TUTORIAL Lithium Ion Battery Model

Similar documents
PSIM Tutorial. How to Use Lithium-Ion Battery Model

Enphase AC Battery Parameters for NREL System Advisor Model (SAM)

Lithium Ion Medium Power Battery Design

Modeling of Lead-Acid Battery Bank in the Energy Storage Systems

Custom Power Solar Radian Battery Energy Storage System

EV Display User Guide

GeePower Energy Technology Co., Limited

Effect of Hybridization on the Performance of Fuel Cell Energy/Power Systems (FCEPS) for Unmanned Aerial Vehicle (UAV)

Sonnenschein Lithium HC (High Current)

EV Power - A-Series 8 Cell, 16 Cell and 24Cell Chargers Installation & Usage Instructions.

Power Meter with Balancing INSTRUCTION MANUAL

INTRODUCTION. Specifications. Operating voltage range:

SimpliPhi Power PHI Battery

Overview of Simplified Mathematical Models of Batteries

APPLICATION NOTE ELECTRONIC LOADS

CALL FOR A QUOTE (877)

Designing Applications with Lithium-Ion Batteries

Specification Approval Sheet

Modeling Reversible Self-Discharge in Series- Connected Li-ion Battery Cells

Platinum Folding Bike

BOOST POWER 1212 Product Description

A Brief Look at Batteries

Lithium Coin Handbook and Application Manual

Battery Capacity Versus Discharge Rate

New energy for the future

How to choose correct battery(s).

SOURCES OF EMF AND KIRCHHOFF S LAWS

Battery Evaluation for Plug-In Hybrid Electric Vehicles

INSTALLATION INFORMATION

How to use the Multirotor Motor Performance Data Charts

C&D VRLA Batteries Extended Run Time for Small UPS Machines

Ideal substitute for lead-acid batteries. Safe and absolutely environmentally friendly technology offers alternative to common lithium-ion batteries.

Introduction: Supplied to 360 Test Labs... Battery packs as follows:

CYCLE LIFE 12V 5AH LITHIUM ION BATTERY RB5 LITHIUM ION BATTERY CAPACITY AT DIFFERENT CYCLES AT 100% DOD 99.

Nickel Metal Hydride Battery Pack. User Handbook

Lithium Polymer Battery Packs for RC Use FAQ s By Chris Nicastro 3/9/2012

Batteries Specifications. Estimating when they will be fully discharged

Model Comparison with Experiments. 341 N. Science Park Road State College, PA U.S.A.

DC/DC CONVERTER Designing Battery Charger

Technical Note. Management of Sealed Lead Acid Batteries in Reliable Small DC Standby Power Supply Systems

EV Display V4 User Guide

Description Sets the priority for the AC source (AC1 or AC2) for qualification and transfer.

Lithium-ion Rechargeable Battery Pack. Specification. Product Name: LiFePO4 Battery Pack. Product Specification: 48V 210Ah Dch 6 Kw (10080Wh)

RV-1805-C3 Application Note

HYPERION EOS 5i. User s Manual. Power, with Ease

Thank you for purchasing a Dillenger F1 Folding Bike, please read this manual before using your new electric bike.

A NOVEL IN-FLIGHT SPACE BATTERY HEALTH ASSESSMENT SYSTEM Brandon Buergler (1), François Bausier (1)

System Advisor Model (SAM) SimpliPhi Power Battery Modeling Instructions

Formula Hybrid ESF -- Part 1

Analytical thermal model for characterizing a Li-ion battery cell

Dismantling the Myths of the Ionic Charge Profiles

Towards advanced BMS algorithms development for (P)HEV and EV by use of a physics-based model of Li-ion battery systems

Types batteries. AGM Gel OpZs OpZv Lead Carbon LiFePO4 NCA Saltwater Zinc Bromine Etc,etc, etc, etc, etc, etc,

An Impedance-Based BMS to Identify Bad Cells Rengaswamy Srini Srinivasan Bliss G. Carkhuff

Supercapacitor Leakage Current and Self Discharge Characteristics

Lithium Power Pack LITHIUM-ION BATTERY SYSTEM. With epro Plus Battery Monitor

An optimal lithium ion battery for plug-in hybrid electric recreational boat in discharging condition

ScaffMover Datasheet. Wire Connection Diagram. 1. Electronics Parts Connection Diagram. ScaffMover. Motor Control Board. 10 Ah/ 14.

