Pinion Gear ii Project information?

Similar documents
Spur gearing, Helical gearing [mm/iso] Pinion Gear ii Project information? i Calculation without errors.

Spur gearing, Helical gearing [mm/iso] Pinion Gear ii Project information? i Calculation without errors.

Lecture 13 BEVEL GEARS

Chapter 1 Gear Design

10.2 Calculation for Bevel gear strength

1/2/2015 2:04 PM. Chapter 13. Gears General. Dr. Mohammad Suliman Abuhaiba, PE

Gear Tooth Geometry - This is determined primarily by pitch, depth and pressure angle

12/6/2013 9:09 PM. Chapter 13. Gears General. Dr. Mohammad Suliman Abuhaiba, PE

Methodology for Designing a Gearbox and its Analysis

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

Program Internal Gear Set Profile Shift Coefficients With Zero Backlash Introduction

Sheet 1 Variable loading


Power transmission. Components used to transmit power: gears, belt, clutch and brakes. Gear (Stresses) act on the tooth Lewis formula and AGMA

CHAPTER 5 PREVENTION OF TOOTH DAMAGE IN HELICAL GEAR BY PROFILE MODIFICATION

Bevel Gears. Fig.(1) Bevel gears

KISSsoft 03/2017 Tutorial 15

ANALYSIS OF STRESSES AND DEFLECTIONS IN SPUR GEAR

Tooth thickness Dedendum. Addendum. Centre distance Nominal

1.6 Features of common gears

Bevel Gears n A Textbook of Machine Design

ISO INTERNATIONAL STANDARD. Bevel and hypoid gear geometry. Géométrie des engrenages coniques et hypoïdes. First edition

Introduction to Gear Design

Chapter 3. Transmission Components

PRECISION GROUND GEARS Spur & Helical Gears

ANALYSIS OF SURFACE CONTACT STRESS FOR A SPUR GEAR OF MATERIAL STEEL 15NI2CR1MO28

Bevel and hypoid gear geometry

Metric Standards Worldwide Japanese Metric Standards In This Text

Fig. 1 Two stage helical gearbox

CH#13 Gears-General. Drive and Driven Gears 3/13/2018

Customer Application Examples

SECTION 8 BEVEL GEARING

Bibliography. [1] Buckingham, Earle: "Analytical Mechanics of Gears", McGraw-Hill, New York, 1949, and republished by Dover, New York, 1963.

Design & Manufacturing of an Effective Steering System for a Formula Student Car

KISSsoft 03/2013 Tutorial 15

Chapter 8 Kinematics of Gears

EXAMPLES GEARS. page 1

QUESTION BANK Chapter:-6 Design of IC Engine Components

NODIA AND COMPANY. Model Test Paper - I GATE Machine Design. Copyright By Publishers

Linear & Rotary Axis Drive

1.8 Rack shift of the gear

Quindos the Ultimate Software package for Gears, Gear Tools and other Special Applications

Gear Engineering Data. Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables

Engineering Information

The Geometry of Involute Gears

Effect of Geometry Factor I & J Factor Multipliers in the performance of Helical Gears

INCREASE IN FATIGUE LIFE OF SPUR GEAR BY INTRODUCING CIRCULAR STRESS RELIEVING FEATURE

Introduction. Design Specifications

KISSsoft Tutorial 012: Sizing of a fine pitch Planetary Gear set. 1 Task. 2 Starting KISSsoft

ANALYSIS OF SPUR GEAR GEOMETRY AND STRENGTH WITH KISSSOFT SOFTWARE

For new perspectives. WPLE - line WPLE

Thermal Analysis of Helical and Spiral Gear Train

ISSN: [Mukherjee * et al., 6(9): September, 2017] Impact Factor: 4.116

A comparison of the gear calculation process according to Swedish and American textbooks for higher education

SECTION 4 SPUR GEAR CALCULATIONS

CONTENT. 1. Syllabus 2. Introduction 3. Shaft 4. Coupling. Rigid coupling. Flange coupling. Sleeve (or) muff coupling Split muff coupling

Program Gear Load, Stress and Life Analysis

(POWER TRANSMISSION Methods)

EXAMPLES INTRODUCTION

GEAR CONTENTS POWER TRANSMISSION GEAR TYPES OF GEARS NOMENCLATURE APPLICATIONS OF GEARS VELOCITY RATIO GEAR TRAINS EXAMPLE PROBLEMS AND QUESTIONS

