Project 1J.1: Hydraulic Transmissions for Wind Energy

Size: px
Start display at page:

Download "Project 1J.1: Hydraulic Transmissions for Wind Energy"

Transcription

1 Georgia Institute of Technology Milwaukee School of Engineering North Carolina A&T State University Purdue University University of Illinois, Urbana-Champaign University of Minnesota Vanderbilt University Project 1J.1: Hydraulic Transmissions for Wind Energy Researchers: Biswaranjan Mohanty, Feng Wang, Brad Bohlmann, Mike Gust PI: Professor Kim A. Stelson Center for Compact and Efficient Fluid Power Department of Mechanical Engineering University of Minnesota FPIRC, Chicago, October 14-16, 2015

2 Outline 1. Introduction 2. Research topics Hydrostatic turbine control Short-term energy storage Hydro-mechanical transmission 3. Power regenerative wind turbine test platform 4. Conclusions 2

3 Introduction Fastest growing clean and green energy sources 370 GW by 2014, 5% of the global electricity demand Denmark has goal of 50% wind by GW till June 2015, 5.13% of the U.S. electricity demand DOE set goal of 20% of U.S. energy from wind by

4 Turbine Components Two or three stages of planetary or parallel shaft gear train Three actuators: Yaw motor, Pitch motor & Generator Synchronous or asynchronous generator 4

5 Components reliability WindStats Data - 5,000 turbines from Denmark, 24,000 from Germany & 1,200 from Sweden Electrical system has highest failure rate Gear Box has longest downtime per failure Drive train repairs are more expensive due to the crane costs. 5

6 Potential of HST wind turbine Generator Power converter Grid Motor Generator Grid Pump Rotor fixed ratio gearbox Conventional gearbox turbine Rotor Hydrostatic transmission Hydrostatic wind turbine Performance Objective Maximize captured power Minimize loads Reduce downtime Reduce maintenance cost Hydrostatic transmission (HST): Simple system structure Continuous variable transmission ratio No need of power converter All power transmitted through a fluid link; hence less stiff Improves reliability and reduce cost 6

7 HST wind turbines 1. ChapDrive (Norway) 2. Windera Power System (Florida) 3. WindSmart (Canada) 4. Mitsubishi Heavy Industry Aachen University IFAS 1 MW HST wind power test stand Mitsubishi 7MW Sea Angel offshore turbine Core technology: Digital displacement technology by Artemis 93.5% peak efficiency from shaft-to-shaft, and also very efficient in part load too 7

8 Midsize HST turbine in CCEFP CCEFP target: midsize wind (100 kw-1 MW): Community wind - cost-effective way for farms, communities or factories Relatively easy permitting process Few midsize turbines in the market today Commercially available hydrostatic units Mid-size turbines can be designed as locally distributed type, eliminating the costly electric power transmission and improving energy use efficiency. Community wind 8

9 Turbine Control Turbine power Rated power Cut-in speed P w = 1 2 ρau3 Rated speed Region 1 Region 2 Region 3 Four control regions: Region 1: Standby mode Region 2: Control to maximize power Region 3: Control to rated power Region 4: Turbine shut down Cut-out speed Wind speed Region 4 Rotor power coefficient (Cp) is the fraction of wind power captured by the rotor: C P = P r = C P P (λ, β) w Rotor tip speed ratio: λ = ω rr u According to Betz Law, the maximum energy that can be captured by the rotor is 59.3% of the kinetic energy of the wind * Johnson, K. E., Pao, L. Y., Balas, M. J., Fingersh, L. J. Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Systems Magazine, Vol. 26(3), pp.70 81,

10 Region 2 Control (Existing) Objective: Maximize power captured Strategy: Constant pitch angle β and use τ g to operate turbine at optimum point Torque control law - control rotor reaction torque: τ g = τ c = Kω r 2 where the gain K is given by blade parameters. K = 1 2 ρar3 C pmax λ 3 Dynamics of the rotor ω r = 1 2J ρar3 ω r 2 ( C p λ 3 C pmax λ 3 ) u The beauty of the kω 2 law: bring the turbine to optimal point only with rotor speed and it does not require wind speed information. Rotor power coefficient C p C p max Acceleration C C p pmax 3 3 * Optimum point * Tip speed ratio C C p pmax 3 3 * Deceleration C C p pmax 3 3 * 14 10

11 HST turbine control in region 2 Rotor Hydrostatic transmission Kω 2 law Pressure sensor torque cmd Torque/ pressure conversion Generator pressure - cmd + HST turbine control scheme in region 2 motor disp. cmd PI controller Rotor reaction torque generated by the pump The relationship between the pump torque command and the line pressure command: p c p c D where η p is the pump mechanical efficiency. To give accurate control, the pump mechanical efficiency is estimated by previewing the pump efficiency map from the historical rotor speed and line pressure data. p Control strategy 1. Use rotor speed to generate rotor reaction torque (pump torque) command (kω 2 law) 2. Convert pump torque command to line pressure command 3. Track the line pressure by adjusting motor displacement through PI controller F. Wang and K. A. Stelson, Model predictive control for a mid-sized hydrostatic wind turbine, 13th Scandinavian International Conference on Fluid Power, SICFP2013, June 3-5, 2013, Linköping, Sweden,

