 Beneth cnopy 8:08:39 5.2 21.2 0.03 254 Not detected 11 Beneth cnopy 8:08:39 20.0 314.2 0.47 389 Not detected 12 Beneth cnopy 8:08:39 30.0 706.9 1.06 188 Not detected 13 Beneth cnopy 8:08:39 5.2 21.2 0.03 4.6 Undetectble Trget 5 ws non-trget. lly plced within the forest so they would not be directly obscured plnimetriclly. Imged tempertures reported by AWIS, while perhps pplicble for reltive ctegoriztion, do not ccurtely reflect ctul tempertures. This my be of concern if imgery is to support documenttion during litigtion. The low imged tempertures result becuse only smll portion of the imge element (pixel) receives energy from the trget surfce. The energy emitted from the trget surfce is diffused over the whole imge or over multiple pixels due to distnce tht lso ttenutes the signl. This diffusion is pprent in the imgery nd mny pixels (up to bout 20) re ffected by the trget s energy, lthough in theory only mximum of four pixels should be prtilly ffected. More work is required to estblish methods to minimize this diffusion, nd develop ccurte reltionships between imged nd ctul tempertures. 6 Mrch 2004 Advntge

Models for probbility of hotspot detection Probbility of detection ws modelled for AWIS nd BD FLIR using logistic regression. Explntory vribles included hotspot temperture (Htemp, C) nd the size of the trget hotspot s proportion of single imge pixel on the ground. The trget-to-pixel re (TPA) defines the proportion of single imge pixel tht is occupied by given hotspot, clculted s: TPA = Hsize/PA 100 where: Hsize = size of the hotspot (cm 2 ) PA = dimension of single imge pixel on the ground (cm 2 ) The re (PA, in cm 2 ) of single imge pixel on the ground is defined by ltitude of the ircrft nd the specifictions of the imge sensor (Mtthews 1997): PA= (TAN(FOVx/2 π/180) Altitude 0.3048/ Px) (TAN(FOVy/2 π/180) Altitude 0.3048/ Py) 10000 where: FOVx = FOVy = Px = Py = sensor field of view in degrees in x direction sensor field of view in degrees in y direction number of imge pixels in x direction number of imge pixels in y direction Altitude = ltitude of ircrft in feet bove ground level TAN = tngent of ngle where ngle is given in rdins Seprte models were fitted to the dt given in Tbles 2 nd 3 to describe the probbility of detecting hotspot using AWIS nd BD FLIR: DetectionProb AWIS = 1/(1+EXP(-(-14.295+ 0.041 LN(TPA) Htemp))) 100 McFdden s Rho-Squred = 0.812 DetectionProb BD FLIR =1/(1+EXP(-(-6.616+0.016 Htemp+2.364 LN(TPA)))) 100 McFdden s Rho-Squred = 0.498 where: EXP= e to the power of given number LN = nturl logrithm of number Slightly different sttisticl models were likely required becuse AWIS involved more imge processing nd interprettion thn those normlly pplied during BD FLIR opertions. Both of these models hve been implemented to produce simple tbles tht cn be used to derive detection probbilities for vriety of scenrios (Appendix I). Both dtsets were lso merged to develop generic probbility of hotspot detection model. The model could be used to ssess the potentil detection performnce of ny sensor t given ltitude, when trined thermogrpher is vilble to interpret the imgery. DetectionProb = 1/(1+EXP(-(-1.486+0.007 LN(TPA) Htemp))) 100 McFdden s Rho-Squred = 0.476 By vrying sensor specifictions nd flight ltitudes, this theoreticl model cn be used to evlute vriety of sensors in vriety of ircrft, including sensors used in helicopters. Models for cost