Determination and improvement of bevel gear efficiency by means of loaded TCA

Contact Analysis of a Helical Gear with Involute Profile

Design & Analysis of Steering System for a Formula Student Car

ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism)

A COMPARATIVE STUDY OF DESIGN OF SIMPLE SPUR GEAR TRAIN AND HELICAL GEAR TRAIN WITH A IDLER GEAR BY AGMA METHOD

Precision on the highest level

DUDLEY'S" HANDBOOK OF PRACTICAL GEAR DESIGN AND MANUFACTURE. Stephen P. Radzevich

STATIC ANALYSIS ON BEVEL GEAR USING STRUCTURAL STEEL, GRAY CAST IRON, AND STAINLESS STEEL

Lecture (7) on. Gear Measurement. By Dr. Emad M. Saad. Industrial Engineering Dept. Faculty of Engineering. Fayoum University.

STRUCTURAL ANALYSIS OF SPUR GEAR USING FEM

DESIGN OF SPUR GEAR AND ITS TOOTH PROFILE ON MATLAB

Плоские зубчатые механизмы. Ситников К.А. Владимир, Россия. Flat gear units. KA Sitnikov. Higher Professional Education.

Chapter 7. Shafts and Shaft Components

ZERO BACKLASH GEARING

FATIGUE STRESS CALCULATION OF STRAIGHT BEVEL GEARS APPLIED TO A PHOTO VOLTAIC TRACKING SYSTEM

Bevel gear rating along AGMA2003 in KISSsoft

Contact Stress Analysis of Stainless Steel Spur Gears using Finite Element Analysis and Comparison with Theoretical Results using Hertz Theory

GEARING. Theory of. Stephen. Kinetics, Geometry, and Synthesis. P. Radzevich. /Ov CRC Press yc*** J Taylor& Francis Croup Boca Raton

Instantaneous Centre Method

RELIABILITY IMPROVEMENT OF ACCESSORY GEARBOX BEVEL DRIVES Kozharinov Egor* *CIAM

GatesFacts Technical Information Library Gates Compass Power Transmission CD-ROM version 1.2 The Gates Rubber Company Denver, Colorado USA

STRAIGHT SPUR GEARS and RACKS

DESIGN AND ANALYSIS OF HELICAL GEAR

CHAPTER 3 page 35 PRINCIPLES OF GEAR-TOOTH GENERATION. .1 Angular Velocity Ratio

Ball Screw General Catalog

Direction of Helix (R) No. of Teeth (20) Module (1) Others (Ground Gear) Type (Helical Gear) Material (SCM440)

ScienceDirect A NEW EXPERIMENTAL APPROACH TO TEST OPEN GEARS FOR WINCH DRUMS

DESIGNING OF THE RACK AND PINION GEARBOX FOR ALL TERRAIN VEHICLE FOR THE COMPETITION BAJA SAE INDIA AND ENDURO STUDENT INDIA

Introduction. Kinematics and Dynamics of Machines. Involute profile. 7. Gears

Effect of Coefficient of Asymmetry on Strength and Contact Ratio of Asymmetric Helical Gear

BOGIFLEX KGD. Kiln Gear Drive. Self Aligning and Floating BOGIFLEX KGD. January 2010

Mechanism Feasibility Design Task

RACK JACK. Synchronous Lifting Systems

Optimization of Design Based on Tip Radius and Tooth Width to Minimize the Stresses on the Spur Gear with FE Analysis.

AN OPTIMAL PROFILE AND LEAD MODIFICATION IN CYLINDRICAL GEAR TOOTH BY REDUCING THE LOAD DISTRIBUTION FACTOR

Analysis of Spur Gear Box Using Software tool Ansys

Catalog Q Conversion For those wishing to ease themselves into working with metric gears

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

Bearing retention and clearances

A Comparison of Current AGMA, ISO and API Gear Rating Methods

Transcription:

B Bevel gearing with straight, oblique and curved teeth [inch/agma] i Calculation without errors. Pinion Gear ii Project information? Input section 1.0 1.1 Options of basic input parameters Transferred power Pw 10,000 9,834 [HP] 1.2 Speed (Pinion / Gear) n [/min] 1000,0 550,0 [/min] 1.3 Torsional moment (Pinion / Gear) Torq [lb.in] 630,00 1126,43 [Nm] 1.4 Transmission ratio / from table i 1,80 1.5 Actual transmission ratio / deviation i 1,8182 % 2.0 Options of material, loading conditions, operational and production parameters 2.1 Material of the pinion : E,F...Alloy structural steel AISI 6150 (S=142 Mpsi) face hardened 2.2 Material of the gear : E,F...Alloy structural steel Gr.5135(ASTM A322) (S=114 Mpsi) tooth face hard. 2.3 Loading of the gearbox, driving machine - examples A...Continuous 2.4 Loading of gearbox, driven machine - examples A...Continuous 2.5 Type of gearing mounting Type of gearing mounting C...Double-sided supported gearing - type 1 C Precision enclosed gearbox 2.6 Accuracy grade - AGMA (Ra min Ra max) Qv 8...(Ra min.= 63 / Ra max.= 125) 2.7 Failure probability (fewer than one failure in:) FP 1000 2,8 Desired service life Lh 10000 [h] 2.9 Coefficient of safety (contact/bend) SH / SF 1,30 1,60 2.10 Automatic design A. Spur gearing 3.0 Parameters of the tooth profile, gearing type 3.1 Guiding curve of the toothing (Type of toothing) A,B. Straight line, type I (Standard straight and oblique toothing) 3.2 Addendum - Coefficient of the height of the tooth head ha* 0 0 [modul] 3.3 Unit head clearance c* 0,200 0,200 [modul] 3.4 Recommended coefficient of the root radius 0,304 0,304 [modul] 3.5 Coefficient of the root radius rf* 0,304 0,304 [modul] 3.6 Type of tooth shape Without modification 4.0 4.1 Design of a module (Diametral Pitch) and geometry of toothing Number of teeth Pinion / Gear N 22 40 4.2 Angle of shaft axes Σ 90 90 4.3 A. Pressure Transverse angle pressure angle Φ 20,0 20,0 4.4 Base helix angle Ψm 0,0 35 4.5 Direction of the teeth pitch (pinion) Left-Hand 4.6 Width of toothing to the surface straight line of the cone (b/re) 4.7 Width of toothing to the surface straight line of the cone (b/re) Re/F 0,3 < 0,35 4.8 Diametral Pitch Pitch (transverse, outer) outer) Pt 7 Circular Pitch / Modul (transverse, outer) CP/met 0,4488 0,1429 4.9 Face width / max. recommendet value F 1,141 < 1,141 4.10 Approximate weight of the gearing m 5,224 4.11 Minimum coefficient of safety SH / SF 1,405 2,899 2,5 2 1,5 1 0,5 0-4 -3-2 -1 0-0,5 1 2 3 4-1 -1,5-2 -2,5 5.0 Correction of toothing (Addendum modification) 5.1 Correction type A. Straight toothing VN, increased bending strength

