Lecture 6. Case Study: Design of a Brake Assembly

Similar documents
Seated valve (PN 16 & PN 25) VFM 2 Two way valve, flange

* * MEASURE TORQUE HUB

A New Mechanical Oil Sensor Technology

Evolution Fan Units. Technical Data. Physical Data Quick Selection Performance Curves Data for Typical Duty Points Construction Code Description

Onecharge Electric Vehicle Charging Unit

Prediction of Bias-Ply Tire Rolling Resistance Based on Section Width, Inflation Pressure and Vertical Load

tough One smart, lift truck. Counterbalanced lift trucks face some of the most demanding lowest cost of ownership.

CD AUTOMATION SOFT STARTERS FAMILY

Marquette University MATH 1700 Class 9 Copyright 2017 by D.B. Rowe

Traveling Comfortably and Economically. DIWA.3E

Rotary Screw Compressors R-Series 5-11 kw (5-15 hp) Fixed and Variable Speed Drives

Air Quality Solutions

NGI-1000 GENERATION FOUR Advanced Digital Ignition System for Small and Medium-Sized Industrial Engines

Prediction of Bias-Ply Tire Contact Area Based on Contact Area Index, Inflation Pressure and Vertical Load

UNIT 4C Itera,on: Correctness and Efficiency. General Idea: Any one Itera,on. i L SORTED SORTED

An Improved Energy Management Strategy for Hybrid Energy Storage System in Light Rail Vehicles

PowerCore. Filtration Technology. Why was it developed? What is it about? How does it work? PowerCore

Elasto-plastic analysis of the rotor and wedges supercritical turbo generator

Frequently asked questions about battery chargers

Prediction of Radial-Ply Tire Deflection Based on Section Width, Overall Unloaded Diameter, Inflation Pressure and Vertical Load

AVF-5000 Motorized Valve

An empirical correlation for oil FVF prediction

EPDBE. High-Precision Ball End Mills for Deep Machining FEATURES. Improved compound neck design for reduced chatter and increased strength

GLOBAL REGISTRY. Addendum. Global technical regulation No. 2. Corrigendum 1

Magnetic Level Gauges

EU focuses on green fans

Reinforcement Learning of Adaptive Longitudinal Vehicle Control for Dynamic Collaborative Driving

Single Shaft Shredder G X V P. Harness The Power of Nature. l l l

Flux Weakening Control for Stator-Doubly-Fed Doubly Salient Motor

4040SE Series. Features E15. Special Templates. Certifications. Cover

RDXSeries Vertical Machining Centers

SERIES 35-60J. 24 VAC Microprocessor Based Direct Spark Ignition Control Johnson Controls G76x Series Replacement FEATURES

for Household Appliances

Heavy vehicle path stability control for collision avoidance applications

AOHM. Fluid Cooling Mobile AOHM & AOVHM Series. How to Order. Features. Materials. Ratings

Study of Cyclic Variability in Diesel-Hydrogen Dual Fuel Engine Combustion

Soft Sensors for Diesel Fuel Property Estimation

Air Quality Solutions

TriPac Envidia. All-electric APU with the longest run time in the industry for superior driver comfort.

Type-2 Fuzzy Braking-Torque Electronic Stability Control for Four-Wheel Independent Drive Electric Vehicles

Safety Shock Absorbers SDP63 to SDP160

MAN HydroDrive. More traction. More flexibility. More safety. MAN kann.

HYDRAULIC MOTORS EPMSY

2006 YZF-R1. A masterpiece refined

Design of Model-based Controller with Disturbance Estimation in Steerby-wire

Full Service and Repair for Industrial Motors, Drives, and Pumps.

A Generalization of the Rate-Distortion Function for Wyner-Ziv Coding of Noisy Sources in the Quadratic-Gaussian Case

Two Day Install HySecurity Reliability

R20. Technical Data. Electric Forklift Trucks Models R 20-14/R 20-15/R 20-16/R 20-18/R

TEKIN DIS-350 BATTERY DISCHARGER TABLE OF CONTENTS OWNER S MANUAL ELECTRONICS, INC.

charge Positive Electrode: Ni(OH) 2 + OH - NiOOH + H 2 O + e - discharge charge Negative Electrode: M + H 2 O + e - MH + OH - discharge

Safety Shock Absorbers SCS33 to SCS64

Smaller, Lightweight Alternative Two-Stage Air Cleaner Designed for horizontal installation

3333 Multi-Use Vertical Pump

R70. Technical Data. LPG Forklift Trucks Models R T/R T/R T.