12 Dynamic simulation model Hydrostatic wind turbine Main features of the simulation model: 1. Physical equation based components model; 2. Use bond graph method to determine the causality; 3. Use FAST code to generate rotor efficiency map; 4. Use pump/motor efficiency map to determine the HST losses; 5. Use distributed line model to simulate line dynamics and losses. 6. Take the charge pump power into consideration. total motor displacement fraction pitch angle Controller Wind profile rotor speed pump output flow motor inlet pressure motor torque Aerodynamic rotor Generator Radial piston pump High pressure pipeline Bent/axial piston motor pump torque motor input flow pump outlet pressure motor speed pump input flow motor outlet pressure motor output flow pump inlet pressure Low pressure pipeline Charge pump charge flow Valve manifold total input flow to low pressure line 12

13 Short-term energy storage To increase the energy capture of an HST wind turbine, a short-term energy storage system using a hydraulic accumulator is proposed. Turbine power Rated power Store P wind = 1 2 ρau3 Energy storage regime Release Wind turbulence: Gaussian distribution - mean wind speed Cut-in speed Rated speed Cut-out speed Region 1 Region 2 Region 3 Wind speed Captures excess energy when the wind speed is above rated (region 3) Release stored energy when the wind speed is below rated (region 2). 10 minutes turbulent wind profile * R. Dutta, F. Wang, B. Bohlmann and K. A. Stelson, Analysis of short-term energy storage for mid-size hydrostatic wind turbine, in Proc. ASME Dynamic Systems and Control Conference, Fort Lauderdale, FL, USA, 2012, selected as top 20 outstanding finalist papers. 13

14 % increase Short-term energy storage Rotor o 4.5% 4.0% 3.5% D p P o P Fixed pump Displacement control M1 M2 Energy storage configuration Accumulator Generator M1 Variable motor M2 Variable pump/motor Generator power with and without storage Sensitivity study: accumulator size on annual energy production (AEP) in a 50 kw turbine: 3.0% 2.5% 2.0% Accumulator Volume (liter) % increase in AEP 40 liter accumulator increases AEP by 3.4% 60 liter accumulator increases AEP by 4.1% A cost analysis is required to determine whether the AEP increase will offset the cost increase of implementing the system. * R. Dutta, F. Wang*, B. Bohlmann, K. Stelson, Analysis of short-term energy storage for mid-size hydrostatic wind turbine, ASME Transaction, Journal of Dynamic Systems, Measurement, and Control, 136(1),

15 Hydro-mechanical wind turbine A hydro-mechanical transmission combines the advantages of high efficiency of a gearbox and variable function of an HST. HMT vs HST (real-world components data) 1 v Rotor T r r R1 C1 S1 Mechanical power T d p Q T p D p p D m x p T Hydro-mechanical transmission Hydraulic power T m m R2 C2 S2 T g g Hydro-mechanical wind turbine (PGS+HST) R- ring gear C- carrier S- sun gear Generator Drivetrain efficiency Generator power (W) Simulated (HMT) Simulated (HST) Wind speed (m/s) x Simulated (HMT) Simulated (HST) Wind speed (m/s) * F. Wang, B. Trietch and K. A. Stelson, Mid-sized wind turbine with hydro-mechanical transmission demonstrates improved energy production, Proc. 8th International Conference on Fluid Power Transmission and Control (ICFP 2013), Hangzhou, China,

16 A. Power Regenerative Test Platform 105 kw 160 kw Virtual rotor Turbine output Virtual wind simulated by hydrostatic drive Real HST under test M Hydrostatic Transmission (HST) To Investigate the performance of hydrostatic transmission To test the advanced control algorithm 1. Capable of simulating a turbine output power of 105 kw VFD Variable Frequency 55 kw Drive Hydrostatic Drive (HSD) 2. Small electric motor (55kW) to compensate for losses in the components (assuming overall efficiencies of the pump and motor are 90% each) 16

17 A. Power Regenerative Test Platform Virtual rotor 2512 cc Hagglunds motors (act as pump) Turbine output 2512 cc Hagglunds motors 135 cc Linde variable motor Electric power input 180 cc Bosch variable pump 17

18 A. Power Regenerative Test Platform (Status) Charge Circuit(HST) VFD Motor(HST) Electric Motor Torque Sensor Pump(HSD) Cooler Pump(HST) Rotor Motor(HSD) 18

19 A. Wind turbine rotor simulation Aerodynamic torque is a function of pitch angle, rotor speed and wind speed To simulate real dynamics of the rotor of a turbine, the effect of the large blade inertia will be virtually simulated and the modified torque is applied on the rotor of the test platform τ d = τ r (J r J s ) ω r Design a controller to track desired torque using HSD circuit To generate aero dynamic torque for 105 kw turbine by modifying the blade dynamics of the FAST code 19

20 Conclusions The proposed HST turbine control strategy based on torque control law is applicable to the real world HST turbine. Short-term energy storage with hydraulic accumulator can improve the turbine energy production. A cost analysis is required to determine whether the energy increase will offset the cost increase of implementing such system. A hydro-mechanical transmission combines the advantages of high efficiency of a gearbox and variable function of an HST, resulting a high turbine energy production. The cost and reliability analysis is still required. The power regeneration wind turbine test platform enables simulating the real word HST turbine behaviors in the lab, providing a powerful tool to investigate research topics. New improvements could come from advanced turbine control strategies, more efficient hydraulic transmissions and new hydraulic fluids. 20

