Research Article Studies on Exhaust Emissions from Copper-Coated Gasohol Run Spark Ignition Engine with Catalytic Converter

Similar documents
INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

Performance of copper coated spark ignition engine with methanol-blended gasoline with catalytic converter

CONTROL OF POLLUTANTS WITH CATALYTIC CONVERTER AND COPPER COATED CYLINDER HEAD IN METHANOL- GASOLINE BLEND OPERATED TWO STROKE SI ENGINE

Comparative Studies on Emissions of Four Stroke Copper Coated Spark Ignition Engine with Catalytic Converter with Different Catalysts with Gasohol

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Comparative Studies on Exhaust Emissions from Two Stroke Copper Coated Spark Ignition Engine with Alcohol Blended Gasoline with Catalytic Converter

Accepted 25 November 2013, Available online 01 December 2013, Vol.3, No.5 (December 2013)

D.Baswaraj, 2 P.V.Krishna Murthy, 3 K.Prasanna Lakshmi 1 Jayaprakash Narayan College of Engineering, Dharmapur, Mahabubnagar.

I. INTRODUCTION. International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 6, Issue 4, April 2017

COMPARATIVE STUDIES ON PERFORMANCE PARAMETERS OF TWO STROKE SPARK IGNITION ENGINE WITH COPPER COATED PISTON WITH METHANOL BLENDED GASOLINE

Control Of Pollution Levels of Four Stroke Spark Ignition Engine Fuelled With Methanol Blended Gasoline

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

INVESTIGATIONS ON REDUCTION OF CARBON MONOXIDE FROM CATALYTIC COATED SPARK IGNITION ENGINE WITH CATALYTIC CONVERTER

Vol. 2, Issue IV, April 2014 ISSN

Investigations on reduction of carbon monoxide -in spark ignition engine with catalytic converter with gasohol

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

The influence of thermal regime on gasoline direct injection engine performance and emissions

COMPARATIVE STUDIES ON MEDIUM GRADE LOW HEAT REJECTION DIESEL ENGINE AND CONVENTIONAL DIESEL ENGINE WITH CRUDE COTTON SEED OIL

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

Impact of Cold and Hot Exhaust Gas Recirculation on Diesel Engine

Performance Evaluation of a High Grade Low Heat Rejection Diesel Engine with Waste Fried Vegetable Oil

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

CHAPTER 1 INTRODUCTION

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

Research Article Study of Knocking Effect in Compression Ignition Engine with Hydrogen as a Secondary Fuel

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol Oxygenated Organic Compounds

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri Fuels -An Experimental Investigation

International Journal of Environmental Science: Development and Monitoring (IJESDM) ISSN No , Volume 4 No. 2 (2013)

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Received 13 October 2010; revised 23 January 2011; accepted 28 January 2011

EXPERIMENTAL ANALYSIS OF THERMAL BARRIER COATING IN TWO STROKE SI ENGINE

PERFORMANCE AND EMISSION CHARACTERISTICS OF A VARIABLE COMPRESSION SI ENGINE USING ETHANOL- GASOLINE BLENDS AS FUEL

Performance and Emission Characteristics of LPG-Fuelled Variable Compression Ratio SI Engine

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine

Experimental Investigation on Diesel Engines by Swirl Induction with Different Manifolds

Development of In-Line Coldstart Emission Adsorber System (CSEAS) for Reducing Cold Start Emissions in 2 Stroke SI Engine

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester

Influence of Injection Timing and Preheating on Exhaust Emissions of Di Diesel Engine with Air Gap Insulation with Linseed Biodiesel

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Effect Of Exhaust Gas Recirculation On The Performance And Emission Characteristics Of Diesel Engine With Orange Oil- Diesel Blend

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

Experimental Investigation of Performance and Emission Characteristics of Hybrid Fuel Engine

An Experimental Analysis of IC Engine by using Hydrogen Blend

Experimental Investigation of Performance and Exhaust Emission Characteristics of Diesel Engine by Changing Piston Geometry

Experimental Investigation of Ethanol-Methanol- Gasoline Blend on Multi cylinder SI Engine using Catalytic Converter

