TEST REPORT #18. Compressor Calorimeter Test of Refrigerants R-134a, N-13a and ARM-42a

Similar documents
TEST REPORT #29. Compressor Calorimeter Test of R- 404A Alternative Refrigerant DR-7 in Reciprocating Compressors

TEST REPORT #66. Compressor Calorimeter Test of Refrigerant HPR2A in a R-410A Scroll Compressor

TEST REPORT #50. Compressor Calorimeter Test of Refrigerant Blend DR-3 in a R-404A Reciprocating Compressor

TEST REPORT #49. Compressor Calorimeter Test of Refrigerant Blend HDR110 in a R-404A Reciprocating Compressor

TEST REPORT #67. Compressor Calorimeter Test of Refrigerant ARM-25 in a R-404A Reciprocating Compressors

System Drop-In Test of R-410A Alternative Refrigerant R-32 in a Water-to-Air Heat Pump

Boiling Point at One Atmosphere C Critical Temperature 96.5 C

Boiling Point at One Atmosphere C Critical Temperature 74.9 C

Boiling Point at One Atmosphere C Critical Temperature 81.5 C

230V ~ 60HZ C (45 F) 54 C (130 F) 35 C (95 F) 35 C (95 F) 46 C (115 F)

Thermodynamic Properties of Opteon XP40 (R-449A) Engineering (I/P) Units. Boiling Point at One Atmosphere F Critical Temperature 178.

Boiling Point at One Atmosphere F Critical Temperature F

Engineers Tables SI Units

Opteon XP40. Thermodynamic Properties

Soft-optimized tests of R-410A alternative refrigerant R-32 in a split system heat pump. By Stephen Li Jan

Technical Data Sheet. Model: AWA9512ZXN. Product Description. Product Specifications 6/7/2018. Reciprocating. Pressure

Technical Data Sheet. Model: AJB2444ZXD (AJB2444Z) Product Description. Product Specifications 11/19/2018. Reciprocating. Performance.

Boiling Point at One Atmosphere 29.1 C Critical Temperature C. Critical Density kg/m 3

Product Data Sheet HKK70VSD Revision 1 (Variant Code E)

Technical Data Sheet. Model: AJB2433ZXD (AJB2433Z) Product Description. Product Specifications 3/15/2019. Reciprocating. Performance.

SANYO SCROLL COMPRESSORS

Technical Data Sheet. Model: AVA2490ZXN. Product Description. Product Specifications 6/7/2018. Reciprocating

Thermodynamic Properties of

Evaluation of methods to decrease the discharge temperature of R32 scroll compressor

Availability Analysis For Optimizing A Vehicle A/C System

AHRI Standard 1371 (SI) 2017 Standard for Performance Rating of Electronic Expansion Valves

Danfoss Commercial Compressors Towards more eco-friendly commercial refrigeration systems

DIMENSION AND SELECTION GUIDE

Klea 410A Engineers Tables SI Units

Structural Analysis Of Reciprocating Compressor Manifold

Danfoss scroll compressors SH series

Danfoss scroll compressors SH series

Thermodynamic Properties of DuPont ISCEON MO59 (R-417A)

Theoretical and Experimental Evaluation of the Friction Torque in Compressors with Straddle Bearings

Performance Rating of Airto-Air Heat Exchangers for Energy Recovery Ventilation Equipment

A HIGH PERFORMANCE LINEAR COMPRESSOR FOR CPU COOLING

CHILLER START UP PROCEDURE FORM DOC. N (DOC.N BELOW TO BE RETURN TO AERMEC)

GTK70AT V/50Hz 1~

GTK55AT V/50Hz 1~

MSC 110mm Series Vertical Medium Screw Compressors

Deployment of Scroll Compressor in an Air Conditioning System of an SUV

NLE12.6MF.2 Energy-optimized MBP Compressor R134a V 50/60Hz

Updated situation about alternative refrigerant evaluation

XV7.2KX Variable Speed Drive Compressor R600a V 50/60Hz

Performance Rating of Single Package Vertical Air-Conditioners And Heat Pumps

Emerging Oil Free Technologies. Ray Good Global Director of Application Engineering Danfoss Turbocor Compressors, Inc.