21 Kim A. Stelson University of Minnesota Mike Gust University of Minnesota Brad Bohlmann University of Minnesota Thank you! Feng Wang University of Minnesota Biswaranjan Mohanty University of Minnesota Ching-Sung Wang National Taiwan University 21

Free Piston Engine Based Off-Road Vehicles

Free Piston Engine Based Off-Road Vehicles Marquette University Milwaukee School of Engineering Purdue University University of California, Merced University of Illinois, Urbana-Champaign University of Minnesota Vanderbilt University Free Piston

More information

Four-Quadrant Multi-Fluid Pump/Motor

Four-Quadrant Multi-Fluid Pump/Motor Georgia Institute of Technology Marquette University Milwaukee School of Engineering North Carolina A&T State University Purdue University University of California, Merced University of Illinois, Urbana-Champaign

More information

Modeling and Experimental Testing of the Hondamatic Hydro-Mechanical Power Split Transmission

Modeling and Experimental Testing of the Hondamatic Hydro-Mechanical Power Split Transmission Georgia Institute of Technology Marquette University Milwaukee School of Engineering North Carolina A&T State University Purdue University University of California, Merced University of Illinois, Urbana-Champaign

More information

Test Bed 1 Energy Efficient Displacement-Controlled Hydraulic Hybrid Excavator

Test Bed 1 Energy Efficient Displacement-Controlled Hydraulic Hybrid Excavator Test Bed 1 Energy Efficient Displacement-Controlled Hydraulic Hybrid Excavator Enrique Busquets Monika Ivantysynova October 7, 2015 Maha Fluid Power Research Center Purdue University, West Lafayette, IN,

More information

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM Ms. Dipali A. Umak 1, Ms. Trupti S. Thakare 2, Prof. R. K. Kirpane 3 1 Student (BE), Dept. of EE, DES s COET, Maharashtra,

More information

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011 EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Fall 2011 Overview Environmental pressures have led many countries to set ambitious goals of renewable energy generation. Wind energy is the dominant renewable

More information

Using energy storage for modeling a stand-alone wind turbine system

Using energy storage for modeling a stand-alone wind turbine system INTERNATIONAL JOURNAL OF ENERGY and ENVIRONMENT Volume, 27 Using energy storage for modeling a stand-alone wind turbine system Cornel Bit Abstract This paper presents the modeling in Matlab-Simulink of

More information

Studies regarding the modeling of a wind turbine with energy storage

Studies regarding the modeling of a wind turbine with energy storage Studies regarding the modeling of a wind turbine with energy storage GIRDU CONSTANTIN CRISTINEL School Inspectorate of County Gorj, Tg.Jiu, Meteor Street, nr. ROMANIA girdu23@yahoo.com Abstract: This paper

More information

Primary frequency control by wind turbines

Primary frequency control by wind turbines Presented at 22 3rd IEEE PES ISGT Europe, Berlin, Germany, October 4 7, 22 Primary frequency control by wind turbines DiplIng Michael Wilch Prof DrIng István Erlich Institute of Electrical Power Systems

More information

2B.3 - Free Piston Engine Hydraulic Pump

2B.3 - Free Piston Engine Hydraulic Pump 2B.3 - Free Piston Engine Hydraulic Pump Georgia Institute of Technology Milwaukee School of Engineering North Carolina A&T State University Purdue University University of Illinois, Urbana-Champaign University

More information

Temporary Rotor Inertial Control of Wind Turbine to Support the Grid Frequency Regulation

Temporary Rotor Inertial Control of Wind Turbine to Support the Grid Frequency Regulation Temporary Rotor Inertial Control of Wind Turbine to Support the Grid Frequency Regulation Bing Liu, Kjetil Uhlen, Tore Undeland Department of Electric Power Engineering, NTNU The 9th Deep Sea Offshore

More information

Wind Turbine Emulation Experiment

Wind Turbine Emulation Experiment Wind Turbine Emulation Experiment Aim: Study of static and dynamic characteristics of wind turbine (WT) by emulating the wind turbine behavior by means of a separately-excited DC motor using LabVIEW and

More information

Project 16MA1: Efficient, Integrated, Freeform Flexible Hydraulic Actuators

Project 16MA1: Efficient, Integrated, Freeform Flexible Hydraulic Actuators Georgia Institute of Technology Marquette University Milwaukee School of Engineering North Carolina A&T State University Purdue University University of California, Merced University of Illinois, Urbana-Champaign

More information

Optimal Design of a Compound Hybrid System consisting of Torque Coupling and Energy Regeneration for Hydraulic Hybrid Excavator *

Optimal Design of a Compound Hybrid System consisting of Torque Coupling and Energy Regeneration for Hydraulic Hybrid Excavator * Optimal Design of a Compound Hybrid System consisting of Torque Coupling and Energy Regeneration for Hydraulic Hybrid Excavator * Yang Xiao, Cheng Guan, Perry Y. Li and Fei Wang Abstract For hydraulic

More information

V MW & 2.0 MW Built on experience

V MW & 2.0 MW Built on experience V90-1.8 MW & 2.0 MW Built on experience Innovations in blade technology Optimal efficiency The OptiSpeed * generators in the V90-1.8 MW and the V90-2.0 MW have been adapted from those in Vestas highly

More information

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Wind Energy 101: See Video Link Below http://energy.gov/eere/videos/energy-101- wind-turbines-2014-update Wind Power Inland and Offshore Growth in Wind