The Analysis and Research Based on DEA Model and Super Efficiency DEA Model for Assessment of Classified Protection of Information Systems Security

ADAPTIVE CONTROL STRATEGIES IN WIND-DIESEL HYBRID SYSTEMS. P. S. Panickar*, S. Rahman**, S. M. Islam**, T. L. Pryor*

Oil cooled motor starters MOTORSTARTERS. High torque low current

Torque Control Strategy for Parallel Hybrid Electric Vehicles using Fuzzy Logic

TOOLS NEWS Update B179G. Diamond Coated End Mills for Graphite. DFendmillseries. Item Expansion. High performance graphite milling.

Cable Cleats. Trefoil Cable Cleat with LSF Pad. 55mm N-2

More pressure, less abrasive, faster to the finish!

TURBOWENT - rotary chimney cowl Ø150 Ø350

Air Preparation Units Filters, Regulators, and Lubricators Jamieson Equipmen toll free 800

Flex Series Chillers SLN

2030 Series. Mounting details. Concealed Mounting. Butt Hinges

SPOOL VALVE HYDRAULIC MOTORS

HYDRAULIC MOTORS MH APPLICATION GENERAL. » Agriculture machines» Food industries» Mining machinery etc. » Conveyors

Flex Series Chillers. Air/water chillers with axial fans; plate heat exchangers. 09/03/2017 Page 1 of 18

Single Shaft Shredders

SPOOL VALVE HYDRAULIC MOTORS

Orbit Motors (Spool Valve Distributor)

SPOOL VALVE HYDRAULIC MOTORS

SPOOL VALVE HYDRAULIC MOTORS

Large Diameter Tapcon

INDUSTRIAL VENTILATION DEVICES BAG FILTERS. Jet Pulse Bag Filter Vibratin Motor Bag Filter

Kaco stand-alone inverters The new sine-wave stand-alone inverters

Equivalent Consumption Minimization Strategy for Hybrid All- Electric Tugboats to Optimize Fuel Savings

2016 PIONEER SIDE-BY-SIDES TACKLE BIG JOBS AND BIG ADVENTURES.

Combining Ride Comfort with Economy. DIWA.5

Content. 2 Unlimited service - Bosch electric motors. 4 Parameter explanation. 10 D.C. motors with transmission. 40 WDD - Direct drive

Mill Tap Center. jyoti.co.in

MAN Lion s Intercity.

Tuning of utility function parameters to achieve smart charging of PHEVs. Semester Thesis. Author: Felix Wietor

HI-PRODUCTIVITY WELDING SYSTEMS. Increase Arc Time 15-30%

1 Copyright 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station

Thermal Transfer Products

Combustion Dynamics Instrumentation

mazda.co.za m{zd{ cx-3 The impossible made possible.

Please refer to the usage guidelines at or alternatively contact

FUEL-BURNING EQUIPMENT - OXIDES OF NITROGEN (Effective 7/1/71: Rev. Effective 9/20/94)

trailertrak Telematics Solution Manage your underutilized or misplaced trailers and keep your profits moving forward.

AXIAL-PISTON HYDRAULIC PUMPS

l * i Install new gasket.

Series 45 Frame K and L Open Circuit Axial Piston Pumps. Service Manual. Displacement Piston. Swashplate. Piston. Tapered Roller Bearing

1.1.1 Refer Part XIV, Chapter 16 for tailpipe emission of Hybrid Electric Vehicles.

Canolux LED. Petrol Station Forecourt Luminaires

Series HEV: control. Intro to parallel and series/parallel HEV architectures. CU Boulder ECEN5017, USU ECE

WARNING AND SAFETY INFORMATION

DLRO100H, DLRO100HB Megger Digital Low Resistance Ohmmeters

Transcription:

Lecture 6 Case Study: Desig of a Brake Assembly

Problem Descriptio 50 45 [3] Pads [2] Caliper [1] Brake fluid pressure Brake torque (y) 40 35 30 25 20 15 10 5 0 0.000 0.008 0.016 0.024 0.032 0.040 0.048 0.056 0.064 0.072 Brake fluid pressure (M) [4] Rotor Brake pressure (M) Brake Assembly Brakig torque (y) Heat, Soud Lecture 6. Case Study: Desig of a Brake Assembly 2

Quality Characteristics & Ideal Fuctio Brake pressure (M) Brake Assembly Brakig torque (y) Heat, Soud Quality characteristics: Brakig torque y (kgf-mm). Ideal fuctio: Zero-poit proportioal y = M I additio, the efficiecy or sesitivity should be as large as possible. Whe the ideal values chage accordig to a sigal factor M, it is called a dyamic characteristics. Sigal factors are ot cotrolled by the egieers; they are cotrolled by the users of the system; they are iput to the system. Lecture 6. Case Study: Desig of a Brake Assembly 3

Sigal Factor & Cotrol Factors M = Brake pressure (kgf/mm 2 ) M1 = 0.008, M2 = 0.016, M3 = 0.032, M4 = 0.064 Factor Descriptio Level 1 Level 2 Level 3 A Pad material Type-1 Type-2 B Pad shape Shape-1 Shape-2 Shape-3 C Pad curve profile Type-1 Type-2 Type-3 D Pad additive Low Medium High E Rotor material Gray Cast Steel F Pad taper Low Medium High G Taperig thickess Low Medium High H Rotor structure Type-1 Type-2 Type-3 Note: Shaded values are origial desig. Lecture 6. Case Study: Desig of a Brake Assembly 4

Noise Factors The most sigificat oise factors are pad temperature, pad wetess, ad pad wear. Compoud oise factor N1 = 360 F, wet, 80% wear N2 = 60 F, dry,10% wear Brake torque (y) 50 45 40 35 30 25 20 15 10 5 0 0.000 0.008 0.016 0.024 0.032 0.040 0.048 0.056 0.064 0.072 Brake fluid pressure (M) Aother oise: measurig time Q1 = Max brake torque Q2 = Mi brake torque Lecture 6. Case Study: Desig of a Brake Assembly 5

Experimetal Array M = 0.008 M = 0.016 M = 0.032 M = 0.064 N1 N2 N1 N2 N1 N2 N1 N2 Exp. A B C D E F G H Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 1 Type-1 Shape-1 Type-1 Low Gray Low Low Type-1 2 Type-1 Shape-1 Type-2 Medium Cast Medium Medium Type-2 3 Type-1 Shape-1 Type-3 High Steel High High Type-3 4 Type-1 Shape-2 Type-1 Low Cast Medium High Type-3 5 Type-1 Shape-2 Type-2 Medium Steel High Low Type-1 6 Type-1 Shape-2 Type-3 High Gray Low Medium Type-2 7 Type-1 Shape-3 Type-1 Medium Gray High Medium Type-3 8 Type-1 Shape-3 Type-2 High Cast Low High Type-1 9 Type-1 Shape-3 Type-3 Low Steel Medium Low Type-2 10 Type-2 Shape-1 Type-1 High Steel Medium Medium Type-1 11 Type-2 Shape-1 Type-2 Low Gray High High Type-2 12 Type-2 Shape-1 Type-3 Medium Cast Low Low Type-3 13 Type-2 Shape-2 Type-1 Medium Steel Low High Type-2 14 Type-2 Shape-2 Type-2 High Gray Medium Low Type-3 15 Type-2 Shape-2 Type-3 Low Cast High Medium Type-1 16 Type-2 Shape-3 Type-1 High Cast High Low Type-2 17 Type-2 Shape-3 Type-2 Low Steel Low Medium Type-3 18 Type-2 Shape-3 Type-3 Medium Gray Medium High Type-1 Lecture 6. Case Study: Desig of a Brake Assembly 6