effectiveness A simple model hs been developed to llow fire mngers to compre the costs of vrious infrred remote sensing systems nd worklods, in the form of flight hours. The model ws not designed to produce definitive mission costs, but rther cn be used to compre the reltive costs nd mission flight times for vrious sensors nd ircrft pltforms. Users re required to define the detection probbility objectives for the mission, e.g., to detect 90 out of 100 smouldering hotspots (300 C) tht re 25 cm 2 in size or greter. Advntge Mrch 2004 7

The probbility of detection models developed in this study re then pplied, using the pproprite sensor specifictions (FOVx, FOVy, Px, nd Py), to determine the highest flight ltitude tht will meet the detection probbility objectives for the mission. In Tble 4, smple user inputs re given for severl infrred sensors the AWIS nd FLIR, s well s the AGA 750 hndheld sensor mounted in helicopter. Preliminry model outputs re clculted to determine the optimum mission ltitude nd re-scnning rte (re/h) for ech sensor/pltform configurtion. Although forml field trils hve not been crried out to evlute the performnce of rotry wing nd hndheld scnning opertions, theoreticl costing scenrio hs been included here to illustrte how the models cn be expnded to consider how vrious ircrft nd infrred scnner specifictions might impct scnning costs. The scene width of rotry wing nd hndheld scnner opertions my be expnded gretly, possibly up to double, by the opertor pnning the scnner. However, this scenrio uses conservtive single scene width becuse the exct impct of pnning on effective scene width is unknown. The model clcultes the time required by specific ircrft to scn given re, bsed on the optimum ltitude nd the opertionl scnning speed of the ircrft. Opertionl ircrft scnning speeds (km/h), ircrft costs ($/h), nd ferry times re entered by the user nd pplied to derive totl mission flight time (h) nd cost for fire of given re or perimeter length. Smple model outputs re given in Tble 5. Model users must check the scene width to ensure it meets minimum scn width of 100 m. This width would be required to support mop-up opertions. In this cse, the flight times nd costs for the perimeter scnning missions must be tripled since the scene width is less thn the minimum 100 m required. This cn only be chieved by three psses t optimum ltitude. Users should lso be wre tht minimum flight ltitudes for BD ircrft re 75 feet under VFR conditions during the dy, nd 500 or 1000 feet under VFR or IFR conditions over flt ground t night. AWIS missions re lso limited to 1000 feet under IFR conditions over flt ground t night, but opertionl missions re rrely undertken below 3000 feet bove ground level. In both cses, nighttime Tble 4. Smple user inputs used to clculte optimum mission ltitude, width, nd re-scnning rte Aircrft nd infrred sensor specifictions AWIS BD FLIR 2000 Rotry wing & AGA 750 Inputs FOVx n.. 28 20 FOVy n.. 15 20 Pixels cross (x) n.. 354 106 Pixels down (y) n.. 186 106 Hotspot size (cm 2 ) 25 25 25 Probbility of detection 90 90 90 Hotspot temperture ( C) 300 300 300 Aircrft scnning ($/h) 1 746 676 1 065 Scnning speed (km/h) 278 222 40 Ferry time (h) 1.5 1.5 0 Clculted vlues Altitude (feet bove ground level) 3 349 995 410 Scene width (m) 360 151 44 Are/h (m 2 /h) 10 007 3 357 176 AWIS sensor specifictions re proprietry informtion nd hence re not included here. 8 Mrch 2004 Advntge

