Design and Analysis of Intake Port of Diesel Engine for Target Value of Swirl

Similar documents
Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

Comparison of Velocity Vector Components in a Di Diesel Engine: Analysis through Cfd Simulation

Ujwal D. Patil M & M, Kandivali Mumbai

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

Flow Simulation of Diesel Engine for Prolate Combustion Chamber

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

A Study of EGR Stratification in an Engine Cylinder

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT

Numerically Analysing the Effect of EGR on Emissions of DI Diesel Engine Having Toroidal Combustion Chamber Geometry

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

CFD Analysis for Designing Fluid Passages of High Pressure Reciprocating Pump

Design Optimization of Intake Port in Diesel Engine By Using CFD Analysis

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

3D CFD Modeling of Gas Exchange Processes in a Small HCCI Free Piston Engine

Numerical Study on the Flow Characteristics of a Solenoid Valve for Industrial Applications

[Rohith, 5(1): January, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM

A SIMULATION STUDY OF AIR FLOW IN DIFFERENT TYPES OF COMBUSTION CHAMBERS FOR A SINGLE CYLINDER DIESEL ENGINE

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

Experimental Investigation on Diesel Engines by Swirl Induction with Different Manifolds

DISCHARGE AND FLOW COEFFICIENT ANALYSIS IN INTERNAL COMBUSTION ENGINE USING COMPUTATIONAL FLUID DYNAMICS SIMULATION

Automatic CFD optimisation of biomass combustion plants. Ali Shiehnejadhesar

The Effect of Spark Plug Position on Spark Ignition Combustion

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

Dual Fuel Engine Charge Motion & Combustion Study

Thermal Stress Analysis of Diesel Engine Piston

Figure 1: The spray of a direct-injecting four-stroke diesel engine

Crankcase scavenging.

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine

System Simulation for Aftertreatment. LES for Engines

DESIGN OF THROTTLE BODY: A COMPARATIVE STUDY OF DIFFERENT SHAFT PROFILES USING CFD ANALYSIS

Investigation on Diesel Engine for Airflow and Combustion in a Hemispherical Combustion Chamber

COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A SINGLE CYLINDER RESEARCH ENGINE WORKING WITH BIODIESEL

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system

CFD Simulation of In-Cylinder Flow on Different Piston Bowl Geometries in a DI Diesel Engine

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Back pressure analysis of an engine muffler using cfd and experimental validation

INTERCOOLER FOR EXTREMELY LOW TEMPERATURES OF CHARGING

2.61 Internal Combustion Engines Spring 2008

Australian Journal of Basic and Applied Sciences

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization

The impact of inlet channel geometry on in-cylinder swirl

Manufacturing Elements affecting the Performance & Durability Characteristics of Catalytic Converter

Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating Compressor

3D In-cylinder Cold Flow Simulation Studies in an IC Engine using CFD

The Effect of Efi to the Carbureted Single Cylinder Four Stroke Engine

HERCULES-2 Project. Deliverable: D8.8

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces

APPLICATION OF LDA AND PIV TECHNIQUES TO THE VALIDATION OF VECTIS USING BOUNDARY MESH MOTION

MODELING AND ANALYSIS OF DIESEL ENGINE WITH ADDITION OF HYDROGEN-HYDROGEN-OXYGEN GAS

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset

The influence of thermal regime on gasoline direct injection engine performance and emissions

Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car

Experimental Investigation on Modification of Inlet poppet valve of single cylinder Direct Ignition Four stroke Diesel Engine

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate

Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhance Performance on Diesel Engine

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015

Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny. Turbomachinery 2015, Design of HP and LP turbine connection

Numerical Investigation of the Effect of Excess Air and Thermal Power Variation in a Liquid Fuelled Boiler

Designing & Validating a New Intake Manifold for a Formula SAE Car

Analysis of Exhaust System using AcuSolve

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco

Natural Gas fuel for Internal Combustion Engine

Effect of Stator Shape on the Performance of Torque Converter

Experimental and CFD Analysis of Exhaust Manifold to Improve Performance of IC Engine

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS

Scroll Compressor Oil Pump Analysis

A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines

NUMERICAL STUDY OF TRANSFER FUNCTION OF COM- BUSTION NOISE ON A HEAVY DUTY DIESEL ENGINE

Analysis of Air Flow and Heat Transfer in Ventilated Disc Brake Rotor with Diamond Pillars