More information

V MW The future for low wind sites

V MW The future for low wind sites V0-2.75 MW The future for low wind sites Knowing which way the wind blows The V0-2.75 MW turbine know which way the wind blows, and is designed to follow it. A significant advance in wind turbine efficiency,

More information

STUDY OF AN ARTICULATED BOOM LIFT BY CO- SIMULATION OF BODIES FLEXIBILITY, VEHICLE DYNAMICS AND HYDRAULIC ACTUATION

STUDY OF AN ARTICULATED BOOM LIFT BY CO- SIMULATION OF BODIES FLEXIBILITY, VEHICLE DYNAMICS AND HYDRAULIC ACTUATION Georgia Institute of Technology Marquette University Milwaukee School of Engineering North Carolina A&T State University Purdue University University of California, Merced University of Illinois, Urbana-Champaign

More information

Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications

Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications 1 Shrutika Patil, 2 J. G. Patil, 3 R. Y. Patil 1 M.E. Student, 2 Associate Professor, 3 Head of Department, Department of

More information

Design and Control of Lab-Scale Variable Speed Wind Turbine Simulator using DFIG. Seung-Ho Song, Ji-Hoon Im, Hyeong-Jin Choi, Tae-Hyeong Kim

Design and Control of Lab-Scale Variable Speed Wind Turbine Simulator using DFIG. Seung-Ho Song, Ji-Hoon Im, Hyeong-Jin Choi, Tae-Hyeong Kim Design and Control of Lab-Scale Variable Speed Wind Turbine Simulator using DFIG Seung-Ho Song, Ji-Hoon Im, Hyeong-Jin Choi, Tae-Hyeong Kim Dept. of Electrical Engineering Kwangwoon University, Korea Summary

More information

MARITIME AFTERNOON. Torben Ole Andersen. June 14, 2017 Aalborg University, Denmark

MARITIME AFTERNOON. Torben Ole Andersen. June 14, 2017 Aalborg University, Denmark MARITIME AFTERNOON HYDRAULICS Torben Ole Andersen June 14, 2017 Aalborg University, Denmark Agenda Marine Propellers Digital Hydraulics in a Hydraulic Winch Secondary Control in of Multi -Chamber Cylinders

More information

DeepWind-from idea to 5 MW concept

DeepWind-from idea to 5 MW concept DeepWind 2014-11 th Deep Sea Offshore Wind R&D Conference 22-24 January 2014 Trondheim, No Uwe Schmidt Paulsen a uwpa@dtu.dk b Helge Aa. Madsen, Per H. Nielsen,Knud A. Kragh c Ismet Baran,Jesper H. Hattel

More information

Farhana Shirin Lina BSC.(Electrical and Electronic) Memorial University of Newfoundland & Labrador

Farhana Shirin Lina BSC.(Electrical and Electronic) Memorial University of Newfoundland & Labrador Farhana Shirin Lina BSC.(Electrical and Electronic) Memorial University of Newfoundland & Labrador Introduction Research Objectives Different Control Systems System Modeling and Control Controller Design

More information

Fault-Tolerant Control of a Blade-pitch Wind Turbine With Inverter-fed Generator

Fault-Tolerant Control of a Blade-pitch Wind Turbine With Inverter-fed Generator Fault-Tolerant Control of a Blade-pitch Wind Turbine With Inverter-fed Generator V. Lešić 1, M. Vašak 1, N. Perić 1, T. Wolbank 2 and G. Joksimović 3 1 Faculty of Electrical Engineering and Computing,

More information

Hydraulic Flywheel Accumulator for Mobile Energy Storage

Hydraulic Flywheel Accumulator for Mobile Energy Storage Hydraulic Flywheel Accumulator for Mobile Energy Storage Paul Cronk University of Minnesota October 14 th, 2015 I. Overview Outline I. Background on Mobile Energy Storage II. Hydraulic Flywheel Accumulator

More information

A CAD Design of a New Planetary Gear Transmission

A CAD Design of a New Planetary Gear Transmission A CAD Design of a New Planetary Gear Transmission KONSTANTIN IVANOV AIGUL ALGAZIEVA ASSEL MUKASHEVA GANI BALBAYEV Abstract This paper presents the design and characteriation of a new planetary transmission

More information

Possibilities of Distributed Generation Simulations Using by MATLAB

Possibilities of Distributed Generation Simulations Using by MATLAB Possibilities of Distributed Generation Simulations Using by MATLAB Martin Kanálik, František Lizák ABSTRACT Distributed sources such as wind generators are becoming very imported part of power system

More information

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 14, Issue 1 (January 2018), PP.59-63 Dynamic Behaviour of Asynchronous Generator

More information

Study on the Servo Drive of PM-LSM to Be Used in Parallel Synchronous Drive

Study on the Servo Drive of PM-LSM to Be Used in Parallel Synchronous Drive Journal of Mechanics Engineering and Automation 5 (2015) 580-584 doi: 10.17265/2159-5275/2015.10.007 D DAVID PUBLISHING Study on the Servo Drive of PM-LSM to Be Used in Parallel Synchronous Drive Hiroyuki

More information

Rotor imbalance cancellation

Rotor imbalance cancellation White paper Rotor imbalance cancellation Imbalance in a wind turbine rotor is a typical problem of both new and older wind turbines. This paper describes an approach for minimizing rotor imbalance using

More information

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 15

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 15 Systems ME 597/ABE 591 - Lecture 15 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Hydrostatic transmissions - Hydrostatic transmission basic

More information

GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT.

GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT. GE Renewable Energy GE s 3 MW Platform POWERFUL AND EFFICIENT www.gerenewableenergy.com GE S 3 MW PLATFORM PITCH Since entering the wind industry in 2002, GE Renewable Energy has invested more than $2.5

More information

Smart Wind Turbine Solutions 2MW Platform

Smart Wind Turbine Solutions 2MW Platform Smart Wind Turbine Solutions 2MW Platform Your Partner for Performance Proven technology Built with world-class components and a stateof-the-art control system, the 2MW platform turbines are engineered

More information

A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition

A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition Silvio Simani Department of Engineering, University of Ferrara Via Saragat 1E 44123 Ferrara (FE), ITALY Ph./Fax:+390532974844

More information

Vestas Product Offering V MW at a Glance. Renato Loureiro Gonçalves Wind & Site Engineer

Vestas Product Offering V MW at a Glance. Renato Loureiro Gonçalves Wind & Site Engineer Vestas Product Offering V150-4.2 MW at a Glance Renato Loureiro Gonçalves Wind & Site Engineer Content Introduction 3-5 4 MW Platform 6-9 Track Record 10-14 Performance Upgrades 15-22 Time to Market 23-24

More information

On Control Strategies for Wind Turbine Systems

On Control Strategies for Wind Turbine Systems On Control Strategies for Wind Turbine Systems Niall McMahon December 21, 2011 More notes to follow at: http://www.niallmcmahon.com/msc_res_notes.html 1 Calculations for Peak Tip Speed Ratio Assuming that

More information

Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG)

Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG) Effect of prime mover speed on power factor of Grid Connected low capacity Induction Generator (GCIG) 1 Mali Richa Pravinchandra, 2 Prof. Bijal Mehta, 3 Mihir D. Raval 1 PG student, 2 Assistant Professor,

More information

Analysis of Eclipse Drive Train for Wind Turbine Transmission System

Analysis of Eclipse Drive Train for Wind Turbine Transmission System ISSN 2395-1621 Analysis of Eclipse Drive Train for Wind Turbine Transmission System #1 P.A. Katre, #2 S.G. Ganiger 1 pankaj12345katre@gmail.com 2 somu.ganiger@gmail.com #1 Department of Mechanical Engineering,

More information

Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm for a Parallel Hydraulic Hybrid Bus

Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm for a Parallel Hydraulic Hybrid Bus International Journal of Automation and Computing 11(3), June 2014, 249-255 DOI: 10.1007/s11633-014-0787-4 Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm

More information

Performance of Low Power Wind-Driven Wound Rotor Induction Generators using Matlab

Performance of Low Power Wind-Driven Wound Rotor Induction Generators using Matlab Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Performance

More information

Model Predictive Control of Back-to-Back Converter in PMSG Based Wind Energy System

Model Predictive Control of Back-to-Back Converter in PMSG Based Wind Energy System Model Predictive Control of Back-to-Back Converter in PMSG Based Wind Energy System Sugali Shankar Naik 1, R.Kiranmayi 2, M.Rathaiah 3 1P.G Student, Dept. of EEE, JNTUA College of Engineering, 2Professor,

More information

DESIGN AND FUEL ECONOMY OF A SERIES HYDRAULIC HYBRID VEHICLE

DESIGN AND FUEL ECONOMY OF A SERIES HYDRAULIC HYBRID VEHICLE OS1-1 Proceedings of the 7th JFPS International Symposium on Fluid Power, TOYAMA 2008 September 15-18, 2008 DESIGN AND FUEL ECONOMY OF A SERIES HYDRAULIC HYBRID VEHICLE Peter ACHTEN*, Georges VAEL*, Mohamed

More information

Wind Generation and its Grid Conection

Wind Generation and its Grid Conection Wind Generation and its Grid Conection J.B. Ekanayake PhD, FIET, SMIEEE Department of Electrical and Electronic Eng., University of Peradeniya Content Wind turbine basics Wind generators Why variable speed?

More information

A Comparative Study of Constant Speed and Variable Speed Wind Energy Conversion Systems

A Comparative Study of Constant Speed and Variable Speed Wind Energy Conversion Systems GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 10 September 2016 ISSN: 2455-5703 A Comparative Study of Constant Speed and Variable Speed Wind Energy Conversion Systems

More information

Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures

Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures 2013 American Control Conference (ACC) Washington, DC, USA, June 17-19, 2013 Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures Zhekang Du, Kai Loon Cheong, Perry Y. Li

More information

Within the 300 GW total, the Energy Department estimates that 54 GW will be required from offshore wind to feed the large coastal demand centers.