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

Study on Performance and Exhaust Gas. Characteristics When Biogas is Used for CNG. Converted Gasoline Passenger Vehicle

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS

Analysis of emission characteristics of MPFI gasoline engine using the 5 gas analyser

EXHAUST EMISSIONS OF 4 STROKE SPARK IGNITION ENGINE WITH INDIRECT INJECTION SYSTEM USING GASOLINE-ETHANOL FUEL

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

International Journal of Advanced Engineering Technology E-ISSN

MODELING AND THERMAL ANALYSIS OF SI ENGINE PISTON USING FEM

ACTUAL CYCLE. Actual engine cycle

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

EFFECT OF EXHAUST GAS RECIRCULATION (EGR) IN INTERNAL COMBUSTION ENGINE

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

Influence of Injection Timing on Exhaust Emissions of Di Diesel Engine with Air Gap Insulation with Linseed Biodiesel

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Effect of Low Thermal Conductivity Materials on Performance of Internal Combustion Engine- A Review And Experimentation

INFLUENCE OF DIETHYL ETHER BLEND IN SPARK IGNITION ENGINE PERFORMANCE AND EMISSIONS OPERATED WITH GASOLINE AND ETHANOL

Available online at ScienceDirect. Procedia Technology 14 (2014 )

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

Effect of Thermal Barrier Coating on Piston Head of 4-Stroke Spark Ignition Engine

Automotive Technology

Homogeneous Charge Compression Ignition combustion and fuel composition

THE STUDY OF EGR EFFECT ON DIESEL ENGINE PERFORMANCE AND EMISSION - A REVIEW Srinath Pai 1, Amriya Tasneem H.R. 2, Shivaraju N 3 & Dr.

Parvezalam Shaikh and S.P. Yeole Department of Mechanical Engineering, P.R Pote (Patil) Group of Educational Institutions, Amravati, India

A REVIEW ON EXHAUST GAS RECIRCULATION (EGR) SYSTEM IN IC ENGINES

POLLUTION CONTROL IN GASOLINE ENGINE USING METAL CATALYTIC CONVERTER

Engine Exhaust Emissions

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE)

Transcription:

International Scholarly Research Network ISRN Mechanical Engineering Volume, Article ID 779, 6 pages doi:.//779 Research Article Studies on Exhaust Emissions from Copper-Coated Gasohol Run Spark Ignition Engine with Catalytic Converter S. Narasimha Kumar, K. Kishor, M. V. S. Murali Krishna, andp.v.k.murthy Department of Mechanical Engineering, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad 7, India Vivekananda Institute of Science and Information Technology, Shadnagar, Mahabubnagar 96, India Correspondence should be addressed to M. V. S. Murali Krishna, maddalivs@gmail.com Received 6 January ; Accepted March Academic Editor: K. Ismail Copyright S. Narasimha Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The major pollutants emitted from spark ignition engine are carbon monooxide (CO) and unburnt hydrocarbons (UHC). These are hazardous and cause health problems to human beings, and hence control of these pollutants calls for immediate attention. Copper of thickness microns is coated over piston crown and inside portion of the cylinder head of the spark ignition engine. Investigations have been carried out for reducing pollutants from a variable compression ratio, copper-coated spark ignition engine fitted with catalytic converter containing sponge iron catalyst run with gasohol (blend of % ethanol and 8% gasoline by volume). The influence of parameters such as void ratio, airflow rate, temperature of injected air, speed, compression ratio, and load of the engine on these emissions are studied. A microprocessor-based analyzer is used for the measurement of CO/UHC intheexhaustoftheengine.thespeed,load,compressionratioand the injection of air into the catalytic converter are found to show strong influence on reduction of the pollutants in the exhaust. Copper-coated spark ignition engine with gasohol operation reduced the exhaust emissions considerably when compared to conventional engine with pure gasoline operation.. Introduction Carbon monoxide is major pollutant contributed by the automobile exhaust, particularly spark ignition engine, breathing of which causes many health disorders, like reduction of hemoglobin content in the blood, dizziness, breathing and respiratory problems, eye irritation, and loss of appetite [, ]. It also causes detrimental effects on other animal and plant life besides environmental disorders []. This pollutant is considerably high during idling and peak load operation of the engine. Further, the CO emissions in the exhaust of - and -stroke engines increase with the age of the vehicle []. Hence, globally, stringent regulations are made for permissible CO levels in the exhaust of and -stroke spark ignition engines. The formation of unburnt hydrocarbon is due to incomplete combustion. The two important reasons for incomplete combustion of the fuel are cool metal surfaces of the combustion chamber and imperfect mixture ratio. Of many methods available for reduction of CO/UBHC emissions, the one employing a catalytic converter []is more effective. The use of platinum group metals as catalysts is quite expensive and hence efforts are on for search of cheaper catalysts [ 7]. Further modification of engine design [8 ] and fuel composition [, ] are also found to be advantageous in controlling the pollutants in the exhaust of the engine. The use of catalysts to promote combustion is an old concept. More recently, copper is coated over piston crown and inside of cylinder head wall [8 ] and it is reported that the catalyst improves the fuel economy and increased combustion stabilization. In the context of depletion of fossil fuels due to increase of fuel consumption, the search for alternate and renewable fuels has also become pertinent. Ethanol is found to be a better alternate fuel for spark ignition engine compared to methanol as its calorific value is higher than methanol. And also the properties of ethanol are very close to those of gasoline []. Alcohol-gasoline blends have been tried [, ] to use in conventional spark ignition engine by many researchers. In addition, no major modification in the engine is required if low quantities of ethanol are blended