Tble 5. Totl mission flight times nd costs for fire of given re or perimeter length when ircrft scnning speeds, ferry times, nd ircrft costs re input Fire Equivlent fire Fire mission flight time (h) Flight costs ($) re perimeter Rotry wing Rotry wing (h) (km) AWIS BD FLIR & AGA 750 AWIS BD FLIR & AGA 750 25 2.5 1.50 1.51 0.14 2 623 1 019 151 30 3.0 1.50 1.51 0.17 2 624 1 020 181 35 3.5 1.50 1.51 0.20 2 625 1 021 211 40 4.0 1.50 1.51 0.23 2 626 1 022 242 45 4.5 1.50 1.51 0.26 2 627 1 023 272 50 5.0 1.50 1.51 0.28 2 628 1 024 302 100 10.0 1.51 1.53 0.57 2 636 1 034 604 150 15.0 1.51 1.54 0.85 2 645 1 044 906 200 20.0 1.52 1.56 1.13 2 654 1 054 1 208 250 25.0 1.52 1.57 1.42 2 663 1 064 1 510 300 30.0 1.53 1.59 1.70 2 671 1 074 1 812 350 35.0 1.53 1.60 1.99 2 680 1 084 2 115 400 40.0 1.54 1.62 2.27 2 689 1 095 2 417 450 45.0 1.54 1.63 2.55 2 698 1 105 2 719 500 50.0 1.55 1.65 2.84 2 706 1 115 3 021 750 75.0 1.57 1.72 4.25 2 750 1 165 4 531 1 000 100.0 1.60 1.80 5.67 2 793 1 215 6 041 2 000 200.0 1.70 2.10 11.35 2 968 1 417 12 083 3 000 300.0 1.80 2.39 17.02 3 142 1 618 18 124 4 000 400.0 1.90 2.69 22.69 3 317 1 819 24 166 5 000 500.0 2.00 2.99 28.36 3 491 2 021 30 207 10 000 1 000.0 2.50 4.48 56.73 4 364 3 028 60 415 20 000 2 000.0 3.50 7.46 113.45 6 108 5 041 120 829 40 000 4 000.0 5.50 13.41 226.91 9 598 9 068 241 658 50 000 5 000.0 6.50 16.39 283.64 11 342 11 082 302 073 60 000 6 000.0 7.50 19.37 340.36 13 087 13 095 362 488 80 000 8 000.0 9.49 25.33 453.82 16 577 17 122 483 317 100 000 10 000.0 11.49 31.29 567.27 20 066 21 149 604 146 200 000 20 000.0 21.49 61.07 1 134.55 37 513 41 284 1 208 292 Flight times in bold indicte tht it is unlikely tht the mission will be completed in single morning. missions would usully be crried out under VFR conditions. Severl ssumptions hve been mde in the development of this model: The mximum fesible morning mission durtion is 1 h for VFR ircrft. The mximum fesible morning mission durtion is 4 h for IFR ircrft. Flight times nd costs re bsed on fire re or perimeter scns ssuming perimeter scn width of 100 m. The rotry wing nd hndheld scnner scenrio does not reflect the fct tht the scene width cn be expnded if the opertor pns the scnner. Costs re bsed on ircrft costs only (fuel in). There is zero turnround time t the edge of flight pths. The results suggest tht for fires less thn 150 h or when perimeter scnning in support of mop-up opertions is less thn bout 15 km, rotry wing missions with n AGA 750 re more cost effective thn AWIS or BD FLIR. The cost of BD FLIR opertions is less thn hlf tht of AWIS until fires exceed bout 2000 h or perimeter scnning exceeds 200 km. Advntge Mrch 2004 9

Conclusions Field trils were used to develop methods nd models to ssess nd quntify the detection cpbilities of infrred systems such s AWIS nd BD FLIR. The trils showed tht AWIS detected 75, 78, nd 50% of the detectble rtificil trgets t ltitudes of 3000, 4000, nd 6000 feet, respectively. BD FLIR detected 60, 30, nd 11% of the trgets t ltitudes of 2000, 4000, nd 6000 feet, respectively. The interprettion of BD FLIR informtion lso resulted in the identifiction of one flse trget t 4000 feet nd nother t 6000 feet, wheres no flse trgets were identified by AWIS. Field tril results suggest tht there re limittions for the ppliction of AWIS nd BD FLIR to support mop-up opertions by wy of the detection of subtle hotspots. Such