English for Electrical Engineers

Similar documents
Welcome to the SEI presentation on the basics of electricity

Full file at

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety.

Energy & Sustainability. Lecture 8: Electric Power Generation And Distribution February 5, 2009

Q1. (a) The diagram shows the information plate on an electric kettle. The kettle is plugged into the a.c. mains electricity supply.

Electrical Energy and Power Ratings

Unit 3 Lesson 2 Electric Current. Copyright Houghton Mifflin Harcourt Publishing Company

Farr High School NATIONAL 4 PHYSICS. Unit 1 Electricity and Energy. Revision Notes

Electricity Unit Review

Glossary. * Credit for glossary starter: Florida Solar Energy Center. August 2015 PV Installer's Course: Glossary 1

Math and Science for Sub-Saharan Africa (MS4SSA)

Adapted from presentation developed by Scott Fausneaucht

JSUNIL TUTORIAL PUNJABI COLONY GALI 01

Chapter Assessment Use with Chapter 22.

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

National 4 Physics - Electricity and Energy Summary Notes

Handout Activity: HA773

Class X Chapter 09 Electrical Power and Household circuits Physics

Chapter: Electricity

Science Part B Chapter 4- Electrical Energy. Lesson 1-

Electricity. Chapter 20

ELECTRICITY UNIT NAME

Transmission & Distribution Glossary of Electrical Terms

Magnetic fields 1. Place the magnet under a sheet of paper and sprinkle iron filings on top. N S

FUN! Protected Under 18 U.S.C. 707

Electrical Power Electric power electrical electric power Electric power electric electric

Current Electricity. 3 rd Years

8.2 Electric Circuits and Electrical Power

Calculate the current in the kettle element. (3)

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

Electricity All Around Us

INTERACTIVE SCIENCE 2A

How is lightning similar to getting an electric shock when you reach for a metal door knob?

Electric Current. Electric current: is the movement of electrons from a negative terminal back to the positive terminal of a battery.

ESO 210 Introduction to Electrical Engineering

ELECTRICAL. CDTA Technical Training Center

V=I R P=V I P=I 2 R. E=P t V 2 R

High Demand Questions QUESTIONSHEET 1 (a) Teresa set up the circuit shown in the diagram. The ammeter reading was 0.4 A.

Electric Current. Current and Voltage Difference

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

ELECTRICAL FUNDAMENTALS

Electricity MR. BANKS 8 TH GRADE SCIENCE

ELECTRIC POWER AND HOUSEHOLD CIRCUITS

(2) The graph below shows how the power output of a wind turbine changes over one day.

Ordinary Level Physics SOLUTIONS: EFFECTS OF AN ELECTRIC CURRENT

Electricity and Magnetism

HQST 500W (12V) HQST 1000W (12V) Modified Sine Wave Inverter. User Manual

FARADAY S LAW ELECTROMAGNETIC INDUCTION

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

16.3 Ohm s Law / Energy and Power / Electric Meters

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

The rod and the cloth both become charged as electrons move between them.

reflect energy: the ability to do work

Student book answers Chapter 1

Modern Auto Tech Study Guide Chapter 8 Pages Electricity & Electronics 37 Points. Automotive Service

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

Electricity Electric Current current. ampere. Sources of Current

1RECHARGEABLE APPLIANCES

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

OWNER S MANUAL. Please read installation and operation instruction before using this Power inverter.

Montana State University: Solar Cells Lecture 9: PV Systems. Montana State University: Solar Cells Lecture 9: PV Systems

Flashlights. Flashlights 2. Flashlights 4. Flashlights 3. Flashlights 5. Flashlights 6

Objects with opposite charges attract each other, on the contrary, objects with the same charges repel each other.

Building Operator Certification Level I

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy.

CSDA Best Practice. Hi-Cycle Concrete Cutting Equipment. Effective Date: Oct 1, 2010 Revised Date:

BELT-DRIVEN ALTERNATORS

FACT SHEET Standard: Electrical Safety

Name: Paisley Grammar Physics Department UNIT 2 USING ELECTRICITY PUPIL PACK. National 4/5 Physics. Study Guides Summary Notes Homework Sheets

OFF GRID Solar system

Elite Pure Sine. DC To AC Power Inverters Convert 12V DC electricity into clean household-like power.

Initial Project and Group Identification Document. Senior Design I EEL Off-Grid Clean Energy Power Generation

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

Electrical Workplace Safety

To discover the factors affecting the direction of rotation and speed of three-phase motors.

How Off Grid Solar Works

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Electricity and Magnetism. Module 6

Science 30 Unit C Electromagnetic Energy

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

ELECTRICITY: INDUCTORS QUESTIONS

L E A R N I N G O U T C O M E S

INDUCTANCE FM CHAPTER 6

Incandescent Lightbulb. Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F).

