Recent Developments of Experimental Winged Rocket: Autonomous Guidance and Control Demonstration Using Parafoil

Similar documents
Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

Deployment and Flight Test of Inflatable Membrane Aeroshell using Large Scientific Balloon

Overview. Mission Overview Payload and Subsystems Rocket and Subsystems Management

Deployment and Drop Test for Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

IST Sounding Rocket Momo User Guide

Development of a Clutch Control System for a Hybrid Electric Vehicle with One Motor and Two Clutches

Development of Internationally Competitive Solid Rocket Booster for H3 Launch Vehicle

Numerical Simulation Study on Propeller Slipstream Interference of High Altitude Long Endurance Unmanned Air Vehicle

Jordan High School Rocketry Team. A Roll Stabilized Video Platform and Inflatable Location Device

CRITICAL DESIGN REVIEW. University of South Florida Society of Aeronautics and Rocketry

Georgia Tech NASA Critical Design Review Teleconference Presented By: Georgia Tech Team ARES

Development of a Train Control System by Using the On-board Interlocking

Design Rules and Issues with Respect to Rocket Based Combined Cycles

ENGINE STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE

System design thrust vector control via liquid injection within the nozzle and the numerical simulation of the corresponding flow

Available online at ScienceDirect. Procedia CIRP 33 (2015 )

Innovating the future of disaster relief

Driver roll speed influence in Ring Rolling process

Development of Compact & High Efficiency Polymer Electrolyte Fuel Cell System for Enclosed Spaces

High-voltage Direct Inverter Applied to Induced Draft Fan Motor at Takehara Thermal Power Station No. 3 of Electric Power Development Co., Ltd.

CFD on Cavitation around Marine Propellers with Energy-Saving Devices

Available online at ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle

H-IIA Launch Vehicle Upgrade Development

UC Berkeley Space Technologies and Rocketry Preliminary Design Review Presentation. Access Control: CalSTAR Public Access

Technological Innovation, Environmentally Sustainable Transport, Travel Demand, Scenario Analysis, CO 2

CRITICAL DESIGN PRESENTATION

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle

Critical Design Review

Improved PV Module Performance Under Partial Shading Conditions

Available online at ScienceDirect. Procedia Engineering 137 (2016 ) GITSS2015

Steering Actuator for Autonomous Driving and Platooning *1

Development of the LE-X Engine

University Student Launch Initiative

Maneuvering Experiment of Personal Mobility Vehicle with CVT-Type Steering Mechanism

FLIGHT READINESS REVIEW TEAM OPTICS

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

Method of Aircraft Fuel Tank System Ignition Source Fail- Safe Feature Analysis

Unlocking the Future of Hypersonic Flight and Space Access

SpaceLoft XL Sub-Orbital Launch Vehicle

Turbo-Rocket. A brand new class of hybrid rocket. Rene Nardi and Eduardo Mautone

Auburn University. Project Wall-Eagle FRR

Available online at ScienceDirect. Energy Procedia 36 (2013 )

Three-Dimensional Center of Gravity Detection for Trucks Hauling Marine Containers

Keywords: Supersonic Transport, Sonic Boom, Low Boom Demonstration

Aerospace Engineering Aerospace Vehicle System. Introduction of Propulsion Engineering

Abstract. Traditional airships have always been designed for robust operations with the ability to survive in

Steering performance of an inverted pendulum vehicle with pedals as a personal mobility vehicle

Post Launch Assessment Review

Statement of Work Requirements Verification Table - Addendum

SPARTAN. Date: All rights reserved 2011, Thales Alenia Space. Business Unit Space Infrastructures & Transportation

Driving Performance Improvement of Independently Operated Electric Vehicle

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team

Presentation Outline. # Title

Success of the H-IIB Launch Vehicle (Test Flight No. 1)

Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market-

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant

FLIGHT TEST RESULTS AT TRANSONIC REGION ON SUPERSONIC EXPERIMENTAL AIRPLANE (NEXST-1)

Pre-Launch Procedures

NASA SL - NU FRONTIERS. PDR presentation to the NASA Student Launch Review Panel

Autonomous Satellite Recovery Vehicle (ASRV) Final Report

INPUT SHAPING EXPERIMENT FOR DAMPING VIBRATION IN MANUAL OPERATION OF A LARGE ROBOTIC ARM

A Comprehensive Study on Speed Control of DC Motor with Field and Armature Control R.Soundara Rajan Dy. General Manager, Bharat Dynamics Limited

Cygnus Payload Accommodations: Supporting ISS Utilization

Track test monitoring system using a multipurpose experimental train

Train Group Control for Energy-Saving DC-Electric Railway Operation

Development of Japan s Next Flagship Launch Vehicle

Flight Readiness Review Addendum: Full-Scale Re-Flight. Roll Induction and Counter Roll NASA University Student Launch.

Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket

Fig.1 Sky-hook damper

NASA - USLI Presentation 1/23/2013. University of Minnesota: USLI CDR 1

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

PROJECT AQUILA 211 ENGINEERING DRIVE AUBURN, AL POST LAUNCH ASSESSMENT REVIEW

Effect of concave plug shape of a control valve on the fluid flow characteristics using computational fluid dynamics

Sensing of Diesel Vehicle Exhaust Gases under Vibration Condition

Passive Vibration Reduction with Silicone Springs and Dynamic Absorber

University Student Launch Initiative

Remarkable CO 2 Reduction of the Fixed Point Fishing Plug-in Hybrid Boat

GIT LIT NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER 13TH, 2017

Analysis and Design of the Super Capacitor Monitoring System of Hybrid Electric Vehicles

Validation and Control Strategy to Reduce Fuel Consumption for RE-EV

Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

Presentation Outline. # Title # Title

Formation Flying Experiments on the Orion-Emerald Mission. Introduction

for Unmanned Aircraft

CHAPTER 2 GENERAL DESCRIPTION TO LM-2E

ENERGY RECOVERY SYSTEM FOR EXCAVATORS WITH MOVABLE COUNTERWEIGHT

INCREASING electrical network interconnection is

DEVELOPMENT OF A DRIVING CYCLE FOR BRASOV CITY

SSC Swedish Space Corporation

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Available online at ScienceDirect. Physics Procedia 67 (2015 )

Florida A & M University. Flight Readiness Review. 11/19/2010 Preliminary Design Review

Reliability determination of ignition system of rocket platform using reliability block diagram and FMEA analysis

External Aerodynamics: Lift of airship created only by buoyancy which doesn t need lift generating surface like an airfoil or a wing

TAIL-SITTER VTOL UAV - RESEARCH PROJECT OVERVIEW -

A starting method of ship electric propulsion permanent magnet synchronous motor

Development of Main Propulsion System for Reusable Sounding Rocket: Design Considerations and Technology Demonstration

Transcription:

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 Recent Developments of Experimental Winged Rocket: Autonomous Guidance and Control Demonstration Using Parafoil G.Guna Surendra a, *, K.Yonemoto a, T.Matsumoto a, Y.Kutsuna a, K. Itakura a, H. Yamasaki a, Y.Ura a, M.Ichigie a, H.Tanaka b, S.Ueno b, T. Someya b a Kyushu Institute of Technology, Fukuoka 804-8550, Japan b IHI Aerospace Co., Ltd. Gunma 370-2398, Japan Abstract Since 2005, Space system laboratory of Kyushu Institute of Technology has been studying experimental unmanned rockets called WIRES (WInged REusable Sounding rocket) [1-3]. WIRES are test beds and demonstration platforms for future reusable space transportation system to reduce space transportation cost. In this paper, design, development, ground combustion test and flight test of the winged rocket named WIRES#012IA are presented. WIRES#012IA aims to demonstrate autonomous guidance and control using parafoil. 2014 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of Chinese Society of Aeronautics and Astronautics (CSAA). Keywords: Winged Rocket; Parafoil 1. Introduction Since 2009, authors have been designing and developing two experimental rockets WIRES#012 and WIRES#014. WIRES#012 is a conventional rocket that has a total length of 1.7 m and initial weight of 34.3 kg. The objective of WIRES#012 is to validate CFRP (Carbon Fiber Reinforced Plastic) body structure and to demonstrate parachute recovery studied by authors. The engine of WIRES#012 is a commercial hybrid rocket motor HyperTEK M1000. * Corresponding author. Tel.: +81-093-884-3148; fax: +81-093-884-3148. E-mail address: o3441155g@mail.kyutech.jp 1877-7058 2014 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of Chinese Society of Aeronautics and Astronautics (CSAA).

2 G.Guna Surendra/ Procedia Engineering 00 (2014) 000 000 The flight test was conducted in 2010, and the rocket reached the altitude of 764 m and was recovered on the ground with a little damage (Fig. 1) [4]. WIRES #014 is a winged rocket that has total length of 1.7 m and initial weight of 49.3 kg. The objective of WIRES#014 is to demonstrate guidance, navigation and control system and to conduct fully autonomous gliding flight [5]. The propulsion system of WIRES#014 employs a hybrid rocket motor CAMUI (CAscaded MUltistage Impinging-jet) developed by Hokkaido university [6]. The flight test was conducted in 2013 and the rocket reached the altitude of 596 m, but the gliding flight was not successful due to the failure of attitude control (Fig. 2). Ground operator commanded emergency recovery sequence and deceleration chute was deployed. However, the remaining altitude was not enough to open main parachute, and the rocket made a hard landing. Fig. 1. Flight Experiment of WIRES#012. Fig. 2. Flight Experiment of WIRES#014. 2. System of WIRES#012IA 2.1. Overview After the successful demonstration of parachute recovery by WIRES#012, the authors designed WIRES#012IA to demonstrate the guided parafoil recovery. WIRES#012IA is a conventional shape rocket that performs autonomous guided parafoil flight to recover at a target point (Figs. 3 and 4). The fuselage of WIRES#012IA is almost the same as WIRES#012. WIRES#012IA has a total length of 1.7 m and has total weight of 40 kg (Table 1). The rocket is expected to reach the altitude of 1000 m. The parafoil has wing area of 4 m. Fig. 3. WIRES#012IA Fig. 4. Parafoil of WIRES#012IA Table 1. Specifications of WIRES#012IA Initial weight 40.0 [Kg] Total length 1.7 [m] Body diameter 0.33 [m] Wing span of parafoil 4 [m] Wing area of parafoil 6.96 [m 2 ] Number of cells in parafoil 9 cells [-] Aspect ratio of parafoil 2.29 [-]

G.Guna Surendra/ Procedia Engineering 00 (2014) 000 000 3 2.2. Avionics The Fig. 5 shows the avionics of WIRES#012IA with the telemetry. The avionics system has five microcomputers. The GPS (Global Positioning System) microcomputer senses the position of the rocket and also updates the position to the ground telemetry system. The ADS/IMU (Air Data Sensor and Inertial Measurement Unit) microcomputer measures the airspeed, attitude and angular velocity using pressure sensors and an inertial sensor. The control microcomputer operates all the actuators onboard. The emergency microcomputer will be activated by the signal from ground, and overwrites actuators command. The data microcomputer logs all the flight data. The system uses RS485 data bus for data transmission. Fig. 5. Block diagram of Avionics and Telemetry 2.3. Recovery system WIRES#012IA will reach the altitude of 1000 m and during the return flight the deceleration chute is released. The deceleration chute reduces the descent rate of the rocket, to deploy the parafoil. If the descent rate is not reduced, the opening load on the parafoil may damage the rocket structure. Therefore, using the two stage deployment, the load on the parafoil can be reduced. After the deceleration chute deployment, the 3 ring releases, main door is opened and parafoil is ejected. Afterwards, the hanging separation actuator is used, in order to make the rocket into horizontal position following the parafoil ejection. After the hanging separation, the half brakes are released by operating the control line of the parafoil. The three airbags attached to the bottom of the fuselage are also deployed to absorb landing shock. The complete sequences of operations are performed by the on-board control microcomputer within a specific time. The recovery sequences of operations are shown in the Fig. 6 Fig. 6. Recovery Sequence Operations