How To Set Up SimpliPhi Batteries Using OutBack Chargers

Super Brain 989 The Pinnacle of Performance with Power to Spare User s Manual Model Rectifier Corporation

Super Brain 969 Pro AC/DC Delta Peak Charger with Dual Output and Discharge Function Instruction Manual Model Rectifier Corporation

SimpliPhi Power PHI Battery

12-Batteries and Inverters. ECEGR 452 Renewable Energy Systems

Lithium Ion Battery Simplified SPICE Behavioral Model. All Rights Reserved Copyright (C) Bee Technologies Corporation

Presented at the 2012 Aerospace Space Power Workshop Manhattan Beach, CA April 16-20, 2012

Lithium Ion. Charge voltage: 29,20V Charge cut-off: 30,80V CC / CV (29,20V) (constant current / constant voltage)

Overlander RC-8S PRO User s Manual

SIZING AND TECHNO-ECONOMIC ANALYSIS OF A GRID CONNECTED PHOTOVOLTAIC SYSTEM WITH HYBRID STORAGE

NaS (sodium sulfura) battery modelling

Programming of different charge methods with the BaSyTec Battery Test System

Rover Series. Rover 20A 40A Maximum Power Point Tracking Solar Charge Controller

Open-circuit voltages (OCV) of various type cells:

Battery storage: an overview

Computerized Charger, Discharger, Cycler INSTRUCTIONS

Adafruit MicroLipo and MiniLipo Battery Chargers

SONNENSCHEIN LITHIUM INDUSTRIAL BATTERIES / MOTIVE POWER

RECHARGEABLE LITHIUM-ION BATTERIES FOR SYSTEMS

Technical Information (Read before use!)

INSTRUCTIONS SPECIAL FEATURES

Complex Modeling of Li-Ion Cells in Series and Batteries in Parallel within Satellite EPS Time Dependent Simulations. Patrick Bailey, ENNEAD, LLC

PSIM Tutorial. HEV Design Suite. April

Performance Simulation of Energy Storage Technologies for Renewable Energy Integration

Plug Into the Current Future

Energy Storage. 9. Power Converter Demo. Assoc. prof. Hrvoje Pandžić. Vedran Bobanac, PhD

Ming Cheng, Bo Chen, Michigan Technological University

All About Batteries. Created by lady ada. Last updated on :22:29 PM UTC

Care and Feeding of Rechargeable Batteries. Chris Capener March 1, 2012

Advanced Technology Lithium Polymer Batteries for High Power Applications

Silvertel. Ag Features. Multi-Stage Charging. Battery Reversal Protection. Reduced Power Consumption. Wide DC or AC Input Voltage Range

Energy Storage (Battery) Systems

TL 700. Instruction Manual (Read before use!)

STEALTH INTERNATIONAL INC. DESIGN REPORT #1001 IBC ENERGY DISSIPATING VALVE FLOW TESTING OF 12 VALVE

EE152 Green Electronics

Improvements to the Hybrid2 Battery Model

Energy Storage Technology Roadmap Lithium Ion Technologies

Charles Sullivan, Associate Professor, Thayer School of Engineering at Dartmouth

Development of Man Portable Auxiliary Power Unit using Advanced Large Format Lithium-Ion Cells

EWT Li-Ion Battery Datasheet

A Novel Proton Exchange Membrane Fuel Cell-Battery Partial Hybrid System Design for Unmanned Aerial Vehicle Application. Dr.

PEAK POWER PACK. (+34) Skype

Transcription:

TUTORIAL Lithium Ion Battery Model October 2016 1

This tutorial describes how to use the lithium ion battery model. Some battery model parameters can be obtained from manufacturer datasheets, while others need to be obtained by trial and error. This tutorial describes how to obtain these parameters. The parameters needed by the model are: N s N p K s K p E rated E cut Q rated R batt I dischg K c E full E top E nom Q max Q top Q nom SOC No. of cells in series No. of cells in parallel oltage derating factor Capacity derating factor Rated voltage, in Discharge cut off voltage, in Rated capacity, in Ah (ampere hour) Internal resistance, in Ohm Discharge current of the curve under which model parameters are obtained, in A Capacity factor Full (or maximum) battery voltage, in Exponential point voltage (voltage at the end of the exponential zone), in Nominal voltage, in Maximum capacity corresponding to the discharge cut off voltage E cut, in Ah Exponential point capacity (capacity at the end of the exponential zone), in Ah Nominal capacity, in Ah Initial state of charge Parameters E rated, E cut, and Q rated, can be directly read from manufacturer datasheet. Some other parameters can be obtained from the battery discharge curve. A typical discharge curve is shown in Figure 1. Exponential Region Nominal Region E full E top E nom E cut oltage Model Parameters: Discharge Cut off oltage: E cut Full oltage: E full Exponential Point oltage: E top Nominal oltage: E nom Maximum Capacity: Q max Exponential Point Capacity: Q top Nominal Capacity: Q nom 0 Q top Q 0 Q nom Q max Fig. 1: Typical battery discharge curve Capacity (Ah) 2