Which of the following statements is/are correct about the circuit above?

Technical Workshop: Electrical December 3, 2016

Unit P.2, P2.3. Currents in electric circuits E ½. F Fuel gauge indicator. Fuel tank. Ammeter. Float. Battery. Sliding contact. Pivot 12V.

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

XP800i POWER INVERTER OWNER S MANUAL

Questions Section: Do you have questions that aren't covered? Please contact us!

Reference: Photovoltaic Systems, p References: Photovoltaic Systems, Chap. 7 National Electrical Code (NEC), Articles 110,

What is represented by this BrainBat?

SOLN1 25 V2 Quick Start User Guide & Operating Recommendations

Off-grid Power for Wireless Networks. Training materials for wireless trainers

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

VALLIAMMAI ENGINEERING COLLEGE

Electrical Circuits Discussion Questions:

4.2 Electrical Quantities

PHY 152 (ELECTRICITY AND MAGNETISM)

Transcription:

University of Kurdistan Department of Electrical & Computer Engineering English for Electrical Engineers H. Bevrani October, 2017 1

Contents Unit 1. Current, voltage and resistance... 3 Unit 2. Electrical Supply... 6 Unit 3. Circuits and components... 9 Unit 4. Energy... 12 Unit 5. Heat and temperature... 14 Unit 6. Area, size and mass... 17 Unit 7. Measurable parameters... 20 Unit 8. Supervisory control and data acquisition (SCADA)... 23 Unit 9. Microgrid... 25 Unit 10. Frequency stability and control... 28 References [1] Mark Ibbotson, Professional English in use Engineering, Cambridge University Press, 2009. [2] H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control, CRC Press, USA, 2011. [3] H. Bevrani, Robust Power System Frequency Control, Springer, 2 nd Ed., 2014. [4] H. Bevrani, M. Watanabe, Y. Mitani, Power System Monitoring and Control, IEEE-Wiley Press, USA, 2014. [5] H. Bevrani, B. Francois, T. Ise, Microgrid Dynamics and Control, Wiley, USA, 2017. 2

Unit 1: Current, voltage and resistance A. Electric current The photo below shows a simple electric circuit (or circuit). A cell provides an electric current (or current), which flows through wires, which conduct the electricity (provide a way for it to travel). The current is used to light a lamp. So, like all circuits, the example includes: an electrical supply in this case, the cell an electrical conductor (or conductor) an electrical path in this case, wires one or more electrical components (or components) electrical devices (in this case, the lamp)which have a function. Current measured in amperes, or amps (A) is the rate of flow of electric charge. Electric charge is carried by electrons particles with a negative charge (-), which are normally attached to atoms. When an electric current flows through a conductor, the electrons move from one atom to another in the case of a copper wire, from one copper atom to the next. If the number of electrons flowing through a conductor increases, then the amperage, or ampage (current) increases. When electrons flow, carrying a current, they can be called charge carriers. In everyday English, cells are called batteries. In technical English, a battery is a number of cells places together. Lamps are often called bulbs in everyday English. B. Voltage and resistance The amount of current (in amps) flowing through a circuit will partly depend on the electromotive force (EMF) of the electrical supply. Electromotive force is measured in volts (V), and is generally called voltage. The voltage depends on the strength of the electrical supply. In the diagram above, adding a second cell would supply a higher voltage. The amount of current will also depend on electrical resistance (or resistance). This value in ohms (Ω) is a measure of how easily current can flow through the conductors and components in a circuit. For example, a lamp creates resistance 3

because the filament the metal wire inside it is very thin. This limits the amount of current that can flow. Resistance also depends on the materials used as conductors. For example, copper has a low resistance and so is a good conductor. Materials with very high resistance, such as plastics, are called electrical insulators (or insulators). Only very high voltages cause current to flow through them. Materials that are good insulators are used to insulate conductors. An example is plastic insulation around electric wires. This stops people from touching the conductor and if it is live (carrying current) from getting a dangerous electric shock. C. Electrical power The amount of current, in amps, required by an electrical appliance such as a TV or an electric kettle depends on the power of the appliance. This number expressed in watts (W) will be marked somewhere on the appliance. To calculate the required current, simply take the wattage and divide it by the voltage of the electrical supply in your home around 230 volts in most Europe. Therefore, for an electric kettle with a power rating of 2,000 watts (as specified by the manufacturer), the current required is:, =8,7. D. Exercises 1. Complete the word puzzle and find the word going down the page. 1) another term for amperage; 2) provided by a battery, for example; 3) measured as a wattage; 4) allows current to flow through it; 5) has very high electrical resistance; 6) carried by moving electrons; 7) another term for an electrical device ; 8) the consequence of a person touching a live conductor. Look at the text above for help 4