detection limittions my or my not be criticl depending on user expecttions. Subsequent field trils could include trgetto-pixel re rtios of bout 5 10%, which would expnd the rnge of conditions evluted. Nonetheless, the dt collected hve been pplied to estblish detection threshold models, which cn be used to indicte the temperture nd size of minimum detectble hotspots for given ltitude. These models re useful for mission nd flight plnning during wildfire opertion. Tril results suggest tht hotspot detection cpbilities decline rpidly with ltitude, which is expected given the decrese in trget-to-pixel re rtio. Mny of the detection filures cn be ttributed to the inbility of AWIS to detect the smllest (5.2 cm in dimeter) yet hottest trgets (greter thn 600 C) t ll test ltitudes. The presence or bsence of forest cnopy did not pper to gretly influence the success of detection during these trils, lthough trgets were intentionlly plced within the forest so they would not be obscured plnimetriclly. The probbility of detecting hotspot using infrred remote sensing techniques depends on the size nd temperture of the hotspot, the specifictions of the infrred sensor, nd the ltitude t which scnning is conducted. The probbility of detection models developed cn be pplied to set infrred remote sensing mission objectives, nd to help fire mngers ssess the cost effectiveness of lterntive detection technologies. Results of the costing models developed suggest tht rotry wing missions with n AGA 750 re more cost effective thn AWIS or BD FLIR for fires less thn 150 h or when perimeter scnning in support of mop-up opertions is less thn bout 15 km. BD FLIR opertions cost less thn hlf tht of AWIS until fires exceed bout 2000 h or perimeter scnning exceeds 200 km. Therefter, the costs for AWIS nd BD FLIR missions become more similr, lthough the products nd informtion delivered to fireline stff using these services my differ gretly. References Aldrich, R. 1979. Remote sensing of wildlnd resources: stte-of-the-rt review. U.S. Deprtment of Agriculture, Forest Service, Rocky Mountin Forest nd Rnge Experiment Sttion, Fort Collins, Colo. Generl Technicl Report RM-71. Billings, P. 1986. Opertionl spects of the infr-red line scnner. Deprtment of Conservtion nd Environment, Victori, Austrli. Fire Protection Brnch Reserch Report No. 26. Cmpbell, D.; Born, W.; Beck, J.; Beresk, B.; Frederick, K.; Hu, S. 2002. The irborne wildfire intelligence system: decision support tool for wildlnd fire mngers in Albert. Society of Photo- Opticl Instrumenttion Engineers (SPIE). Pper number 4710-20. Mtthews, A. 1997. FIRESCAN: technique for irborne infrred mpping of wildfires. Ph.D. thesis prepred for the Deprtment of Erth Sciences, Monsh University, Austrli. 10 Mrch 2004 Advntge

Niederleitner, J. 1976. Detecting holdover fires with the AGA Thermovision 750 infrred scnner. Cndin Forest Service, Northern Forest Reserch Centre, Edmonton, Alt. Informtion Report Nor-X-151. Ogilvie, C.J.; Young, R.W. 1989. Dedlus line scnner trils in Albert, 1985 nd 1986. Forestry Cnd, Northern Forestry Centre, Edmonton, Alt. Informtion Report NOR-X-298. Woodrd, P.M.; Admowicz, W.L.; Bolster, O.J. 1993. An economic evlution of forwrd looking infrred (FLIR) technology to enhnce eril suppression of forest fires in Albert. Forestry Cnd, Northern Forestry Centre, Edmonton, Alt. Cnd-Albert Prtnership Agreement in Forestry Report 105. Acknowledgements Thnks to those who ssisted with field tril work including Ry Ault, Gry Dkin, Greg Bxter, nd Rex Hsieh of FERIC; Chuck Ogilvie, formerly of the Cndin Forest Service; Weldwood of Cnd Limited, Hinton Division; Mrk Ackermn nd Shirley Niven of the University of Albert; Dennis Driscoll nd Wlly Born of Albert Sustinble Resource Development; nd stff t the Edson Wildfire Mngement Are. Advntge Mrch 2004 11