From a specific discharge curve, one can read values of E full, E top, E nom, Q top, Q nom, and Q max. Note that the values of E top, Q top, E nom, and Q nom are not exact as the transition points are often not defined exactly. One may try different values to obtain a better fit of the model characteristics to the actual characteristics. The capacity factor is roughly the ratio between Q 0 (the capacity at 0) and Q max. It is a value close to 1, and it needs to be adjusted such that the battery voltage is equal to E cut when SOC=0. For parameters that are not provided in the datasheet, one may ask manufacturers for the information or make an initial guess and adjust it by trial and error. In this tutorial, the rechargeable lithium ion battery L34570 from Saft is used to illustrate how to define the parameters to fine tune the battery model. The process involves the following steps: Enter the information from the datasheet. Make an initial guess of certain parameters from the discharge curve of the datasheet. Obtain the discharge and charge curves. Compare with the datasheet and experimental data for different operating conditions, and fine tune the parameters. 1. Entering Datasheet Information Fig. 2 shows the image of the example manufacturer datasheet. The first step is to obtain a battery profile based on the datasheet. The number of cells in the stack, as well as the derating factors are all set to 1 as the default. E rated Q rated E cut Fig. 2: Saft L 34570 Rechargeable lithium ion battery electrical characteristics The battery rating parameters can be read directly from the manufacturer s datasheet. E rated = 3.7 Q rated = 5.4 Ah E cut = 2.5 3

In this case, the datasheet does not provide the battery internal resistance. One may make an initial estimate from other Lithium Ion batteries of similar ratings. We will assume the battery internal resistance as R batt = 0.065 Ohm. 2. Estimating Parameter alues from the Discharge Curve The discharge curve of the battery from the datasheet is shown below. From the discharge curve, one may make the initial estimate the parameters. Fig. 3: Discharge and charge profile of the Saft L34570 rechargeable lithium ion battery Using the +20 o temperature discharge curve (1.1A), we have the initial readings of the following parameters: E full = 4.2 [full (maximum) battery voltage] E top = 3.75 [values at the point where the exponential zone ends] Q top = 2.5 Ah E nom = 3.6 [values at the point where the nominal zone ends] Q nom = 5.2 Ah Q max = 5.6 Ah [capacity at the cut off voltage of 2.5] The capacity factor K c is set to 1.02. Note that except E full and Q max, these values are approximate. One should adjust these parameters to better fit the simulated curves with the datasheet curves or experimental results. 4

3. Fine Tuning the Parameters Once the parameters are obtained, one can set up circuits to test the charging and discharging characteristics. A discharge test circuit is shown below. SOC + - _battery I_battery A 1.1A Ah K 1.1/3600 2.5 Fig. 4: A battery discharge test circuit The circuit uses a 1.1A current source to discharge the battery that has a initial state of charge of 1. The time, in sec., is divided by 3600 to convert to hour and is multiplied to the 1.1A current to obtain the capacity Ah. A charge test circuit is shown below. SOC _battery + I_battery A 1.1 time_hr - 4.2 K 1/3600 Fig. 5: A battery charge test circuit Usually an actual battery charge circuit consists of control circuitry that regulates the charge current and battery voltage. The circuit above is an oversimplified version of a practical circuit. The charge process consists of two stages: constant current charging and constant voltage charging. In the initial charging stage, the charging current is limited to 1.1A. When the voltage is close to the full voltage of 4.2, it is constant voltage charging. 5

Fig. 6 shows the simulation results of the discharging and charging characteristics based on the initial set of parameters. Capacity Charge time (hr) Fig. 6: Simulation results of the discharging and charging characteristics From the inspection of the simulated discharge and charge curves, one can observe the followings: On the discharge curve, the turning corner at the end of the nominal zone is more rounded than the datasheet profile. On the charge curve, the state of charge (SOC) stays at around 0.97 (97%) while the voltage has reached the fully charged value. Also, the charge current is reduced to 0 at a faster rate than in the datasheet. This could be due to the oversimplified charge circuit. Ideally, when charging the battery, the internal battery voltage should reach the maximum value when the state of charge (SOC) reaches 100%. When discharging the battery, the SOC would reach zero (0%) when the voltage is decreased to zero. Some parameters may need to be adjusted to better fit the simulation curves with the datasheet curves. Here are a few ways to adjust the parameters: Adjust the top point where the exponential zone ends For the same Q top, the reading of the value E top from the datasheet is approximate. A slightly higher reading would slow down the voltage change rate, especially in the beginning of the charge/discharge process. Adjust the nom point where the nominal zone ends At the nominal voltage E nom, the reading Q nom on the datasheet curve is approximate. A slightly higher reading would slow down the voltage change rate. Adjust the maximum capacity The state of charge (SOC) is calculated against the maximum capacity Q max. If the value Q max is estimated too high, it would result a false situation that the battery is not fully charged (SOC < 100%) when the internal battery voltage reaches the maximum value. 6

Also, if the value Q max is too high, or the value Q nom is too low, the corner at the end of the nominal zone in the discharge curve would be more rounded. Otherwise, the corner will be sharper. Adjust battery internal resistance The battery internal resistance affects the charging curve if the battery charger is constantcurrent constant voltage. A larger resistance would move the transition point from constant current to constant voltage to a lower voltage value, causing the charger to stop charging the battery before it is fully charged. Note that one may need a few iterations to obtain a good fit to the datasheet or experimental results. 4. Multi Cell Battery Stack In many applications, multiple batteries are stacked together, either in series to obtain higher output voltage, or in parallel to obtain higher capacity, or both. In these cases, one can simply specify the number of batteries in series or in parallel. If the derating factors are known, one can also specify them. Otherwise the default derating factors are 1 (i.e. no derating). 7