Within the 300 GW total, the Energy Department estimates that 54 GW will be required from offshore wind to feed the large coastal demand centers. THE MOST ADVANCED WIND- ENERGY TESTING CENTER COMING TO SOUTH CAROLINA In a one- of- a- kind testing facility under construction at the Clemson University Restoration Institute, offshore wind turbine manufacturers

More information

ASSESSING BEHAVOIR OF THE OUTER CROWBAR PROTECTION WITH THE DFIG DURING GRID FAULT

ASSESSING BEHAVOIR OF THE OUTER CROWBAR PROTECTION WITH THE DFIG DURING GRID FAULT 2 nd International Conference on Energy Systems and Technologies 18 21 Feb. 2013, Cairo, Egypt ASSESSING BEHAVOIR OF THE OUTER CROWBAR PROTECTION WITH THE DFIG DURING GRID FAULT Mohamed Ebeed 1, Omar NourEldeen

More information

Siemens Gamesa AEP increase Solution

Siemens Gamesa AEP increase Solution Siemens Gamesa AEP increase Solution August 2017 Service Product portfolio - Optimization Reliability To keep turbines up and running Maintenance: Scheduled service, trouble shooting, Standard and major

More information

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica Joel Petersson Joel.pettersson@gmail.com Pär Isaksson Par.Isaksson.lth@gmail.com Abstract A small wind power plant connected to

More information

Mathers Hydraulics Technologies. Sliding Vane Technology

Mathers Hydraulics Technologies. Sliding Vane Technology Mathers Hydraulics Technologies Sliding Vane Technology Mathers Hydraulics Technologies Overview Fuel Saving Vane Pump Fluid Coupling HMT and the Torque Amplifier Hydro-Mechanical Transmission Hydraulic

More information

DESIGN AND EXPERIMENTAL VALIDATION OF A VIRTUAL VEHICLE CONTROL CONCEPT FOR TESTING HYBRID VEHICLES USING A HYDROSTATIC DYNAMOMETER

DESIGN AND EXPERIMENTAL VALIDATION OF A VIRTUAL VEHICLE CONTROL CONCEPT FOR TESTING HYBRID VEHICLES USING A HYDROSTATIC DYNAMOMETER Proceedings of 2014 ASME Dynamic Systems and Control Conference ASME DSCC 2014 October 22-October 24, 2014, San Antonio, USA DSCC2014-6290 DESIGN AND EXPERIMENTAL VALIDATION OF A VIRTUAL VEHICLE CONTROL

More information

Digital Displacement wind-turbine transmission

Digital Displacement wind-turbine transmission Digital Displacement wind-turbine transmission 14 th European Conference Latest Technologies on Renewable Energy Heriot Watt University 21 st February 2011 Jamie Taylor 1 Doing more with less Wind-turbine

More information

Session 5 Wind Turbine Scaling and Control W. E. Leithead

Session 5 Wind Turbine Scaling and Control W. E. Leithead SUPERGEN Wind Wind Energy Technology Session 5 Wind Turbine Scaling and Control W. E. Leithead Supergen 2 nd Training Seminar 24 th /25 th March 2011 Wind Turbine Scaling and Control Outline Introduction

More information

Optimal System Solutions Enabled by Digital Pumps

Optimal System Solutions Enabled by Digital Pumps 1.2 Optimal System Solutions Enabled by Digital Pumps Luke Wadsley Sauer-Danfoss (US) Company Internal flow sharing capability; multiple services can be supplied by a single pump. The system controller

More information

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology PMSG Based Wind Farm Analysis in ETAP Software Anupam *1, Prof. S.U Kulkarni 2 1 Department

More information

Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control

Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control of wind and wind farms Norcowe 2015 PhD Summer school Single Turbine August, 2015 Department of Electronic Systems Aalborg University Denmark Outline Single Turbine Why is Historic Stall led in partial

More information

A STUDY ON ENERGY MANAGEMENT SYSTEM FOR STABLE OPERATION OF ISOLATED MICROGRID

A STUDY ON ENERGY MANAGEMENT SYSTEM FOR STABLE OPERATION OF ISOLATED MICROGRID A STUDY ON ENERGY MANAGEMENT SYSTEM FOR STABLE OPERATION OF ISOLATED MICROGRID Kwang Woo JOUNG Hee-Jin LEE Seung-Mook BAEK Dongmin KIM KIT South Korea Kongju National University - South Korea DongHee CHOI

More information

Vertical axes wind turbine with permanent magnet generator emergency brake system simulation in MATLAB Simulink

Vertical axes wind turbine with permanent magnet generator emergency brake system simulation in MATLAB Simulink Vertical axes wind turbine with permanent magnet generator emergency brake system simulation in MATLAB Simulink Komass T. Institute of Energetic, Latvia University of Agriculture tf11198@llu.lv Abstract

More information

Vibration Measurement and Noise Control in Planetary Gear Train

Vibration Measurement and Noise Control in Planetary Gear Train Vibration Measurement and Noise Control in Planetary Gear Train A.R.Mokate 1, R.R.Navthar 2 P.G. Student, Department of Mechanical Engineering, PDVVP COE, A. Nagar, Maharashtra, India 1 Assistance Professor,

More information

Low Speed Wind Turbines. Current Applications and Technology Development

Low Speed Wind Turbines. Current Applications and Technology Development Low Speed Wind Turbines Current Applications and Technology Development Why low wind speed turbines? Easily accessible prime class 6 sites are disappearing. Many class 6 sites are located in remote areas

More information

Application Note Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines

Application Note Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines Application Note 83404 Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines Woodward reserves the right to update any portion of this publication

More information

Control Scheme for Grid Connected WECS Using SEIG

Control Scheme for Grid Connected WECS Using SEIG Control Scheme for Grid Connected WECS Using SEIG B. Anjinamma, M. Ramasekhar Reddy, M. Vijaya Kumar, Abstract: Now-a-days wind energy is one of the pivotal options for electricity generation among all