Appendix I Tbles to predict probbility of hotspot detection Probbility of hotspot detection using AWIS Altitude b Hotspot size Hotspot temperture ( C) (ft.) (cm 2 ) 50 100 150 200 250 300 350 400 450 500 550 600 500 10 0 95 100 100 100 100 100 100 100 100 100 100 25 2 100 100 100 100 100 100 100 100 100 100 100 50 9 100 100 100 100 100 100 100 100 100 100 100 100 29 100 100 100 100 100 100 100 100 100 100 100 200 63 100 100 100 100 100 100 100 100 100 100 100 300 79 100 100 100 100 100 100 100 100 100 100 100 400 87 100 100 100 100 100 100 100 100 100 100 100 500 92 100 100 100 100 100 100 100 100 100 100 100 1 000 98 100 100 100 100 100 100 100 100 100 100 100 2 000 99 100 100 100 100 100 100 100 100 100 100 100 3 000 100 100 100 100 100 100 100 100 100 100 100 100 4 000 100 100 100 100 100 100 100 100 100 100 100 100 5 000 100 100 100 100 100 100 100 100 100 100 100 100 10 000 100 100 100 100 100 100 100 100 100 100 100 100 1 000 10 0 7 96 100 100 100 100 100 100 100 100 100 25 0 75 100 100 100 100 100 100 100 100 100 100 50 1 98 100 100 100 100 100 100 100 100 100 100 100 2 100 100 100 100 100 100 100 100 100 100 100 200 9 100 100 100 100 100 100 100 100 100 100 100 300 18 100 100 100 100 100 100 100 100 100 100 100 400 29 100 100 100 100 100 100 100 100 100 100 100 500 39 100 100 100 100 100 100 100 100 100 100 100 1 000 73 100 100 100 100 100 100 100 100 100 100 100 2 000 92 100 100 100 100 100 100 100 100 100 100 100 3 000 96 100 100 100 100 100 100 100 100 100 100 100 4 000 98 100 100 100 100 100 100 100 100 100 100 100 5 000 99 100 100 100 100 100 100 100 100 100 100 100 10 000 100 100 100 100 100 100 100 100 100 100 100 100 1 500 10 0 0 14 91 100 100 100 100 100 100 100 100 25 0 10 98 100 100 100 100 100 100 100 100 100 50 0 65 100 100 100 100 100 100 100 100 100 100 100 0 97 100 100 100 100 100 100 100 100 100 100 200 2 100 100 100 100 100 100 100 100 100 100 100 300 4 100 100 100 100 100 100 100 100 100 100 100 400 7 100 100 100 100 100 100 100 100 100 100 100 500 11 100 100 100 100 100 100 100 100 100 100 100 1 000 33 100 100 100 100 100 100 100 100 100 100 100 2 000 67 100 100 100 100 100 100 100 100 100 100 100 3 000 83 100 100 100 100 100 100 100 100 100 100 100 4 000 90 100 100 100 100 100 100 100 100 100 100 100 5 000 93 100 100 100 100 100 100 100 100 100 100 100 10 000 98 100 100 100 100 100 100 100 100 100 100 100 b Numbers indicte tht the probbility of detection is greter thn 95%, except those tht re itlicized indicte 0 70% probbility, nd those tht re bolded indicte 70 95% probbility. Above ground level. 12 Mrch 2004 Advntge