1. ELECTRIC 2. ELECTRIC 3. ELECTRIC 4. ELECTRIC 5. ELECTRIC 6. ELECTRIC 7. ELECTRIC 8. ELECTRIC 2. Complete the extract about current and power calculations using the words in the box. Look at the text to help you. amps conductor current resistance voltage wattage components circuit ohms supply volts watts In electrical calculations, electromotive force is expressed by the letter E, resistance by the letter R, and current by the letter I (which comes from the word intensity ). According to Ohm s Law: I = E/R. In other words, the (1) flowing through a (2), measured in (3)., equals the (4) of the electrical (5), measured in (6)., divided by the total (7).., measured in (8)... To work out the value of R, it is necessary to calculate the total resistance of all the (9) and connecting lengths of (10). That make up the circuit. Once both the voltage and amperage are known, it is possible to work out the power, measured in (11).., that will be consumed. Power (P) can be calculated using the equation P = E I. Therefore (12) equals voltage multiplied by amperage. 5

Unit 2: Electrical Supply A. Direct current and alternating current The current from a cell is direct current (DC) a constant flow of electricity which travels around a circuit in one direction. The electricity supplied to homes and other buildings called mains electricity is alternating current (AC). Unlike a DC supply, an AC supply flows backwards and forwards its direction continually alternates. The rate at which the current alternates called the frequency is measured in hertz (Hz). For example, in the UK, AC supply is 50 Hz it alternates 50 times per second. On a graph, the AC supply of mains electricity forms a sine wave. The current supplied to most homes is single-phase it forms one sine wave. In factories and large buildings, which have powerful electrical equipment, the supply is often three-phase effectively three currents, each with a different phase (timing). This provides a smoother supply as it reduces the gaps between the voltage peaks. The term mains electricity is not used in American English terms like supply are used. B. AC generation and supply Mains electricity is generated (produced) at sites called power stations, which use large generators. A generator converts mechanical energy to electrical energy. A generator rotates a magnet within an iron surround. The iron called an armature has coils of wire around it, called field coils (or field windings). As the magnet rotates, it causes current to flow through the field coils, due to electromagnetic induction. Current from the generators leaves the power station and enters the power grid (or grid) the network of power lines (cables) which transmit it around the country. At the point where it enters the grid, the electricity flows through transformers specifically step-up transformers, which increase voltage and decrease amperage. This reduces the energy lost from the power lines over long distances, as high-voltage (HV) supplies flow more efficiently than low-voltage (LV) supplies. Before the supply is used by homes and other buildings, it passes through several step-down transformers, which reduce its voltage and increase its amperage. The supply may be stepped up to over 400,000 volts at the point where it enters the large transmission lines (long-distance power lines) leaving the power station. It is normally then stepped down in stages, first passing through a wider network of 6

lower-voltage transmission lines, and finally through the small distribution lines which supply streets and houses in many countries at around 230 volts. C. DC generation and use Photovoltaic cells (PVs) or solar cells are an effective way of generating your own electricity from sunlight. The current they produce can be used immediately, may be stored in rechargeable batteries (like the ones in cars), or can be fed into the power grid and sold to the electric company. But PVs produce direct current. This is fine for charging batteries, but is not suitable for powering household appliances, which require alternating current. For this, the DC supply from PVs and batteries needs to go through an inverter a device which converts DC to AC. A single phase AC supply A three-phase AC supply D. Exercises 1. Complete the text about inverters using words from the text above. Inverters convert (1) to (2).. If an inverter is used to supply electrical appliances in a home, it must copy the supply of (3) electricity produced by the generators at power stations. Most inverters can produce a current which alternates precisely at the required (4) - for example, 50 (5). (50 cycles per second). However, not all types are able to produce a current which follows the pattern of a (6)..., like that of the (7).. -.. AC supply used in homes. So-called square wave inverters only produce a very approximate copy of this wave, which can affect the functioning of many electrical appliances. 7

AC supply from a square wave inverter 2. Choose the correct words from the brackets to complete the descriptions of different stages of AC generation and supply (a-f). Then, put the stages in the correct order. a After the step-up transformer, the current enters a (distribution / transmission) line. b Current is produced, by electromagnetic induction, in the (magnet / field coils) of a generator. c The current goes from the last step-down transformer to a (distribution / transmission) line. d The current leaves the power (grid / station) and enters the home. e Amperage is reduced and voltage is increased by a (step-up / step-down) transformer. f The current is stepped (up / down) from a higher voltage to a lower voltage, in stages. 3. Decide whether the sentences below are true or false, and correct the false sentences. 1) Photovoltaic cells produce direct current. 2) The electricity supply from PVs can be used to charge rechargeable batteries. 3) Rechargeable batteries supply electricity as alternating current. 4) Inverters convert sunlight to alternating current. 8