More information

Fuzzy based Adaptive Control of Antilock Braking System

Fuzzy based Adaptive Control of Antilock Braking System Fuzzy based Adaptive Control of Antilock Braking System Ujwal. P Krishna. S M.Tech Mechatronics, Asst. Professor, Mechatronics VIT University, Vellore, India VIT university, Vellore, India Abstract-ABS

More information

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle

Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric Vehicle ES27 Barcelona, Spain, November 7-2, 23 Comparison of Braking Performance by Electro-Hydraulic ABS and Motor Torque Control for In-wheel Electric ehicle Sungyeon Ko, Chulho Song, Jeongman Park, Jiweon

More information

INDUCTION motors are widely used in various industries

INDUCTION motors are widely used in various industries IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 6, DECEMBER 1997 809 Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control Jae Ho Chang and Byung Kook Kim,

More information

Introduction to Present Day Wind Energy Technology, The Wind Power Station

Introduction to Present Day Wind Energy Technology, The Wind Power Station Introduction to Present Day Wind Energy Technology, The Wind Power Station P. J. Tavner, Professor of New & Renewable Energy Energy Group History of Wind 2 of 54 History Man has been using the wind for

More information

German-American Chamber of Commerce Offshore wind conference Jersey City, NJ October 18, 2011

German-American Chamber of Commerce Offshore wind conference Jersey City, NJ October 18, 2011 German-American Chamber of Commerce Offshore wind conference Jersey City, NJ October 18, 2011 Robert (Bob) Schubert Key Account Executive Siemens Energy Inc. Radnor, PA Sent as pdf to GACC 2010 2011 Siemens

More information

837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines

837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines 837. Dynamics of hybrid PM/EM electromagnetic valve in SI engines Yaojung Shiao 1, Ly Vinh Dat 2 Department of Vehicle Engineering, National Taipei University of Technology, Taipei, Taiwan, R. O. C. E-mail:

More information

Combined Inertia and De-loading Frequency Response Control by Variable Speed Wind Turbines

Combined Inertia and De-loading Frequency Response Control by Variable Speed Wind Turbines Global Journal of Scientific Researches Available online at gjsr.blue-ap.org 2016 GJSR Journal. Vol. 4(4), pp. 54-62, 31 August, 2016 E-ISSN: 2311-732X Combined Inertia and De-loading Frequency Response

More information

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE Rotor Blade Rotor/Generator Bearing Cast Hub Auxiliary Crane Wind Measurement Equipment Pitch System Heat Exchanger Yaw System Base Frame PMDD Generator GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD)

More information

COMPARISON BETWEEN ISOLATED AND GRID CONNECTED DFIG WIND TURBINE

COMPARISON BETWEEN ISOLATED AND GRID CONNECTED DFIG WIND TURBINE COMPARISON BETWEEN ISOLATED AND GRID CONNECTED DFIG WIND TURBINE Richa jain 1, Tripti shahi 2, K.P.Singh 3 Department of Electrical Engineering, M.M.M. University of Technology, Gorakhpur, India 1 Department

More information

Analysis and Design of Independent Pitch Control System

Analysis and Design of Independent Pitch Control System 5th International Conference on Civil Engineering and Transportation (ICCET 2015) Analysis and Design of Independent Pitch Control System CHU Yun Kai1, a *, MIAO Qiang2,b, DU Jin Song1,c, LIU Yi Yang 1,d

More information

Drivetrain Simulation and Load Determination using SIMPACK

Drivetrain Simulation and Load Determination using SIMPACK Fakultät Maschinenwesen, Institut für Maschinenelemente und Maschinenkonstruktion, Lehrstuhl Maschinenelemente Drivetrain Simulation and Load Determination using SIMPACK SIMPACK Conference Wind and Drivetrain

More information

SeaGen-S 2MW. Proven and commercially viable tidal energy generation

SeaGen-S 2MW. Proven and commercially viable tidal energy generation SeaGen-S 2MW Proven and commercially viable tidal energy generation The SeaGen Advantage The generation of electricity from tidal flows requires robust, proven, available, and cost effective technology.

More information

Northern Power 100. All turbines capture wind. The Northern Power 100 is designed to do it better.

Northern Power 100. All turbines capture wind. The Northern Power 100 is designed to do it better. Annual Energy Production: 21-Meter Rotor All turbines capture wind. The Northern Power 100 is designed to do it better. 400 Model Northern Power 100 350 Design Class IEC IIA (air density 1.225 kg/m3, average

More information

The X-Rotor Offshore Wind Turbine Concept

The X-Rotor Offshore Wind Turbine Concept DeepWind 2019 The X-Rotor Offshore Wind Turbine Concept Bill Leithead Arthur Camciuc, Abbas Kazemi Amiri and James Carroll University of Strathclyde Outline 1. X-Rotor Concept 2. X- Rotor Potential Benefits

More information

PERFORMANCE ANALYSIS OF SQUIRREL CAGE INDUCTION GENERATOR USING STATCOM

PERFORMANCE ANALYSIS OF SQUIRREL CAGE INDUCTION GENERATOR USING STATCOM Volume II, Issue XI, November 13 IJLTEMAS ISSN 78-54 PERFORMANCE ANALYSIS OF SQUIRREL CAGE INDUCTION GENERATOR USING K.B. Porate, Assistant Professor, Department of Electrical Engineering, Priyadarshini

More information

CONTROL AND PERFORMANCE OF A DOUBLY-FED INDUCTION MACHINE FOR WIND TURBINE SYSTEMS

CONTROL AND PERFORMANCE OF A DOUBLY-FED INDUCTION MACHINE FOR WIND TURBINE SYSTEMS CONTROL AND PERFORMANCE OF A DOUBLY-FED INDUCTION MACHINE FOR WIND TURBINE SYSTEMS Lucian Mihet-Popa "POLITEHNICA" University of Timisoara Blvd. V. Parvan nr.2, RO-300223Timisoara mihetz@yahoo.com Abstract.