ISRN Mechanical Engineering 8 6 7. Engine. Eddy current dynamo meter. Loading arrangement. Orifice meter. U-tube water manometer 6. Air box 7. Fuel tank 8. Three-way valve 9. Burette. Exhaust gas temperature indicator. CO analyzer. Air compressor. Outlet jacket water temperature indicator. Outlet-jacket water flow meter. Directional valve 6. Rotometer 7. Air chamber 8. Catalyst chamber 7 Figure : Experimental setup. 9 8 6 with gasoline in spark ignition engine. In the present study, the effect of various engine parameters on the control of CO/UHC is reported with different versions of the engine such as conventional engine and copper coated engine with catalytic converter with sponge iron as catalyst and gasohol (ethanol blended gasoline, % V/V) as fuel.. Materials and Methods The experimental setup employed in the present study is shown in Figure. A four-stroke, single-cylinder, watercooled, spark ignition engine of brake power. kw at rated speed of rpm is used. The engine is coupled to an eddy current dynamometer for measuring its brake power. The compression ratio of the engine is varied from to 9 with the change of the clearance volume by adjustment of cylinder head, threaded to the cylinder of the engine. The engine speeds are varied from to rpm. In the present investigations, in reducing CO/UHC emissions, the piston crown and inside surface of the cylinder head are coated [7] with copper by plasma spraying. A bond coating of Ni-Co-Cr alloy is applied for a thickness of about microns using a 8 kw METCO plasma spray gun. Over the bond coating copper 89.%, aluminium 9.% and iron.% is coated for microns thickness. The coating had very high bond strength and does not wear off 6 7 φ 8 8 φ 89 φ φ 7 All dimensions (mm). Air chamber. Inlet for air chamber from the engine. Inlet for air chamber from the compressor. Outlet for air chamber. Catalytic chamber 6. Outer cylinder 7. Intermediate-cylinder 8. Inner-cylinder 9. Outlet for exhaust gases. Provision to deposit the catalyst. Insulation Figure : Details of catalytic converter. even after hrs of operation. A catalytic converter shown in Figure is fitted to the exhaust pipe of the engine. Provision is made to inject a definite quantity of air into the catalytic converter. The converter is filled with sponge iron catalyst with varying void ratios (where void ratio is the ratio between the volume occupied by the catalyst to the volume of the catalytic chamber) ranging from. to. CO/UHC emissions in the exhaust of the engine are measured with Netel Chromatograph analyzer. Various sets of the exhaust gases are drawn at three different locations: () immediately after the exhaust valve of the engine, () after the catalytic converter, and () at the outlet after air injection into the catalytic converter. The quantity of air drawn from the compressor and injected into the converter is kept constant so that the backpressure does not increase and reverse flow not created in the converter. Experiments are carried out on different configurations of the engine like conventional engine and copper-coated engine with different test fuels like pure gasoline and gasohol under different sets like set-a-without catalytic converter and without air injection, set-b-with catalytic converter and without air injection and set-c with catalytic converter and with air injection.. Results The variation of CO emissions in the exhaust of the engine at the peak load operation of the engine at a speed of rpm with a compression ratio of 9 : with varying void ratio of the catalyst for different configurations of the engine with different test fuels is shown in Figure. The variation of CO emissions with amount of injected air at peak load operation for gasohol and gasoline at a speed of rpm with different versions of the engine at a compression ratio of 9 : is shown in Figure. 9