Effect of Lubricant-Refrigerant Mixture Properties on Compressor Efficiencies

technical sales guide - 60Hz Ducted Split Units HIGH AMBIENT OPERATION 52 UPTO

Numerical Investigation of the Gas Leakage through the Piston-Cylinder Clearance of Reciprocating Compressors

Small Oil Free Piston Type Compressor For CO2

Thermodynamic Properties of DuPont ISCEON MO99

HG Series Aluminium Design

Technical Information

TSTAT0201CW (Sold Separately) Qualifying models only. Max. Fuse or Breaker

Refrigerating Engineers & Technicians Association. Industrial Refrigeration 1 Final Examination for Course Credit Supplemental Materials Package

Hours / 100 Marks Seat No.

HGX6/ S Engine: V Y/YY -3-50Hz PW Refrigerant: R404A, R507

Experimental Investigation of Damping Coefficient for Compressor Reed Valves

APPENDIX A. Mechanical Equipment Sheets: York Chiller Marley Cooling Towers Calmac IceBank Storage Tanks Low Temp Air Cooling Coils

HANDBOOK SOLENOID VALVES. Ed SOLENOID VALVES VS-ED 01/ ENG 1

Application Data CONTENTS. COMPRESSOR PHYSICAL DATA (Table 1) Table 1 Open-Drive Compressors

Selection & Application Guidelines Performer scroll compressors in parallel installation

(E) Btu/Wh ARI 115V ~ 60HZ C (45 F) 54 C (130 F) 35 C (95 F) 18.3 C (65 F) 46 C (115 F)

MT/MTZ 50 Hz R22 R407C R134a R404A / R507

Progress all along the line

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING. Question Bank. UNIT-I THERMODYNAMIC CYCLES Part-A (2 Marks)

Q6SP Series Rev A TECHNICAL SPECIFICATIONS. FEATURES and BENEFITS. 7.5 and 10 Ton Packaged Electric Heat Pump Units with R-410A 11.

REMOTE AIR COOLED CONDENSERS

ANSI/AHRI Standard 760 (I-P) 2014 Standard for Performance Rating of Solenoid Valves for Use with Volatile Refrigerants

HCFCs Refrigeration Retrofit Guidelines

Performance Assessment of NNAs. John Meyer, Visteon US Peter Heyl, Visteon Germany

r410a // hermetic VSD Operation 60 Hz // ESP-133-2

Analysis of Novel Compression Concepts for Heat Pumping, Air Conditioning and Refrigeration Applications

PHR5. Product Specifications

Bosch Climate 5000 Ductless Minisplit System

INSTALLATION, START-UP AND SERVICE INSTRUCTIONS

EMERSON CLIMATE TECHNOLOGIES-EX

Multi Ejector Solution TM for R744 (CO 2 ) Product type - CTM 1 and CTM 2 Liquid Ejector

ZR125KC-TFD. Electrical. Alternate Applications

Thermo -Expansion Valves Series TX7

Danfoss scroll compressors SM SY SZ

N4A6. Product Specifications

TC Series Compressor. Reference Guide. Light Commercial Refrigeration Applications.