Experimetal Data & SN Ratios = M i y i i=1 2 M i i=1 S ZP = i=1 ( y i M i ) 2 1 SN = 10log S 2 ZP 2 M = 0.008 M = 0.016 M = 0.032 M = 0.064 N1 N2 N1 N2 N1 N2 N1 N2 Exp. Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 SZP SN 1 4.8 0.9 5.8 0.8 8.5 6.5 11.5 6.8 20.4 13.2 25.0 16.2 36.9 32.7 43.5 34.5 573 3.6 44.0 2 4.5 2.5 5.7 3.2 12.5 9.6 13.0 10.0 23.5 20.3 25.1 21.4 42.0 36.0 43.2 36.1 634 2.7 47.4 3 5.9 5.2 6.8 5.9 10.6 9.3 11.4 10.2 23.5 22.0 24.3 22.5 42.9 40.3 43.8 40.6 668 1.5 53.2 4 4.5 2.1 5.7 3.0 12.1 8.9 14.3 10.5 22.1 16.9 24.2 20.0 41.0 34.0 42.4 37.6 618 2.8 46.9 5 6.5 2.1 7.8 3.2 12.3 6.9 13.2 8.6 23.3 17.2 24.3 18.3 44.3 36.9 48.9 37.2 652 3.5 45.3 6 5.0 4.2 5.8 4.3 11.5 9.4 12.3 9.9 20.8 16.8 21.0 18.5 43.0 40.2 43.1 41.0 644 1.5 52.4 7 5.2 4.0 5.6 4.5 11.8 9.1 12.3 10.1 21.2 17.5 20.0 18.3 40.3 36.2 42.2 38.2 614 1.7 51.4 8 2.4 0.0 4.3 2.8 6.7 4.0 7.2 3.6 16.3 11.1 18.3 12.3 30.1 27.8 34.3 30.6 466 2.6 45.0 9 6.3 4.8 7.8 6.1 12.1 9.3 13.5 11.9 24.4 19.6 26.3 22.3 48.5 40.3 50.2 44.0 718 2.6 48.9 10 2.1 0.0 2.9 0.0 4.9 0.0 7.4 4.2 18.3 9.5 17.7 10.8 32.0 26.3 35.3 28.1 455 3.8 41.6 11 4.9 1.2 7.6 1.8 11.3 6.5 15.3 6.8 23.4 15.0 25.1 17.2 40.1 33.2 50.5 35.5 622 4.7 42.4 12 5.1 4.4 6.4 4.4 10.1 7.8 11.2 8.5 21.7 18.7 22.1 20.1 43.1 41.2 44.4 41.5 657 1.4 53.3 13 2.1 0.0 5.4 0.6 6.7 1.2 7.3 2.3 13.4 9.4 16.4 11.1 38.9 27.9 43.3 31.1 505 5.0 40.0 14 5.9 5.0 6.8 5.2 13.3 12.0 14.2 13.3 24.9 23.1 26.3 25.4 47.9 46.3 49.7 47.2 756 1.3 55.3 15 3.2 0.0 3.9 1.8 8.7 3.2 9.6 5.1 13.2 7.9 19.5 11.1 38.2 32.1 42.5 33.0 528 4.5 41.5 16 4.1 2.7 5.9 4.4 12.3 8.7 13.7 9.2 24.3 18.9 25.5 20.2 44.3 39.0 47.7 42.4 679 2.6 48.4 17 2.3 0.8 3.2 2.1 10.2 8.0 12.5 8.8 21.6 16.5 23.6 20.4 38.8 32.4 41.1 36.6 591 2.9 46.3 18 1.2 0.0 5.1 1.2 7.8 2.3 13.0 5.0 20.3 11.1 21.2 12.4 40.1 31.6 45.1 32.0 557 4.8 41.2 Average = 608 46.9 Lecture 6. Case Study: Desig of a Brake Assembly 7

SN Ratios Zero-Poit Proportioal Cases y y = M Cosider poits (M i,y i ),i = 1, 2,..., i the M- y space.what is the lie y = M, which passes through the origi ad "best-fit" (i the sese (M i,y i ) M y i M i of least squared errors) the poits? The sum of squared errors is SS = ( y i M i ) 2 i =1 The least SS must satisfy dss d = 0, = i =1 i =1 M i y i M i 2 We may defie a MSD for the ZP case: ( ) 2 y i M i i =1 MSD ZP = 1 Ad the SN ratios ca be defied: SN ZP = 10log MSD ZP Lecture 6. Case Study: Desig of a Brake Assembly 8