Use of Flow Network Modeling for the Design of an Intricate Cooling Manifold

EFFECT OF SPOILER DESIGN ON HATCHBACK CAR

EXPERIMENTAL AND COMPUTATIONAL EVALUATION OF EMISSIONS OF AN ENGINE WITH A RE-ENTRANT PISTON BOWL - A VALIDATION

Influence of Internal Combustion Engine Parameters on Gas Leakage through the Piston Rings Area

Numerical Investigation of the Influence of different Valve Seat Geometries on the In-Cylinder Flow and Combustion in Spark Ignition Engines

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Effects of Dilution Flow Balance and Double-wall Liner on NOx Emission in Aircraft Gas Turbine Engine Combustors

EFFECT ON PERFORMANCE AND COMBUSTION CHARACTERISTICS OF DIESEL ENGINE ENRICHED WITH HYDROGEN WITH VARIED PISTON BOWL GEOMETRY

Optimization of Seat Displacement and Settling Time of Quarter Car Model Vehicle Dynamic System Subjected to Speed Bump

LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

THE THEORETICAL STUDY ON INFLUENCE OF FUEL INJECTION PRESSURE ON COMBUSTION PARAMETERS OF THE MARINE 4-STROKE ENGINE

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel

Air Flow Analysis of Four Stroke Direct Injection Diesel Engines Based on Air Pressure Input and L/D Ratio

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

A REVIEW OF SCAVENGING PROCESS OF TWO STROKE ENGINE

Finite Element and Experimental Validation of Stiffness Analysis of Precision Feedback Spring and Flexure Tube of Jet Pipe Electrohydraulic Servovalve

SOLAR FLAT PLATE COLLECTOR HEAT TRANSFER ANALYSIS IN THE RAISER WITH HELICAL FINS Mohammed Mohsin Shkhair* 1, Dr.

Stress Analysis of Engine Camshaft and Choosing Best Manufacturing Material

Transcription:

American Journal of Mechanical Engineering, 2013, Vol. 1, No. 5, 138-142 Available online at http://pubs.sciepub.com/ajme/1/5/6 Science and Education Publishing DOI:10.12691/ajme-1-5-6 Design and Analysis of Intake Port of Diesel Engine for Target Value of Swirl S.K. Sabale *, S.B. Sanap Department of Mechanical Engineering, Sinhgad College of Engineering, Pune, India *Corresponding author: sonalisabale.scoe@gmail.com Received September 21, 2013; Revised October 15, 2013; Accepted October 20, 2013 Abstract The mutual desire for higher fuel economy and greater performance along with stringent emission regulations set by the government for diesel engines necessitates enhanced air-fuel mixing for proper combustion. The design of intake port plays a major role in an engine design, development and optimization, as it controls the power developed, fuel consumed and exhaust emissions from the engine. The effects of different geometrical parameters of helical port on swirl performance were studied. A methodology is proposed for the design of helical inlet port of diesel engine in order to achieve target value of 1.8 swirl number. The computational fluid dynamics approach is used for analysis of intake port performance. The port performance of prototype flow box was analyzed experimentally on a steady flow rig. The observed mean swirl number and flow capacity values satisfy the requirements. Keywords: CFD, experimental testing, helical port, helix, swirl Cite This Article: S.K.Sabale, and S.B.Sanap, Design and Analysis of Intake Port of Diesel Engine for Target Value of Swirl. American Journal of Mechanical Engineering 1, no. 5 (2013): 138-142. doi: 10.12691/ajme-1-5-6. 1. Introduction An important step towards the development of aninternal combustion engines is the optimization of the inflow through intake ports since the charge movement generated by the intake flow considerably influences the quality of mixture and combustion especially in diesel engines. Combustion chamber flow field characteristics atthe time of fuel injection and subsequent interactions with fuel sprays and combustion phenomena are dominant parameters for the engine performance and exhaust emissions levels in a direct injection diesel engine. Exact matching of the engine, fuel injection parameters, bowl shape, compression ratio and scavenging characteristics as well as exhaust gas recirculation are important considerations in a new engine design. The in-cylinder flow field is largely determined by the swirl and tumble motion during the intake stroke and the squish flow into and out of a piston bowl. Since the nature of the swirling flow in an engine under operation is extremely difficult to determine, steady flow tests are often used to characterize the swirl and discharge coefficient. So that it becomes important steps in a new engine design to comeup with the geometrical shape of an intake port or valve that produces the optimum swirl ratio [1]. The researches [2-8] have shown that helical type intake-port will be ideal for the engine with nominal injection pressure value less than 800 bar and having single orifice injector. The recent experiments and computations have indicated that the induction generated turbulence, independent of its initial magnitude decays by the time of ignition to levels determined by the engine speed. Therefore, it is desirable for the bulk in-cylinder flow to persist through compression. Hence, releasing its stored kinetic energy at convenient time for combustion to be affected. The controlling parameter is the design and orientation of intake port, in the absence of piston bowl effects. The significant portion of the combustion process takes place by diffusion of flames in a diesel engine. The air-fuel mixing controls the rate of chemical reaction and hence the heat release under this condition. The earlier studies show that the air-fuel mixing is a function of kinetic energies associated with fuel injection and air turbulence [9]. McCracken and Abraham [10] studied the effects of swirl turbulence and its interaction with fuel sprays. Khan, et. al. [10] investigated the effects of air swirl on smoke and gaseous pollutants of DI diesel engines and also the mechanisms of their formations. Thien [11] studied the in-cylinder swirl in detail and proposed a mathematical model for designing the geometry of a helical port by classical methods, and the method is an important basis to calculate the geometry of port. 2. Development of Helical Intake Port The development of port for target value of swirl is achieved by analysing several ports available at Power Train Engineering (PTE) department, ARAI, Pune and the parameters that affect swirl performance. 2.1. Calculation of Port Dimensions