ISRN Mechanical Engineering. CE-gasoline-set-B C CCE-gasoline-set-B..6 Void ratio.8 CE-gasohol-set-B C CCE-gasohol-set-B load-peak load, speed- rpm, compression ratio-9 :, set-b-with catalytic converter and without air injection Figure : Variation of CO emissions with void ratio of the catalyst for different configurations of the engine with different test fuels. Temperature of injected air ( C) CE-gaoline-set-C C C C set-c-with catalytic converter and with air injection, load-peak load, speed- rpm, compression ratio-9 :, void ratio-.7 : Figure : Variation of CO with temperature of injected air for different configurations of the engine with different test fuels. C -CE-gasoline-set-C C 6 Air flow rate (L/m) 8 C C set-c-with catalytic converter and with air injection, load-peak load, speed- rpm, Compression ratio-9 :, void ratio-.7 : Figure : Variation of CO with amount of injected air for different configurations of the engine with different test fuels. Figure shows the variation of CO emissions with temperature of injected air at peak load at compression ratio of 9 : and speed of rpm for different test fuels of gasoline, gasohol with different versions of the engine at different operating conditions of the catalytic converter. Figure 6 shows the variation of CO emissions in the exhaust with speed of the engine at peak load operation with a compression ratio of 9 : and at a void ratio of.7 for different configurations of the engine with different test fuels. Figure 7 shows the variation of CO emissions in the exhaust with brake mean effective pressure of the engine at a speed of rpm with compression ratio of 9 : and at a void ratio of.7 with different test fuels with different versions of the engine under different operating conditions. Figure 8 shows the bar charts showing the variation of CO emissions at peak load at different compression ratios. The data of UHC emissions at peak load for different test fuels at different compression ratios and speeds with different versions of the engine is shown in Table.. Discussion From Figure, it can be observed that the CO emissions reduced considerably with increasing void ratio for both sets. However, beyond the void ratio of.7, CO reduction is less due to decrease of surface/volume ratio and increase of backpressure on the engine. At the void ratio.7, CO emissions are lower with gasohol when compared to pure gasoline operation, as fuel-cracking reactions are eliminated with ethanol. The combustion of alcohol produces more water vapor than free carbon atoms as ethanol has lower C/H ratio of. (where C and H represent the number of carbon and hydrogen atoms, resp., in the composition of the fuel) against. of gasoline. Ethanol has oxygen in its structure, and hence its blends have lower stoichiometric air requirements compared to gasoline. Therefore, more