Operating Net Capacity BTU/h. Input BTU/h Efficiency. lbs (kg) PGR524040KGP* 23, ,000/26, /8 x 47 x 31-7/16

TV-Line Condensing Units

CAS. Product Specifications. COMMERCIAL SPLIT SYSTEMS CONDENSING UNITS R 410A, 6 to 20 TONS BUILT TO LAST, EASY TO INSTALL AND SERVICE

Quantum Air REMOTE AIR COOLED CONDENSER

6-1/3 and 7-1/2 Ton Split System Air Conditioner (3 Phase) 75 to 89 MBtuh R -22 Refrigerant. Nominal Capacity BTUH

Danfoss scroll compressors SM SY SZ

YH Series Scroll Compressors With Dual-Compliance For A/C and Chiller

Product Data PH15NB. 15SEERSplitSystemHeatPump with R---410A Refrigerant 1.5 To 5 Nominal Tons AVAILABLE SIZES:

Twin-Screw Compressor Performance and Suitable Lubricants with HFC-134a

RCD Air Cooled Condensing Unit (50/60 Hz)

Bosch BOVA Split System Heat Pump

Bosch BOVA Split System Heat Pump

HANDBOOK SOLENOID VALVES. Ed SOLENOID VALVES VS-ED 01/ ENG 1

HCFC-123. Thermodynamic Properties of. (2,2 dichloro-1,1,1-trifluoroethane) T-123 ENG. Technical Information

Optimization of Heat Management of Vehicles Using Simulation Tools

This document is a preview generated by EVS

Chiller. SWS/SWR 1602 to Water Cooled Chillers Cooling Only and Condenserless Versions Engineering Data Manual.

Transcription:

Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP) TEST REPORT #18 Compressor Calorimeter Test of Refrigerants R-134a, N-13a and ARM-42a Guilherme Borges Ribeiro Gabriel Marchi Di Gennaro EMBRACO Empresa Brasileira de Compressores Rui Barbosa, 20 zip code 89219-901 - Joinville - SC Brazil July 8, 2013 This report has been made available to the public as part of the author company s participation in the AHRI s Low-GWP AREP. The tests in this report were conducted using different conditions from the program s requirements. The AHRI Low-GWP AREP Technical Committee found the results useful and informative, and approved them for publication as a non-standard Low-GWP AREP report.

List of Tested Refrigerant s Compositions (Mass%) ARM-42a R-134a/R-152a/R-1234yf (7/11/82) N-13a R-134a/R-1234yf/R-1234ze(E) (42/18/)

1. Introduction The purpose of this work is to evaluate promising alternative refrigerants with low GWP (Global Warming Potential). The compressor used for this study is manufactured by Embraco light commercial refrigeration. For this report, three refrigerants were chosen, R-134a as baseline refrigerant, N-13a and ARM-42a as alternative refrigerants. Forty-eight tests were performed according to standard ASHRAE 23 during two months. Due to the number of tests and short time, just one level of superheating was applied in this work. Because of restrictions of calorimeter components, tests were executed using different conditions than specified by the Low-GWP AREP participant s handbook. The version 7.0 of NIST REFPROP was used for thermodynamic properties computation. 2. Details of Test Setup: Description of Test Refrigerant-Lubricant Baseline Refrigerant R-134a Alternative Refrigerants N-13a ARM-42a Lubricant The mineral lubricant oil is EMKARATE RL 22H, with viscosity ISO 22. No changes were applied for this lubricant. b. Description of Compressor The EG80HLR is a reciprocating compressor, hermetic, low-side design (motor exposed to suction pressure). This compressor is manufactured by Embraco and its compressor label is shown below.

Figure 1 - Compressor Label ARM-42a. Tables 1 presents the test conditions applied for R-134a, N-13a and