American Journal of Mechanical Engineering 139 The helical port consists of three principle components, SCROLL S, R, W, β INLET S, θ THROAT T, X, Y The influence of each geometrical parameter is examined. 2. Measurement of the cross-sectional area of section planes for selected ports. Figure 1. Geometric parameters of helical port [12] In order to analyse effects of the intake port geometry and examine measures for making further improvements, it is essential to know the performances of the ports. Therefore 8 ports were taken for analysing data to arrive at acceptable trendline. Table 1 shows the diesel engine specifications on which the ports are employed. Table 1. Engine Specifications Bore, mm 100 Stroke, mm 100 Number of cylinders 3 Aspiration Naturally Aspirated Application Off highway 2.2. Area Calculation of Selected Ports The information of different ports available at Power Train Engineering (PTE) department, ARAI, Pune is correlated in order to get a clear idea of area required for target value of swirl number. The following methodology is considered for cross-sectional area calculation of selected ports 1. Creating section planes at 15 angle up to scroll angle for selected ports. Figure 3. Measurement of cross-sectional area of section planes in Pro-E The Figure 3 shows measurement of cross-sectional area of section planes using Pro-E. Similarly, crosssectional area of remaining section planes for selected ports is measured. 3. Creating trend line for the cross-sectional areas of section planes for selected ports. The Figure 4 is a plot of cross-sectional area (mm 2 ) vs. section plane angle (degree) showing the trend lines of crosssectional area of section plane for selected ports. Figure 4. Port cross-sectional area of section planes trendline 2.3. Area Calculation of Proposed Port The following methodology is considered for area calculation of proposed port. 1. The first cross-sectional area of proposed port where the helix begins is calculated based on the first crosssectional areas of analysed ports in order to achieve target value of swirl number. Here, the first crosssectional areas of each port are evaluated using 3D CAD Pro-E software. A trendline of swirl number vs. first cross-sectional areas of ports is drawn. Figure 2. Section planes created in Pro-E The Figure 2 shows section planes that are created in Pro-E. Figure 5. First cross-sectional area of ports trendline