4 G.Guna Surendra/ Procedia Engineering 00 (2014) 000 000 If there are any abnormalities during the flight such as non-deployment of parafoil at the given altitude, nonreception of telemetry from the rocket or flight outside the safe zone, then the emergency system (EMC) is activated by sending emergency signals from the control center. The emergency system can be activated in two sequences, one is from the actuation of deceleration chute deployment to the guidance control and second is if the control line actuator fails, the secondary actuator (servo motor) actuates and pulls the left emergency control line (Fig. 7) which leads to the swirling of the rocket and makes a safe landing. Fig. 7. Control Line and Emergency Control Line for The Parafoil 2.4. Guidance control law WIRES#012IA performs autonomous guidance and control towards a predetermined target point by controlling the parafoil line and steering the rocket to the required position, based on the position data obtained by GPS. The PD (Proportional and Derivative) controller is used for controlling the parafoil line. The equation of PD controller is shown below in equation (1) and (2). 1 ( k) l ( k) ( k 1) (1) T l K ( k) K ( k) (2) where l : pulling length of the control line (positive for right line and negative for left line), is the sampling time, : is the error angle between target and velocity vectors; K : and K : are the proportional and derivative gains, respectively. First, The GPS data for two instances will be received and the error angle between the target vector and velocity vector is calculated. By substituting this error angle in equation (1) we can determine the angular velocity error. This angular velocity error is substituted in equation (2) to determine the length of the control line to be drawn (Fig. 8). The onboard control circuit performs this calculation and controls the parafoil control line. In this way, the rocket is steered to the predetermined target point. T :

G.Guna Surendra/ Procedia Engineering 00 (2014) 000 000 5 Fig. 8. Description of Guidance and Control law 2.5. Propulsion system The propulsion system of WIRES#012IA employs commercial hybrid engine HyperTEK M1000 developed by Cesaroni technology Incorporated (CTI). The HyperTEK engine uses Nitrous oxide (N 2 O) as oxidizer and Acrylonitrile Butadiene Styrene (ABS) resin as combustion grain. The engine weight is 8.85 kg (with fuel) and produces maximum thrust of 1758 N with a specific impulse of 260 seconds. 3. Combustion test Two ground combustion tests have been performed on January 9 th, 2014 (Fig. 9) and March 5 th, 2014 to evaluate onboard thrust profile. The first combustion test was successful. The thrust profile obtained was similar to that of the reference value (catalogue value) but the combustion time was short (Fig. 10). After the combustion, the emergency sequence was also verified. Small design fault with the circuit of the actuator was detected. After the fault diagnosis of the actuator circuit, second combustion test was conducted and the engine achieved the maximum thrust and combustion time was similar to that of the reference value. Also the recovery sequence was successfully verified. Fig. 9. Combustion Test (January 9th, 2014). Fig. 10. Combustion Test Results.