Appendix I Tbles to predict probbility of hotspot detection (continued) Probbility of hotspot detection using AWIS Altitude b Hotspot size Hotspot temperture ( C) (ft.) (cm 2 ) 50 100 150 200 250 300 350 400 450 500 550 600 2 000 10 33 60 82 93 98 99 100 100 100 100 100 100 25 50 86 97 100 100 100 100 100 100 100 100 100 50 63 94 99 100 100 100 100 100 100 100 100 100 100 74 98 100 100 100 100 100 100 100 100 100 100 200 83 99 100 100 100 100 100 100 100 100 100 100 300 87 100 100 100 100 100 100 100 100 100 100 100 400 89 100 100 100 100 100 100 100 100 100 100 100 500 90 100 100 100 100 100 100 100 100 100 100 100 1 000 94 100 100 100 100 100 100 100 100 100 100 100 2 000 96 100 100 100 100 100 100 100 100 100 100 100 3 000 97 100 100 100 100 100 100 100 100 100 100 100 4 000 98 100 100 100 100 100 100 100 100 100 100 100 5 000 98 100 100 100 100 100 100 100 100 100 100 100 10 000 99 100 100 100 100 100 100 100 100 100 100 100 4 000 10 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 1 10 46 87 98 100 100 100 50 0 0 2 37 95 100 100 100 100 100 100 100 100 0 1 57 99 100 100 100 100 100 100 100 100 200 0 15 99 100 100 100 100 100 100 100 100 100 300 0 48 100 100 100 100 100 100 100 100 100 100 400 0 75 100 100 100 100 100 100 100 100 100 100 500 0 88 100 100 100 100 100 100 100 100 100 100 1 000 1 99 100 100 100 100 100 100 100 100 100 100 2 000 4 100 100 100 100 100 100 100 100 100 100 100 3 000 8 100 100 100 100 100 100 100 100 100 100 100 4 000 13 100 100 100 100 100 100 100 100 100 100 100 5 000 20 100 100 100 100 100 100 100 100 100 100 100 10 000 50 100 100 100 100 100 100 100 100 100 100 100 6 000 10 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 3 14 48 85 97 99 100 100 0 0 1 18 85 99 100 100 100 100 100 100 200 0 1 39 99 100 100 100 100 100 100 100 100 300 0 3 89 100 100 100 100 100 100 100 100 100 400 0 10 98 100 100 100 100 100 100 100 100 100 500 0 21 99 100 100 100 100 100 100 100 100 100 1 000 0 82 100 100 100 100 100 100 100 100 100 100 2 000 1 99 100 100 100 100 100 100 100 100 100 100 3 000 2 100 100 100 100 100 100 100 100 100 100 100 4 000 3 100 100 100 100 100 100 100 100 100 100 100 5 000 4 100 100 100 100 100 100 100 100 100 100 100 10 000 16 100 100 100 100 100 100 100 100 100 100 100 b Numbers indicte tht the probbility of detection is greter thn 95%, except those tht re itlicized indicte 0 70% probbility, nd those tht re bolded indicte 70 95% probbility. Above ground level. Advntge Mrch 2004 13

Appendix I Tbles to predict probbility of hotspot detection (continued) Probbility of hotspot detection using FLIR 2000 Altitude b Hotspot size Hotspot temperture ( C) (ft.) (cm 2 ) 50 100 150 200 250 300 350 400 450 500 550 600 500 10 32 52 71 84 92 96 98 99 100 100 100 100 25 81 90 95 98 99 100 100 100 100 100 100 100 50 96 98 99 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 300 100 100 100 100 100 100 100 100 100 100 100 100 400 100 100 100 100 100 100 100 100 100 100 100 100 500 100 100 100 100 100 100 100 100 100 100 100 100 1 000 100 100 100 100 100 100 100 100 100 100 100 100 2 000 100 100 100 100 100 100 100 100 100 100 100 100 3 000 100 100 100 100 100 100 100 100 100 100 100 100 4 000 100 100 100 100 100 100 100 100 100 100 100 100 5 000 100 100 100 100 100 100 100 100 100 100 100 100 10 000 100 100 100 100 100 100 100 100 100 100 100 100 1 000 10 2 4 8 17 31 50 69 83 92 96 98 99 25 14 26 44 64 80 90 95 98 99 100 100 100 50 45 65 80 90 95 98 99 100 100 100 100 100 100 81 90 95 98 99 100 100 100 100 100 100 100 200 96 98 99 100 100 100 100 100 100 100 100 100 300 98 99 100 100 100 100 100 100 100 100 100 100 400 99 100 100 100 100 100 100 100 100 100 100 100 500 99 100 100 100 100 100 100 100 100 100 100 100 1 000 100 100 100 100 100 100 100 100 100 100 100 100 2 000 100 100 100 100 100 100 