Table 1- Operating conditions with the tested refrigerants R-134a Baseline Refrigerant N-13a Alternative Refrigerant ARM-42a Alternative Refrigerant Suction Pressure [bar] Suction Saturation [ C] Discharge Pressure [bar] Discharge Saturation [ C] Applicable Superheating [ C] Suction T sup -T evap [ C] Ambient [ C] 1,113-24 6,654 25 22,2-1,8 32 1,113-24 8,870 35 22,2-1,8 32 1,113-24 11,599 45 22,2-1,8 32 1,113-24 14,915 55 22,2-1,8 32 1,327-20 6,654 25 22,2 2,2 32 1,327-20 8,870 35 22,2 2,2 32 1,327-20 11,599 45 22,2 2,2 32 1,327-20 14,915 55 22,2 2,2 32 1,639-15 7,702 30 22,2 7,2 32 1,639-15 8,869 35 22,2 7,2 32 1,639-15 11,599 45 22,2 7,2 32 1,639-15 14,915 55 22,2 7,2 32 1,0-24 6,361 25 22,2-1,8 32 1,0-24 8,441 35 22,2-1,8 32 1,0-24,994 45 22,2-1,8 32 1,0-24 14,085 55 22,2-1,8 32 1,307-20 6,361 25 22,2 2,2 32 1,307-20 8,441 35 22,2 2,2 32 1,307-20,994 45 22,2 2,2 32 1,307-20 14,085 55 22,2 2,2 32 1,608-15 7,346 30 22,2 7,2 32 1,608-15 8,441 35 22,2 7,2 32 1,608-15,994 45 22,2 7,2 32 1,608-15 14,085 55 22,2 7,2 32 1,298-24 6,869 25 22,2-1,8 32 1,298-24 8,982 35 22,2-1,8 32 1,298-24 11,557 45 22,2-1,8 32 1,298-24 14,649 55 22,2-1,8 32 1,530-20 6,869 25 22,2 2,2 32 1,530-20 8,982 35 22,2 2,2 32 1,530-20 11,557 45 22,2 2,2 32 1,530-20 14,649 55 22,2 2,2 32 1,864-15 7,867 30 22,2 7,2 32 1,864-15 8,982 35 22,2 7,2 32 1,864-15 11,557 45 22,2 7,2 32 1,864-15 14,649 55 22,2 7,2 32

c. Description and Size of Test Loop The figure below shows a schematic drawing of the calorimeter and its main components. Figure 2 - Calorimeter test apparatus Pressure and temperature are measured by absolute pressure transducers and resistance temperature detectors (PT0), respectively. Both expansion valves are used to control the compressor inlet and outlet pressure, whereas the electric heaters were used to guarantee that only fluid at the superheated state entered at the mass flow meter and the compressor. A pressure-enthalpy diagram is shown in the Figure 3. It is important to mention that a heat loss along the apparatus tubing is presented from point 5 to 6 on the pressure-enthalpy diagram.

Figure 3 Pressure x Enthalpy diagram The air temperature inside the box was controlled by an electric heater and an embedded refrigerating system, as shown in the Figure 4. Figure 4 - Compressor Box

Figure 5 Calorimeter Figure 6 - Calorimeter

The measurement instruments used in the calorimeter are listed in Table 2, with the associated accuracy. Table 2 - Instrumentation and catalog accuracy Type Model Accuracy Mass Flow meter Metroval RHM015 ±0,% of flow rate Power transducer Yokogawa 2285A ±0,5% of full scale Suction Pressure Transducer Wika P 1-9 bar ±0,05% of full scale Discharge Pressure Transducer Wika P 1-39 bar ±0,05% of full scale PT0 - Data acquisition National Instruments SCXI 00 / SCXI12 / SCXI 1303 ±(0,15+0,002*T) where T is the measured temperature. E max = ±0,45 C ±0,05% 3. Results The comparison results discussed in this topic are tabulated in Appendix A. All results presented are raw test data, except results Tables 8 to 12.