140 American Journal of Mechanical Engineering The Figure 5 is a plot of swirl number (unit) vs. first cross-sectional area (mm 2 ) of selected ports showing the trendline of swirl number vs. first cross-sectional areas of ports. taking into account the packaging constraints. The Figure 8 shows proposed model of helical intake port. Figure 6. Change in cross-sectional area of consecutive section planes trend line 2. The cross-sectional area required at the section planes is evaluated. The difference in sectional area in consecutive section planes for each selected ports are calculated for this. Then trend lines for the crosssectional area at section planes for the selected ports are drawn. The Figure 6 is a plot of change in crosssectional area of consecutive planes (unit) vs. section planes (unit) showing the trendline of change in cross-sectional area of consecutive section planes. Figure 8. Proposed helical intake port 3. Air Flow Simulation in Intake Port The steady state CFD analysis of proposed helical intake port is carried out for each valve lift. The engine under consideration has maximum valve lift of 11 mm. The assembly models for each 1 mm valve lift are prepared in Pro-E and saved in.stl format. 3.1. Steps in CFD Analysis The following steps are carried out in CFD air flow simulation of intake port. 1. Pre processing 2. Analysis 3. Post processing Figure 7. Profile sketches in section planes 3. The starting position of first helix angle for proposed port is decided based on port information analysed for selected ports. The first helix angle for the proposed port is determined by analysing scroll angle and starting point of helix for various ports. 4. The section plane profile sketch is determined for each section plane of proposed helical port to achieve target value of swirl number after deciding the first cross-sectional area, change in cross-sectional area of consecutive planes and first helix.the profile is selected based on necessary cross-sectional area for that sectional plane and smooth profile of port. The Figure 7 shows profile sketches in sectional planes of proposed helical port drawn in Pro-E. 5. The intake port model is created in 3D CAD Pro-E software by surface modelling. The model is finalized based on necessary cross-section areas and 3.1.1. Pre-processing 1. The three dimensional port models are imported in CFD software..stl file format is most preferred format for import. After importing, port surface models are checked for data loss. Surface damages like independent regions, folded patches, manifolds, duplicate patches etc. are checked and corrected accordingly. 2. Selections like inlet, outlet, valve, seat or refinement areas are defined on surface model. 3. Edge mesh model, prepared from surface mesh consists of closed edges in boundary region. 4. The volume mesh of port is generated using Fame Advanced Hybrid Mesh (FAHM). It generates hexahedron dominated mesh, but with few tetrahedral, prism and pyramids cells in a transition layer between coarse and fine mesh. 5. A volume mesh model is needed to correct for bad cells like negative volumes, negative normal if any. 6. Refined volume mesh model is used for applying boundary conditions. 3.1.2. Post Processing During post processing parameters like mass flow, flow coefficient, paddle speed, velocity, streamlines path are

American Journal of Mechanical Engineering 141 analysed. The velocity profiles and streamline path for each lift from maximum valve lift to zero valve lift are analysed to determine the swirl performance of proposed helical intake port. 3.2. Result and Analysis The velocity path and streamline path, for maximum valve lift can be seen from Figure 9 and Figure 10 at a section passing through centre of valve. The velocity profile analysis at valve seat area helps in valve seat optimization and identify the critical area for flow optimization. The streamlines help in finding flow restrictions and eddy formation zones that helps in improving port flow performance by modifying area around valve. The CFD study is carried out for all valve lifts. The Figure 11 shows velocity swirl disk which helps to understand swirl distribution caused by the intake port. The CFD analysis predicts mean swirl of 1.81. 4. Swirl Test Rig Experiment The CFD simulation results obtained of paddle speed, flow coefficient, swirl number and flow for all valve lifts from maximum valve lift to zero valve lift are compared with the experimental results obtained from the testing of prototype flow-box on swirl test rig. Figure 9. Velocity profile for maximum valve lift Figure 10. Streamline path for maximum valve lift Figure 11. Velocity swirl disk Figure 12.Setup for swirl measurement The Figure 12 shows schematic diagram of swirl measurement setup. Swirl ratio is evaluated from the ratio of the charge rotation speed of paddle wheel to the fictitious engine speed. npaddle SR = (1) n motor Assuming the mean piston speed to be equal to mean axial velocity of the steady state flow, we get the fictitious engine speed to be m*30 nmotor = (2) ρas Mean swirl number is obtained by integration over the crank angle from top dead centre to bottom dead centre and considering valve lift and position speed. BDC ( α = π ) npaddle C( α) 2 SN = dα n TDC( α 0) motor C (3) = m Ratio between actual speed and mean piston speed 5. Comparison C(α) π 1+ λcosα = sinα Cm 2 2 2 1 λ sin α (4) The results obtained by CFD analysis are compared with those obtained experimentally. 5.1. Paddle Speed The Figure 13 is a plot of paddle wheel speed (RPM) vs. valve lift (mm) showing the comparison of CFD and swirl test rig results of paddle wheel speed.