ISRN Mechanical Engineering Table : Data of unburnt hydro carbon emissions (UHC) in ppm at peak load at various speeds and compression ratios with different test fuels. Fuels Gasoline Gasohol Engine version CE CCE CE CCE Speed rpm 8 8 8 8 Set A 8 : 7 9 78 9 : 6 7 7 8 Set-B 8 : 7 9 9 : 6 6 6 Set-C 8 : 6 8 8 6 9 : 8 Set-A-without catalytic converter and without air injection; Set-B-with catalytic converter and without air injection; Set-C-with catalytic converter and with air injection; C.R: compression ratio; CE: conventional engine, CCE: copper coated engine, Gasohol: % of ethanol blended with gasoline by volume. 6 CE-gasoline-set-B CE-gasoline-set-C C CCE-gasoline-set-B Speed of the engine (rpm) CE-gasohol-set-B C CCE-gasohol-set-B C set-b-with catalytic converter and without air injection, set-c-with catalytic converter and with air injection, load-peak load, compression ratio-9 :, void ratio-.7 : Figure 6: Variation of CO with speed of the engine for the different configurations of the engine with different test fuels under different operating conditions of the catalytic converter.. CE-gasoline-set-B CE-gasoline-set-C C CCE-gasoline-set-B. BMEP (bar). CE-gasohol-set-B C CCE-gasohol-set-B C set-b-with catalytic converter and without air injection, set-c-with catalytic converter and with air injection, speed- rpm, compression ratio-9 :, void ratio-.7 : Figure 7: Variation of CO emissions with brake mean effective pressure fordifferent configurationsoftheenginewithdifferent test fuels under different operating conditions of the catalytic converter.. oxygen is available for combustion with the gasohol, which leads to reduction of CO emissions. Ethanol dissociates in the combustion chamber of the engine forming hydrogen, which helps the fuel-air mixture to burn quickly and thus increases combustion velocity, which brings about complete combustion of carbon present in the fuel to carbon dioxide and also carbon monoxide to carbon dioxide and thus makes leaner mixture more combustible, causing reduction of CO emissions. From Figure, it can be observed that percentage of CO emissions is found to be lower when injected air quantity is 6 L/min for conventional engine and copper-coated engine with gasoline while it is L/min for copper-coated engine with gasohol operation. Excessive airflow rate has low residence time, while lower airflow rate is not sufficient for oxidation reaction to convert CO to carbon dioxide. Thus gasohol requires lower quantity of air in coppercoated engine when compared to pure gasoline operation on conventional engine. From Figure, it can be observed that as temperature of injected air increased, CO emissions are observed to be low for both test fuels with different configurations of the engine. When temperature of the injected air is C, CO emissions are recorded at lower levels with gasoline operation

ISRN Mechanical Engineering 9 8 7 6 Compression ratio-8 : Compression ratio-9 :.. CE-gasoline-set-B. CE-gasoline-set-C. C. CCE-gasoline-set-B 6. 7. 8. CE-gasohol-set-B 9.. C. CCE-gasohol-set-B. C Figure 8: Bar chart showing the variation of CO emissions at peak load at different compression ratios at speed of rpm and void ratio of.7 :. on conventional engine, while it is C with gasoline operation on catalytic coated engine. This is due to lower exhaust gas temperature with copper-coated engine, with which temperature needed to promote oxidation reaction is higher when compared to conventional engine. Gasohol operation needed injected air at 6 C with both versions of the engine, as gasohol operation decreased exhaust gas temperatures considerably. From Figure 6, it can be observed that reduction in CO emissions is found to increase with the speed of the engine for all configurations with different test fuels. Improved combustion with the increase of turbulence reduced CO emissions. It is observed that at each speed, the CO content in the exhaust decreased considerably with the use of catalyst, which is more pronounced with the air injection into the converter. Gasohol decreased CO emissions considerably when compared to pure gasoline. Copper-coated engine reduced CO emissions when compared to conventional engine. Catalytic activity increases with temperature as combustion temperature increases with the increase of the speed of the engine. Hence, there is reduction of CO emissions with copper-coated engine when compared to conventional engine. From Figure 7, it is noticed that CO emissions are observed to increase at part load and full load but decrease at middle load for all sets, as observed by others [9] with both test fuels. At the same time, sufficiently large reduction of CO has been achieved with the use of catalytic converter. An air injection into the catalytic converter has further decreased the CO emissions in the exhaust at all loads with all the sets. Gasohol reduced CO emissions considerably when compared to pure gasoline operation. Copper-coated engine reduced CO emissions at all loads when compared to other situations. From Figure 8, it can be noticed that as compression ratio decreased from 9 : to 8 :, CO emissions decreased with different test fuels with both versions of the engine. This is due [] to increase of exhaust gas temperature with the decrease of compression ratio leading to oxidation of CO in the exhaust manifold with different versions of the engine. The trend exhibited by unburnt hydrocarbon emissions (UHC) is similar to that of CO emissions. From the Table, it can be noticed that as speed decreased from rpm to 8 rpm, the turbulence of combustion decreased, and hence speed of the flame decreases. The gas layer is entrapped between the piston and combustion chamber walls leading to increase in quench area. The presence of quench area inhibits the spreading of the flame, thereby increasing the hydrocarbon emissions.. Conclusions A void ratio of.7 is found to be the optimum for different test fuels with different versions of the engine. CO/UHC emissions at peak load decreased by % % with the change of the engine configuration from conventional version to catalytic-coated engine with test fuels. Pollutants decreased by % with the change of fuel from gasoline to gasohol in both versions of the engine under different operating conditions of the catalytic converter. Pollutants increased by % % with the change of compression ratio from 8 : to 9 : while they decreased by % % with the change of speed from 8 rpm to rpm with different test fuels in both configurations of the engine under different operating conditions of the catalytic converter. Air injection decreased the emissions by 6% with different test fuels with different configurations of the engine. Acknowledgements The authors are thankful to the authorities of Chaitanya Bharathi Institute of Technology, Hyderabad for the facilities provided. The financial assistance provided by Andhra Pradesh Council of Science and Technology (APCOST) for this project is greatly acknowledged. References []S.M.Khopkar,Environmental Pollution Analysis, NewAge International, New Delhi, india,. [] M. H. Fulekar, Chemical pollution a threat to human life, Indian Environmental Protection, vol.,no.,pp. 9, 999. [] B. K. Sharma,Engineering Chemistry, Pragathi Prakashan, Meerut, India, 8. [] T. Usha Madhuri, T. Srinivas, and K. Ramakrishna, A study on automobile exhaust pollution with regard to carbon