Appendix A Tabular Data The uncertainties calculated for table 3 to 5, were obtained according with the equations presented below: Where:, %

Table 3 - Performance data in tabular form within defined accuracies and ranges of operation R-134a Points Evaluated UNIT 1 2 3 4 5 6 7 8 9 11 12 Evaporating -11 (-24) -11 (-24) -11 (-24) -11 (-24) -4 (-20) -4 (-20) -4 (-20) -4 (-20) 5 (-15) 5 (-15) 5 (-15) 5 (-15) Condensing 77 (25) 95 (35) 113 (45) 131 (55) 77 (25) 95 (35) 113 (45) 131 (55) 86 (30) 95 (35) 113 (45) 131 (55) Discharge 141 (61) 146 (63) 151 (66) 157 (69) 143 (62) 149 (65) 155 (69) 161 (72) 141 (61) 147 (64) 156 (69) 162 (72) Applicable Superheating Applicable Subcooling Compressor Capacity Btu/h (W) 725 (212) 634 (186) 544 (159) 446 (131) 895 (262) 798 (234) 671 (197) 569 (167) 1116 (327) 53 (309) 925 (271) 779 (228) Refrigerant mass flow rate kg/h (lbm/ h) 4,38 (9,7) 4,17 (9,2) 3,94 (8,7) 3,61 (7,9) 5,33 (11,7) 5,17 (11,4) 4,77 (,5) 4,51 (9,9) 6,78 (15,0) 6,68 (14,7) 6,43 (14,2) 6,02 (13,3) Mass flow rate uncertainty kg/h ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 Current A 0,56 0,60 0,63 0,64 0,61 0,66 0,69 0,73 0,71 0,73 0,79 0,83 Current uncertainty A ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 Power Input W 118,6 126,6 132,2 135,2 127,3 138,2 145,1 152,5 150,1 154,1 165,2 174,2 Power Input uncertainty W ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 EER COP Btu/h/ W W/W 6,11 5,01 4,11 3,30 7,03 5,78 4,62 3,73 7,43 6,83 5,60 4,48 1,79 1,47 1,20 0,97 2,06 1,69 1,36 1,09 2,18 2,00 1,64 1,31 COP N-13a / COP R-134a COP ARM-42a / COP R-134a Suction Pressure - 1,18 1,12 1, 0,96 0,98 0,98 0,98 0,99 0,98 0,96 0,95 0,97-1,01 1,03 1,01 0,98 1,02 1,02 1,03 1,02 1,03 1,03 1,02 1,00 bar 1,113± 1,113± 1,113± 1,113± 1,327± 1,327± 1,327± 1,327± 1,639± 1,639± 1,639± 1,639± Discharge Pressure bar 6,654± 8,870± 11,599 ± 14,915 ± 6,654± 8,870± 11,599± 14,915± 7,702± 8,870± 11,599± 14,915 ±

Table 4 - Performance data in tabular form within defined accuracies and ranges of operation N-13a Points Evaluated UNIT 1 2 3 4 5 6 7 8 9 11 12 Evaporating -11 (-24) -11 (-24) -11 (-24) -11 (-24) -4 (-20) -4 (-20) -4 (-20) -4 (-20) 5 (-15) 5 (-15) 5 (-15) 5 (-15) Condensing 77 (25) 95 (35) 113 (45) 131 (55) 77 (25) 95 (35) 113 (45) 131 (55) 86 (30) 95 (35) 113 (45) 131 (55) Discharge 137 (58) 144 (62) 150 (65) 152 (67) 138 (59) 144 (62) 152 (67) 156 (69) 137 (59) 142 (61) 148 (65) 156 (69) Applicable Superheating Applicable Subcooling Compressor Capacity Btu/h (W) 839 (246) 754 (221) 647 (190) 459 (134) 865 (254) 764 (224) 647 (190) 534 (157) 1112 (326) 997 (292) 866 (254) 736 (216) Refrigerant mass flow rate kg/h (lbm/ h) 5,56 (12,2) 5,47 (12,1) 5,21 (11,5) 4,15 (9,2) 5,62 (12,4) 5,44 (12,0) 5, (11,3) 4,72 (,4) 7,07 (15,6) 6,93 (15,3) 6,65 (14,7) 6,31 (13,9) Mass flow rate uncertainty kg/h ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 Current A 0,55 0,64 0,68 0,69 0,60 0,61 0,68 0,69 0,70 0,72 0,77 0,85 Current uncertainty A ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 Power Input W 116,3 135,1 142,6 144,7 125,2 134,7 143,2 144,8 146,7 151,3 162,4 169,1 Power Input uncertainty W ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 EER Btu/h /W 7,22 5,58 4,53 3,17 6,91 5,67 4,52 3,69 7,26 6,59 5,33 4,35 COP W/W 2,12 1,64 1,33 0,93 2,02 1,66 1,32 1,08 2,13 1,93 1,56 1,28 COP N-13a / COP R-134a - 1,18 1,12 1, 0,96 0,98 0,98 0,98 0,99 0,98 0,96 0,95 0,97 Suction Pressure bar 1,0± 1,0± 1,0± 1,0± 1,307± 1,307± 1,307± 1,307± 1,608± 1,608± 1,608± 1,608± Discharge Pressure bar 6,316± 8,441±,994± 14,085± 6,316± 8,441±,994± 14,085± 7,346± 8,441±,994± 14,085±