142 American Journal of Mechanical Engineering 5.3. Mean Swirl The Figure 15 shows comparison of target value of swirl number with the mean swirl as predicted by CFD simulation and that evaluated from swirl test rig. Figure 13. Paddle wheel speed results comparison It is observed that the deviation in CFD simulation and swirl test rig results of paddle wheel is high at low lift (i.e. below 4 mm) and high tank pressure (i.e. 600 mm of water) below atmosphere. Practically, there exists a slip between paddle wheel carrying shaft and its corresponding bearing. This is not taken into consideration during CFD analysis. This slip will be significant at high tank pressure and hence percentage error is high. 5.2. Flow The CFD simulation and swirl test rig results of flow shows good correlation. The Figure 14 is a plot of flow (m/s) vs. valve lift (mm) showing the comparison of CFD and swirl test rig results of flow. At low lifts, the error between experimental result and CFD result is maximum since the gap between valve and valve seat is small and only few cells are available for computations. It is recommended to have at least two rows at regions of small gaps. Figure 14. Flow results comparison Figure 15. Mean swirl 6. Conclusion The new methodology is used to design the helical inlet port of diesel engine based on parametric study of geometrical parameters. The proposed design is analyzed using CFD software and steady flow bench experiment. A satisfactory correlation is obtained between experimental and CFD result. The obtained swirl ratio of designed helical port is near to target value. The parametric study result highlighted that, the swirl ratio increases with a decreasing T/R value, as there is a correlation between the swirl ratio and the throat height T. In the case of lower T/R, it is seen that many streamlines of the incoming air follow the cylinder wall and generate strong swirl. On the other hand with higher T/R ratio, a larger proportion of the streamlines are directed toward the center of the cylinder resulting in smaller swirl ratio. Acknowledgements The authors would like to thank all the authorities in department of Power Train Engineering (PTE), The Automotive Research Association of India (ARAI), Pune for providing the facilities and expertise during the course of this work. References [1] Kheyrollahi J., Keshavarz M., Jazayeri S., and Pourfallah M., Optimization of Intake port shape in a DI DieselEngine Using CFD Flow Simulation,Conseil International Des Machines a Combustion (CIMAC)Congress 2010, Bergen, Paper no.: 306. [2] Kulkarni, Y., Mone, M., Desai, A., Markandeya, S., Nayak, N., Aghav, Y., Sohi, N. and Dani, A., Optimization of Inlet Port Performance on Emission Compliance of Naturally Aspirated DI Diesel Engine, SAE paper 2005-26-010, 2005. [3] Shuisheng, J. and Siwei, Z., Parameter Analysis of Diesel Helical Intake Port Numerical Design, Energy Procedia, (16). 2012. 558-563. [4] Eugene, V. and Carsten, O., Multi-Objective Adjoint Optimization of Intake Port Geometry, SAE paper 2012-01-0905, 2012. [5] Mandloi, P. and Verma G., Design Optimization of an In- Cylinder Engine Intake Port, Nafems World Congress, 2009. [6] Zuelch, S., Behnk, K., Roland D., Bernd F. and Seidel, T., A New Hardware-Assisted Intake Port Development Process for Diesel Engines Using Doppler Global Velocimetry, SAE paper 2005-01-0640, 2005. [7] Kim, H., Yoon, S., Xie X. and Lai M., Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process, SAE paper 2005-01-2082, 2005. [8] Sadakane, S., Sugiyama, M., Kishi, H., Abe, S., Harada, J. and Sonoda, T., Development of a New V-6 High Performance Stoichiometric Gasoline Direct Injection Engine, SAE paper 2005-01-1152, 2005. [9] Heywood J. B., Internal combustion engine fundamentals, McGraw-Hill, Inc., USA, 1988. [10] McCracken, M. E., and Abrahan, J., Swirl Spray Interactions in a Diesel Engine, SAE paper 2001-01-0996, 2001. [11] Thien, G. E., Description of Measuring Methods for the Investigation of Stationary Flow Properties at Valve Ports and Statements for the Evaluation of the Measurement Results, AVL FA report no. 128/ General/011. [12] Kawashima, J., Ogawa, H. and Tsuru, Y., Research on a Variable Swirl Intake Port for 4-Valve High-Speed DI Diesel Engines, SAE paper 982680, 1998. [13] AVL-FIRE manual.