6 ISRN Mechanical Engineering monoxide emissions, Nature Environment and Pollution Technology, vol., no., pp. 7 7,. [] K. Kishor, M. V. S. Murali Krishna, A. V. S. S. K. S. Gupta, S. Narasimha Kumar, and D. N. Reddy, Emissions from copper coated spark ignition engine with methanol blended gasoline with catalytic converter, Indian Environmental Protection, vol., no., pp. 77 8,. [6] M.F.Luo,X.M.Zheng,andY.J.Zhong, COoxidationactivity and TPR characterization of CeO -supported manganese oxide catalysts, Indian Chemistry,vol.8,no.7,pp. 7 77, 999. [7] M.V.S.MuraliKrishna,C.M.VaraPrasad,andC.h.Venkata Ramana Reddy, Studies on control of carbonmonoxide emission in spark ignition engine using catalytic converter, Ecology, Environment and Conservation, vol. 6, no., pp. 77 8,. [8] R. Manivel and S. Dhandapani, Experimental investigation of catalytically activated two-stroke spark ignited engine combustion chamber, in Proceedings of the 6th National Conference on I.C.Engines and Combustion, pp. 9, January. [9] N. Nedunchezhian and S. Dhandapani, Experimental investigation of cyclic variation of combustion parameters in a catalytically activated two-stroke SI engine combustion chamber, Engineering Today, vol., pp. 8,. [] M. V. S. Murali Krishna and K. Kishor, Investigations on catalytic coated spark ignition engine with methanol blended gasoline with catalytic converter, Indian Journal (CSIR) of Scientific and Industrial Research, vol. 67, pp. 8, 8. [] M.V.S.MuraliKrishna,K.Kishor,A.V.S.S.K.S.Gupta,D. N. Reddy, and S. Narasimha Kumar, Emission characteristics of high speed spark ignition engine with catalytic converter, Ultra Scientist of Physical Sciences, vol., no., pp. 67 6, 9. [] M.V.S.MuraliKrishna,K.Kishor,A.V.S.S.K.S.Gupta,S.N. Kumar, and D. N. Reddy, Control of pollutants from copper coated spark ignition engine with gasohol, Pollution Research, vol. 9, no., pp. 9 9,. [] A. V. Domukundwar, A course in Internal Combustion Engines, Dhanapat Rai & Co, New Delhi, India,.

Rotating Machinery Engineering Volume The Scientific World Journal Volume Distributed Sensor Networks Sensors Volume Volume Volume Control Science and Engineering Advances in Civil Engineering Volume Volume Submit your manuscripts at Electrical and Computer Engineering Robotics Volume Volume VLSI Design Advances in OptoElectronics Navigation and Observation Volume Chemical Engineering Volume Volume Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume Volume Volume Modelling & Simulation in Engineering Volume Volume Shock and Vibration Volume Advances in Acoustics and Vibration Volume