6 G.Guna Surendra/ Procedia Engineering 00 (2014) 000 000 4. Flight test The flight test was conducted on March 11th, 2014. Unfortunately, the flight test was not successful as rocket engine exploded within initial seconds (Fig. 11) of take-off, however the rocket continued the flight and reached the altitude of around 180 m and made a hard landing. The rocket could neither reach the planned altitude because of low thrust nor demonstrate parafoil flight due to low apogee and the damage of equipment. Fig. 11. Initial Seconds of The Launch Although the rocket made hard landing, the altitude, attitude, acceleration and angular velocity data were recovered. The data has been compared with the simulation result (considering the 2 nd combustion test thrust profile). From the Fig. 12 and Fig. 13, the rocket did not reach the expected altitude and it decelerated sooner than expected due to explosion in the rocket, resulting in unsuccessful demonstration of the guided flight. Fig. 12. Altitude Comparison of flight test and simulation Fig. 13. Acceleration Comparison of flight test and simulation When the rocket was discovered, the nozzle of the combustor was missing. It was neither found in the vicinity of landing point nor at the launch point. Therefore, authors analysed the videos captured from control centre and it was observed that, 4.6 seconds after take-off the nozzle fell from the rocket. After flight test, authors recovered it (Fig. 14). It was confirmed that the nozzle broke immediately after the ignition, causing a serious damage to the combustor resulting in low-altitude flight due to lack of thrust. After conducting an advanced investigation, various

G.Guna Surendra/ Procedia Engineering 00 (2014) 000 000 7 HyperTEK M1000 grains have been analysed and it was found that grains had some moulding defects. There were many voids found inside the grain, especially near the nozzle after comparing the used and unused grains (Fig. 15). Fig. 14. Recovered Nozzle Fig. 15. Presence of Voids in The Grain 5. Conclusion and future works It was concluded that these grain defects was the cause of explosion resulting in low-altitude flight. Thus, demonstration of autonomous guidance and control of parafoil could not be verified. Currently Kyushu Institute of Technology in cooperation with JAXA, University of Texas, El Paso and other aerospace companies are developing the next version of winged rocket which will be about 4 m in total length and weighs about 500 kg. It is expected to reach the altitude of 6 km, utilises reaction control system for attitude control during the re-entry and advanced guidance, navigation and control system. It will be launched by the end of 2015. References [1] Yonemoto, K., Funatsu, K., Hiroki, Y., Kaji, S. and Shida, I. Status of Pre-flight Tests towards the Development of Winged Test Rocket, Journal of the Japan Society for Aeronautical and Space Sciences, 2008, Vol. 56, No. 648, pp.8-13. (in Japanese) [2] Wakita, M., Yonemoto, K., Akiyama, T., Aso, S., Kohsetsu, Y. and Nagata, H. Development Project of Winged Experimental Rocket Led by University Consortium, Transactions of the Japan Society for Aeronautical and Space Sciences (ISTS Special Issue: Selected papers from the 26th International Symposium on Space Technology and Science), Vol. 7, 2009. [3] Yonemoto, K., Shidooka, T. and Okuda, K., Development and Flight Test of Winged Rocket, the 27th International Symposium on Space Technology and Science, ISTS 2009-g-16, Tsukuba, Japan, July 5-12, 2009. [4] Matsumoto, T., Yonemoto, K., Miyamoto, S., Itakura, K. and Sasaki, G., Current Status of Experimental Winged Rocket Development: Recovery System Verification and Gliding Flight Simulation, 2012 Asia-Pacific International Symposium on Aerospace Technology, Jeju, Korea, November 13-15, 2012. [5] Shimozawa, T., Sagara, S. and Yonemoto, K., Digital Adaptive Control of Longitudinal Motion of a Winged Experimental Rocket, Proceedings of the 27th Symposium of the Society of Instrument and Control Engineers Kyushu Branch, pp.59-62, 2008 (in Japanese). [6] Nagata H, Ito M, Maeda T, Watanabe M, Uematsu T, Totani T and Kubo I., Development of CAMUI Hybrid Rocket to Create a Market for Small Rocket Experiments, Proceedings of the 56th International Astronautical Federation Congress, vol. 59, no. 1-5, pp. 253-258, 2006.