Table 5 - Performance data in tabular form within defined accuracies and ranges of operation ARM-42a Points Evaluated UNIT 1 2 3 4 5 6 7 8 9 11 12 Evaporating -11 (-24) -11 (-24) -11 (-24) -11 (-24) -4 (-20) -4 (-20) -4 (-20) -4 (-20) 5 (-15) 5 (-15) 5 (-15) 5 (-15) Condensing 77 (25) 95 (35) 113 (45) 131 (55) 77 (25) 95 (35) 113 (45) 131 (55) 86 (30) 95 (35) 113 (45) 131 (55) Discharge 134 (57) 141 (61) 146 (63) 153 (67) 135 (57) 141 (60) 146 (63) 155 (69) 137 (58) 142 (61) 149 (65) 158 (70) Applicable Superheating Applicable Subcooling Compressor Capacity Btu/h (W) 811 (238) 715 (2) 601 (176) 477 (1) 09 (296) 887 (260) 750 (220) 621 (182) 1223 (358) 1154 (338) 03 (294) 830 (243) Refrigerant mass flow rate kg/h (lbm/ h) 5,67 (12,5) 5,52 (12,2) 5,19 (11,4) 4,71 (,4) 6,91 (15,2) 6,70 (14,8) 6,32 (13,9) 5,96 (13,1) 8,56 (18,9) 8,49 (18,7) 8,21 (18,1) 7,69 (17,0) Mass flow rate uncertainty kg/h ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 Current A 0,62 0,66 0,69 0,70 0,67 0,72 0,75 0,78 0,76 0,78 0,84 0,88 Current uncertainty A ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 ±0,03 Power Input W 130,9 139,0 145,1 147,1 1,8 151,0 157,2 163,4 159,8 164,0 175,6 184,6 Power Input uncertainty W ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 ±2,9 EER Btu/h /W 6,20 5,14 4,14 3,24 7,17 5,87 4,77 3,80 7,65 7,04 5,71 4,49 COP W/W 1,82 1,51 1,21 0,95 2, 1,72 1, 1,11 2,24 2,06 1,67 1,32 COP ARM-42a / COP R-134a - 1,01 1,03 1,01 0,98 1,02 1,02 1,03 1,02 1,03 1,03 1,02 1,00 Suction Pressure bar 1,298± 1,298± 1,298± 1,298± 1,530± 1,530± 1,530± 1,530± 1,864± 1,864± 1,864± 1,864± Discharge Pressure bar 6,869± 8,982± 11,557± 14,649± 6,869± 8,982± 11,557± 14,649± 7,867± 8,982± 11,557± 14,649±