5.2 Recommendet value x1 / xτ1 0,511 0,000 5.3 - Permissible undercutting of teeth (min. value) x1 / x2-0,6352-4,0213 5.4 - Preventing undercutting of teeth (min. value) x1 / x2-0,4685-3,8547 5.5 Pinion addendum modification coefficient setting 5.6 Addendum modification coefficient x1 / x2 0,2700-0,2700 5.7 Tooth thicknes modification coefficient xτ1 / xτ2 0,0000 0,0000 5.8 Total contact ratio εγ 1,6678 5.9 Unit tooth thickness on the tip diameter sae* 0,7930 1,1215 5.10 Safety coefficient for surface durability SH 1,405 1,760 5.11 Safety coefficient for bending durability SF 5,10 2,90 6.0 Basic dimensions of gearing Results section 6.1 Number of teeth Pinion / Gear N 22 40 6.2 Diametral Pitch transverse (vnější, střední, vnitřní) Pet,Pmt,Pit 7,0000 8,4844 10,7679 6.3 Diametral Pitch (outer, midle, inner) Pen,Pmn,Pin 7,0000 8,4844 10,7679 6.4 Transverse module (outer, midle, inner) met,mmt,mit 0,1429 0,1179 0,0929 6.5 Normal module (outer, midle, inner) men,mmn,min 0,1429 0,1179 0,0929 6.6 Cone length (outer, midle, inner) Ce,Cm,Ci 3,2608 2,6903 2,1198 6.7 Pitch cone angle δ 28,8108 61,1892 6.8 Addendum cone angle δa 31,9954 63,0210 6.9 Dedendum cone angle δf 26,4776 57,5043 6.10 Tip diameter (outer) Dae 3,4608 5,8148 6.11 Tip diameter (midle) Dam 2,8553 4,7975 6.12 Tip diameter (inner) Dai 2,2498 3,7801 6.13 Pitch diameter (outer) De 3,1429 5,7143 6.14 Pitch diameter (midle) Dm 2,5930 4,7145 6.15 Pitch diameter (inner) Di 2,0431 3,7148 6.16 Root diameter (outer) Dfe 2,9100 5,5119 6.17 Root diameter (midle) Dfm 2,4009 4,5475 6.18 Root diameter (inner) Dfi 1,8918 3,5832 6.19 Addendum angle θa 3,1846 1,8318 6.20 Dedendum angle θf 2,3332 3,6849 6.21 Addendum (outer) hae 0,1814 0,1043 6.22 Addendum (midle) ha 0,1497 0,0860 6.23 Addendum (inner) hai 0,1179 0,0678 6.24 Dedendum (outer) hfe 0,1329 0,2100 6.25 Dedendum (midle) hf 0,1096 0,1733 6.26 Dedendum (inner) hfi 0,0864 0,1365 6.27 Normal pressure angle Φn 20,0000 6.28 Transverse pressure angle Φt 20,0000 6.29 Helix angle Ψ 0,0000 6.30 Base helix angle Ψb 0,0000 6.31 Pressure angle at the pitch cylinder Φwn 20,0000 6.32 Transverse pressure angle at the pitch cylinder Φwt 20,0000 6.33 Circular pitch pe 0,4488

6.34 Transverse circular pitch pte 0,4488 6.35 Tooth thickness on the pitch diameter sne 0,2525 0,1963 6.36 Tooth thickness on the pitch diameter sn 0,2083 0,1620 6.37 Tooth thickness on the pitch diameter sni 0,1641 0,1276 6.38 Tooth thickness on the tip diameter sae 0,1133 0,1602 6.39 Tooth thickness on the tip diameter sa 0,0935 0,1322 6.40 Tooth thickness on the tip diameter sai 0,0736 0,1042 6.41 Unit tooth thickness on the tip diameter sae* 0,7930 1,1215 [modul] 7.0 7.1 Virtual spur gear toothing Number of teeth of a virtual wheel with oblique teeth zvn' 25,108 83,002 7.2 Number of teeth of a virtual wheel with straight teeth zv 25,108 83,002 7.3 Reference diameter dv' 2,959 9,783 7.4 Tip diameter dva' 3,259 9,955 7.5 Base diameter dvb' 2,781 9,193 7.6 Root diameter dvf' 2,740 9,436 7.7 Virtual center distance av 6,3711 7.8 Virtual Gear Ratio iv 3,3058 8.0 Qualitative indexes of a gearing 8.1 Transverse contact ratio / overlap ratio ε α ε β 1,6678 0,0000 8.2 Total contact ratio εγ 1,6678 8.3 Resonance speed ne1 19987,30 [ /min] 8.4 Resonance ratio N 0,05 8.5 Approximate weight of the gearing m 5,2241 8.6 Efficiency of the gearing µ 98,34% 8.7 Selected / Recomended lubricant viscosity v50 0,46 [in^2/sec] 9.0 9.1 Coefficients for safety calculation Common for the gearing 9.2 Application factor Ka 9.3 Dynamic coeficient Kv' 0,82 9.4 Loading distribution coefficient Km 1,13 9.5 Temperature coefficient KT 9.6 Reliability coefficient KR 1,25 9.7 Number of cycles NK 6,00E+08 3,30E+08 9.8 For bending safety calculation 9.9 Geometry coefficient (bending) J 0,243 0,209 9.10 Size coefficient Ks 0,83 9.11 Tooth lengthwise curvature factor Kx 9.12 Life factor for bending stress KL 0,88 0,89 9.13 For pitting safety calculation 9.14 Geometry coefficient (pitting) I 0,078 9.15 Elasticity coefficient Cp 2799,68 9.16 Stress adjustment factor Cb 0,634 9.17 Crowning factor Cxc 9.18 Surface condition coefficient Cf 9.19 Design pinion torque TD 564,79 1803,24 9.20 Hardness ratio coefficient CH 9.21 Life factor for contact CL 0,91 0,92 10.0 10.1 Safety coefficients Bending stress St 14,06 16,09 [kpsi] 10.2 Permissible bending stress Sat 71,67 46,64 [kpsi] 10.3 Contact stress Sc 87,18 69,34 [kpsi] 10.4 Permissible contact stress Sac 122,50 122,06 [kpsi] 10.5 Safety coefficient for bending durability SF 5,10 2,90 10.6 Safety coefficient for surface durability SH 1,41 1,76 11.0 Force conditions (forces acting on the toothing)