SN Ratios Zero-Poit Proportioal Cases SN ZP = 10log MSD ZP = 10log i =1 ( y i M i ) 2 1 Recall that SN NB2 = 10log S 2. If we defie a "stadard deviatio," The S ZP = i =1 ( y i M i ) 2 1 2 SN ZP = 10log S ZP The deviatio S ZP usually elarges as the slope icreases. I order the compariso be "fair", we divide the deviatio by the slope, SN ZP 2 = 10log S 2 ZP 2 Lecture 6. Case Study: Desig of a Brake Assembly 9

Respose Table/Graph SN Ratios A B C D E F G H Level 1 48.3 47.0 45.4 45.0 47.8 46.8 49.2 43.1 Level 2 45.6 46.9 47.0 46.4 47.1 46.9 46.8 46.6 Level 3 46.9 48.4 49.3 45.9 47.0 44.8 51.1 Rage 2.7 0.1 3.0 4.3 1.9 0.2 4.4 8.0 Rak 5 8 4 3 6 7 2 1 52 50 48 46 44 42 A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3 Lecture 6. Case Study: Desig of a Brake Assembly 10

Respose Table/Graph Sesitivity A B C D E F G H Level 1 621 602 574 608 628 573 673 538 Level 2 594 617 620 603 597 623 578 634 Level 3 604 629 611 598 627 573 651 Rage 26 15 55 8 31 54 100 112 Rak 6 7 3 8 5 4 2 1 680 660 640 620 600 580 560 540 520 A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3 Lecture 6. Case Study: Desig of a Brake Assembly 11

Desig Optimizatio 52 SN Ratios 680 Sesitivity 50 660 640 48 620 46 600 580 44 560 42 A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3 540 520 A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3 Affect Affect Type SN?? Cotrol factors Usage 1 Yes Yes/No A, C, D, G, H Maximize SN 2 No Yes E, F Maximize Sesitivity 3 No No B Miimize Cost A1 B? C3 D3 E? F? G1 H3 A1 B? C3 D3 E1 F3 G1 H3 A1 B1 C3 D3 E1 F3 G1 H3 Lecture 6. Case Study: Desig of a Brake Assembly 12

Cofirmatio Experimets M = 0.008 M = 0.016 M = 0.032 M = 0.064 N1 N2 N1 N2 N1 N2 N1 N2 Exp. A B C D E F G H Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 SZP SN Origial 1 2 2 2 2 2 2 2 4.8 1.2 5.7 4.4 11.1 8.6 13.0 11.8 23.1 18.1 25.1 21.4 42.0 36.0 43.2 37.6 635 2.7 47.6 New 1 1 3 3 1 3 1 3 5.3 4.6 5.8 5.4 12.2 10.1 13.2 11.9 24.6 23.1 25.0 24.3 49.3 47.1 50.1 48.2 758 1.0 57.4 Gai = 123 9.8 Brake torque (y) 50 N1Q1 40 N1Q2 30 N2Q1 N2Q2 20 Liear fit Origial desig 10 0 0.000 0.008 0.016 0.024 0.032 0.040 0.048 0.056 0.064 0.072 Brake fluid pressure (M) Brake torque (y) 50 40 30 20 10 0 N1Q1 N1Q2 N2Q1 N2Q2 Liear fit New desig 0.000 0.008 0.016 0.024 0.032 0.040 0.048 0.056 0.064 0.072 Brake fluid pressure (M) Lecture 6. Case Study: Desig of a Brake Assembly 13

Predictio Usig Empirical Model Origial Desig New Desig Respose Respose Factor Level SN Level SN A 1 48.3 1 48.3 B 2 1 C 2 47.0 620 3 48.4 629 D 2 46.4 3 49.3 E 2 597 1 628 F 2 623 3 627 G 2 46.8 578 1 49.2 673 H 2 46.6 634 3 51.1 651 Average 46.9 608 46.9 608 Predicted 47.3 621 58.6 776 Are 47.3 ad 47.6 close eough? Are 58.6 ad 57.4 close eough? What are the cofidece levels? Lecture 6. Case Study: Desig of a Brake Assembly 14