Evaporating [ C] Table 6 - Percentage gain of N-13a over R-134a Conditions Condensing [ C] Capacity Power Input COP -24 25 15,8% -1,9% 18,1% -24 35 19,0% 6,7% 11,5% -24 45 19,0% 7,9%,3% -24 55 2,9% 7,0% -3,8% -20 25-3,3% -1,6% -1,7% -20 35-4,3% -2,5% -1,8% -20 45-3,5% -1,3% -2,3% -20 55-6,0% -5,1% -1,0% -15 30-4,6% -2,3% -2,4% -15 35-5,4% -1,8% -3,6% -15 45-6,3% -1,7% -4,8% -15 55-5,6% -2,9% -2,7% Evaporating [ C] Table 7 - Percentage gain of ARM-42a over R-134a Conditions Condensing [ C] Capacity Power Input COP -24 25 11,9%,4% 1,4% -24 35 12,8% 9,8% 2,8% -24 45,6% 9,8% 0,7% -24 55 7,0% 8,8% -1,6% -20 25 12,8%,7% 1,9% -20 35 11,1% 9,3% 1,6% -20 45 11,7% 8,3% 3,1% -20 55 9,1% 7,1% 1,9% -15 30 9,6% 6,5% 2,9% -15 35 9,6% 6,4% 3,0% -15 45 8,5% 6,3% 2,0% -15 55 6,4% 6,0% 0,4%

Performance map for R-134a o Polynomial equation Appendix B Performance Maps Table 8 - Polynomial coefficients R-134a Coefficients Capacity Power Input COP Mass Flow Rate A 0 07,57 591,99 5,47-7,01 A 1 74,18 68,97 0,25-2,38 A 2 2,71 3,20 0,01-0,14 A 3 0,04 0,05 0,00 0,00 A 4 2,30 0,14-0,02 0,19 A 5-0,14-0,01 0,00 0,00 A 6 0,00 0,00 0,00 0,00 A 7 0,11-0,18 0,00 0,01 A 8 0,00 0,00 0,00 0,00 A 9 0,00 0,00 0,00 0,00 where: A: Equation coefficient, represents compressor performance S: Suction dew point temperature, [ C] D: Discharge dew point temperature, [ C] X can represent any of the following variables: Capacity, [W] Power Input, [W] COP, [W/W] Mass flow rate, [kg/h]

o Graphics 350 300 Capacity [W] 250 200 150 0-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 7 Cooling capacity for R-134a Power Input [W] 180 170 160 150 1 130 120 1-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 8 - Power Input for R-134a

2.5 2.1 COP [W/W] 1.7 1.3 0.9 0.5-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 9 - COP for R-134a 7.00 6.50 Mass Flow Rate [Kg/h] 6.00 5.50 5.00 4.50 4.00 3.50 3.00-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure - Mass flow rate for R-134a

Performance map for N-13a o Polynomial equation Table 9 - Polynomial coefficients N-13a Coefficients Capacity Power Input COP Mass Flow Rate A 0 2831,50-80,93 11,91 45,23 A 1 278,73-41,87 0,74 3, A 2,53-2,43 0,02 0,09 A 3 0,14-0,04 0,00 0,00 A 4-37,16-0,22-0,27-0,90 A 5 0,36 0,09 0,00 0,01 A 6 0,00 0,00 0,00 0,00 A 7-2,06 0,19-0,01-0,04 A 8 0,01 0,00 0,00 0,00 A 9-0,03 0,01 0,00 0,00 where: A: Equation coefficient, represents compressor performance S: Suction dew point temperature, [ C] D: Discharge dew point temperature, [ C] X can represent any of the following variables: Capacity, [W] Power Input, [W] COP, [W/W] Mass flow rate, [kg/h]

o Graphics 350 300 Capacity [W] 250 200 150 0-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 11 - Cooling capacity for N-13a Power Input [W] 170 160 150 1 130 120 1-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 12 - Power Input for N-13a

2.3 2.0 COP [W/W] 1.7 1.4 1.1 0.8 0.5-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 13 - COP for N-13a 7.5 Mass Flow Rate [Kg/h] 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5-26 -24-22 -20-18 -16-14 Tcond=25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 14 - Mass flow rate for N-13a