100 100 100 100 100 100 3 000 100 100 100 100 100 100 100 100 100 100 100 100 4 000 100 100 100 100 100 100 100 100 100 100 100 100 5 000 100 100 100 100 100 100 100 100 100 100 100 100 10 000 100 100 100 100 100 100 100 100 100 100 100 100 1 500 10 0 1 1 3 6 13 25 42 62 78 89 95 25 2 5 10 21 37 56 74 86 93 97 99 99 50 11 21 38 57 75 87 94 97 99 99 100 100 100 38 58 76 87 94 97 99 99 100 100 100 100 200 76 88 94 97 99 99 100 100 100 100 100 100 300 89 95 98 99 100 100 100 100 100 100 100 100 400 94 97 99 99 100 100 100 100 100 100 100 100 500 97 98 99 100 100 100 100 100 100 100 100 100 1 000 99 100 100 100 100 100 100 100 100 100 100 100 2 000 100 100 100 100 100 100 100 100 100 100 100 100 3 000 100 100 100 100 100 100 100 100 100 100 100 100 4 000 100 100 100 100 100 100 100 100 100 100 100 100 5 000 100 100 100 100 100 100 100 100 100 100 100 100 10 000 100 100 100 100 100 100 100 100 100 100 100 100 b Numbers indicte tht the probbility of detection is greter thn 95%, except those tht re itlicized indicte 0 70% probbility, nd those tht re bolded indicte 70 95% probbility. Above ground level. 14 Mrch 2004 Advntge

Appendix I Tbles to predict probbility of hotspot detection (continued) Probbility of hotspot detection using FLIR 2000 Altitude b Hotspot size Hotspot temperture ( C) (ft.) (cm 2 ) 50 100 150 200 250 300 350 400 450 500 550 600 b 2 000 10 0 0 0 1 2 4 8 16 29 48 67 82 25 1 1 3 6 13 25 42 62 78 89 95 98 50 3 6 13 26 43 63 79 89 95 98 99 100 100 14 26 44 64 80 90 95 98 99 100 100 100 200 45 65 80 90 95 98 99 100 100 100 100 100 300 68 83 91 96 98 99 100 100 100 100 100 100 400 81 90 95 98 99 100 100 100 100 100 100 100 500 88 94 97 99 99 100 100 100 100 100 100 100 1 000 97 99 99 100 100 100 100 100 100 100 100 100 2 000 99 100 100 100 100 100 100 100 100 100 100 100 3 000 100 100 100 100 100 100 100 100 100 100 100 100 4 000 100 100 100 100 100 100 100 100 100 100 100 100 5 000 100 100 100 100 100 100 100 100 100 100 100 100 10 000 100 100 100 100 100 100 100 100 100 100 100 100 4 000 10 0 0 0 0 0 0 0 1 2 3 7 15 25 0 0 0 0 1 1 3 6 12 23 41 60 50 0 0 1 1 3 6 12 24 41 61 78 89 100 1 1 3 6 13 25 42 62 78 89 95 98 200 3 6 13 26 43 63 79 89 95 98 99 100 300 8 15 29 47 67 82 91 96 98 99 100 100 400 14 26 44 64 80 90 95 98 99 100 100 100 500 21 38 57 75 87 94 97 99 99 100 100 100 1 000 58 76 87 94 97 99 99 100 100 100 100 100 2 000 88 94 97 99 99 100 100 100 100 100 100 100 3 000 95 98 99 100 100 100 100 100 100 100 100 100 4 000 97 99 99 100 100 100 100 100 100 100 100 100 5 000 98 99 100 100 100 100 100 100 100 100 100 100 10 000 100 100 100 100 100 100 100 100 100 100 100 100 6 000 10 0 0 0 0 0 0 0 0 0 1 1 2 25 0 0 0 0 0 0 0 1 2 4 9 18 50 0 0 0 0 0 1 2 4 9 19 34 53 100 0 0 0 1 2 5 10 19 35 54 73 86 200 0 1 2 5 10 20 36 55 73 86 93 97 300 1 3 6 12 23 39 59 76 88 94 97 99 400 2 5 10 21 37 56 74 86 93 97 99 99 500 4 8 17 31 50 69 83 92 96 98 99 100 1 000 17 31 50 69 83 92 96 98 99 100 100 100 2 000 51 70 84 92 96 98 99 100 100 100 100 100 3 000 73 86 93 97 99 99 100 100 100 100 100 100 4 000 85 92 96 98 99 100 100 100 100 100 100 100 5 000 90 95 98 99 100 100 100 100 100 100 100 100 10 000 98 99 100 100 100 100 100 100 100 100 100 100 Numbers indicte tht the probbility of detection is greter thn 95%, except those tht re itlicized indicte 0 70% probbility, nd those tht re bolded indicte 70 95% probbility. Above ground level. Advntge Mrch 2004 15