11.1 Tangential force Ft 485,93 11.2 Normal force Fn 517,11 11.3 Axial force - (rotation acc. to the picture) Fa 85,23 154,97 11.4 Radial force (rotation acc. to the picture) Fr 154,97 85,23 11.5 Axial force (rotation opposite to the picture) Fa 85,23 154,97 11.6 Radial force (rotation opposite to the picture) Fr 154,97 85,23 11.7 Peripheral speed on the pitch diameter v vmax 678,84 < 1000 [ft/min] 12.0 12.1 Parameters of the chosen material Density p 491,3 491,3 [lb/ft^3] 12.2 Young's Modulus (Modulus of Elasticity) E 29,9 29,9 [psi*1e9] 12.3 Tensile Strength, Ultimate Rm 142,1 113,9 [psi*1e6] 12.4 Tensile Strength, Yield Rp0.2 123,3 78,2 [psi*1e6] 12.5 Poison's Ratio 0,3 0,3 12.6 Contact Fatigue Limit SHlim 168,2 165,3 [psi*1e6] 12.7 Bending Fatigue Limit SFlim 102,3 65,3 [psi*1e6] 12.8 Tooth Hardness - Side HB 529,1 529,1 [HB] 12.9 Tooth Hardness - Core HB 299,3 237,3 [HB] 12.10 Base Number of Load Cycles in Contact NHlim E+08 E+08 12.11 Wohler Curve Exponent for Contact qh 10 10 12.12 Base Number of Load Cycles in Bend NFlim 3,00E+06 3,00E+06 12.13 Wohler Curve Exponent for Bend qf 9 6 Additions section 13.0 Power, warming-up, gearbox surface 13.1 Ambient air temperature 90,00 [ F] 13.2 Maximum oil temperature 140,00 [ F] 13.3 Coefficient of heat dissipation 2,00 [BTU/ft2/h/ F] 13.4 Power losses 0,17 [HP] 13.5 Gearbox surface (min.) 4,23 [ft^2] 14.0 Preliminary design of shaft diameters (steel) Recommended shaft diameter for: 14.1 - Main power-transmitting shafts DA 2,00 2,42 14.2 - Small, short shafts DB 1,55 1,88 15.0 Auxiliary calculations 15.1 Transmission ratio calculation using the number of teeth NP,NG = i 14 43 = 3,0714 15.2 Transmission ratio calculation using the speed np,ng = i 2000,0 750,0 = 2,6667 15.3 Power calculation using the pinion speed and torque moment Torq,nP=P 1500,0 700,0 = 16,6667 16.0 Graphical output, CAD systems 16.1 2D drawing output to: AutoCAD LT xx 16.2 2D Drawing scale Automatic 16.3 Detail: Gear 16.4 Radius of the machining tool (for 3D model) R 1,7115 1,7115 Pinion Gear 16.5 Amount of the inner offset a 0,065 0,082 16.6 Amount of the outer offset b 0,157 0,214 16.7 Text description (Information for BOM) Row 1 (BOM attribute 1) Pinion Bevel gear - Pinion Row 2 (BOM attribute 2) Row 3 (BOM attribute 3) N1=22; P=7; beta=0 Material: AISI 6150 Gear

Row 1 (BOM attribute 1) Row 2 (BOM attribute 2) Row 3 (BOM attribute 3) Bevel gear - Gear N2=40; P=7; beta=0 Material: Gr.5135(ASTM A322) 16.8 Table of parameters Table of wheel parameters