Performance map for ARM-42a o Polynomial equation Table - Polynomial coefficients ARM-42a Coefficients Capacity Power Input COP Mass Flow Rate A 0 79,96-530,53,23-13,03 A 1 69,49-7,94 0,90-3,87 A 2 2,36-5,72 0,04-0,22 A 3 0,03-0, 0,00 0,00 A 4-3,05 0,58-0,07 0,07 A 5-0,06 0,02 0,00 0,00 A 6 0,00 0,00 0,00 0,00 A 7-0,08-0,01 0,00 0,00 A 8 0,00 0,00 0,00 0,00 A 9 0,00 0,00 0,00 0,00 where: A: Equation coefficient, represents compressor performance S: Suction dew point temperature, [ C] D: Discharge dew point temperature, [ C] X can represent any of the following variables: Capacity, [W] Power Input, [W] COP, [W/W] Mass flow rate, [kg/h]

o Graphics 0 350 Capacity [W] 300 250 200 150 0-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 15 Cooling capacity for ARM-42a 190 180 Power Input [W] 170 160 150 1 130 120-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 16 - Power Input for ARM-42a

COP [W/W} 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 17 - COP for ARM-42a Mass Flow Rate [kg/h] 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5-26 -24-22 -20-18 -16-14 Tcond= 25 C Tcond= 35 C Tcond= 45 C Tcond= 55 C Figure 18 - Mass flow rate for ARM-42a

Comparative performance map for N-13a and R-134a o Polynomial equation Table 11 - Polynomial coefficients N-13a / R-134a Coefficients A 0 14,85 A 1 1,72 A 2 0,07 A 3 0,00 A 4-0,22 A 5 0,00 A 6 0,00 A 7-0,01 A 8 0,00 A 9 0,00 where: A: Equation coefficient, represents compressor performance S: Suction dew point temperature, [ C] D: Discharge dew point temperature, [ C] X: o Graphic 2.50 2.00 Tcond= 25 C COP 1.50 1.00 0.50 R-134a N13a 0.00-24 -20-15 Figure 19 - Comparative COP

2.50 2.00 Tcond= 35 C COP 1.50 1.00 0.50 R-134a N13a 0.00-24 -20-15 Figure 20 - Comparative COP 2.50 2.00 Tcond= 45 C COP 1.50 1.00 0.50 R-134a N13a 0.00-24 -20-15 Figure 21 - Comparative COP

2.50 2.00 Tcond= 55 C COP 1.50 1.00 0.50 R-134a N13a 0.00-24 -20-15 Figure 22 - Comparative COP Comparative performance map for ARM-42a and R-134a o Polynomial equation Table 2 - Polynomial coefficients ARM-42a / R-134ª Coefficients A 0 8,21 A 1 1,06 A 2 0,05 A 3 0,00 A 4-0,04 A 5 0,00 A 6 0,00 A 7 0,00 A 8 0,00 A 9 0,00 where: A: Equation coefficient, represents compressor performance S: Suction dew point temperature, [ C] D: Discharge dew point temperature, [ C] X: o Graphic

2.50 2.00 Tcond= 25 C COP 1.50 1.00 0.50 R-134a ARM-42a 0.00-24 -20-15 Figure 23 - Comparative COP 2.50 2.00 Tcond= 35 C COP 1.50 1.00 0.50 R-134a ARM-42a 0.00-24 -20-15 Figure 24 - Comparative COP

2.50 2.00 Tcond= 45 C COP 1.50 1.00 0.50 R-134a ARM-42a 0.00-24 -20-15 Figure 25 - Comparative COP 2.50 2.00 Tcond= 55 C COP 1.50 1.00 0.50 R-134a ARM-42a 0.00-24 -20-15 Figure 26 - Comparative COP