More information

Project 16FT1: Simulation, Rheology and Efficiency of Polymer Enhanced Solutions

Project 16FT1: Simulation, Rheology and Efficiency of Polymer Enhanced Solutions Marquette University Milwaukee School of Engineering Purdue University University of California, Merced University of Illinois, Urbana-Champaign University of Minnesota Vanderbilt University Project 16FT1:

More information

Combined Input Voltage and Slip Power Control of low power Wind-Driven WoundRotor Induction Generators

Combined Input Voltage and Slip Power Control of low power Wind-Driven WoundRotor Induction Generators Combined Input Voltage and Slip Control of low power Wind-Driven Woundotor Induction Generators M. Munawaar Shees a, FarhadIlahi Bakhsh b a Singhania University, ajasthan, India b Aligarh Muslim University,

More information

Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles

Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles Kerem Koprubasi (1), Eric Westervelt (2), Giorgio Rizzoni (3) (1) PhD Student, (2) Assistant Professor, (3) Professor Department of

More information

2F MEMS Proportional Pneumatic Valve

2F MEMS Proportional Pneumatic Valve 2F MEMS Proportional Pneumatic Valve Georgia Institute of Technology Milwaukee School of Engineering North Carolina A&T State University Purdue University University of Illinois, Urbana-Champaign University

More information

DRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY STORAGE SYSTEM

DRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY STORAGE SYSTEM DRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY STORAGE SYSTEM Mohsen Saadat Dept. of Mechanical Engineering University of Minnesota Minneapolis, MN Email:

More information

Simulation and Analysis of a DFIG Wind Energy Conversion System with Genetic Fuzzy Controller

Simulation and Analysis of a DFIG Wind Energy Conversion System with Genetic Fuzzy Controller International Journal of Soft Computing and Engineering (IJSCE) Simulation and Analysis of a DFIG Wind Energy Conversion System with Genetic Fuzzy Controller B. Babypriya, N. Devarajan Abstract The behavior

More information

Experimental Performance Evaluation of IPM Motor for Electric Vehicle System

Experimental Performance Evaluation of IPM Motor for Electric Vehicle System IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 1 (Jan. 2013), V3 PP 19-24 Experimental Performance Evaluation of IPM Motor for Electric Vehicle System Jin-Hong

More information

GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT. Attachment C. Turbine Specifications

GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT. Attachment C. Turbine Specifications GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT Attachment C Turbine Specifications Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse

More information

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 47 CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy has been the subject of much recent research and development. The only negative

More information

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION International Journal of Latest Research in Science and Technology Volume 3, Issue 1: Page No.68-74,January-February 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 POWER QUALITY IMPROVEMENT

More information

Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11)

Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11) Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11) Office of Naval Research Grant Award Number N0014-12-1-0496 Hydrogen Energy System Simulation Model for Grid Management

More information

CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS

CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS 88 CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS 5.1 INTRODUCTION The advances in power electronics technology have enabled the use of variable speed induction generators for wind energy

More information

ATLAS Principle to Product

ATLAS Principle to Product ATLAS Principle to Product SUPERGEN 26th May 2016 Wind and tidal energy control experts SgurrControl Experts in wind and tidal energy control Engineering organisation providing control solutions to wind

More information

Dynamic Response Analysis of Small Wind Energy Conversion Systems (WECS) Operating With Torque Control versus Speed Control

Dynamic Response Analysis of Small Wind Energy Conversion Systems (WECS) Operating With Torque Control versus Speed Control European Association for the Development of Renewable Energies, Environment and Power Quality International Conference on Renewable Energies and Power Quality (ICREPQ 9) Valencia (Spain), th to 17th April,

More information

Available online at ScienceDirect. Energy Procedia 42 (2013 ) Mediterranean Green Energy Forum MGEF-13

Available online at   ScienceDirect. Energy Procedia 42 (2013 ) Mediterranean Green Energy Forum MGEF-13 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 42 (213 ) 143 152 Mediterranean Green Energy Forum MGEF-13 Performance of wind energy conversion systems using a cycloconverter to

More information

ned100 Wind Turbine Generator a step towards your energy independence

ned100 Wind Turbine Generator a step towards your energy independence ned100 Wind Turbine Generator a step towards your energy independence Energy production 450 Ø22 Ø24 4.5 138 155 5.0 183 203 5.5 230 252 6.0 276 300 6.5 321 346 7.0 363 388 7.5 401 425 8.0 435 ---- 8.5

More information

1 st DeepWind 5 MW baseline design

1 st DeepWind 5 MW baseline design 1 st DeepWind 5 MW baseline design 9 th Deep Sea Offshore Wind R&D Seminar 19-20/01/2012 Trondheim, Norway Uwe Schmidt Paulsen a uwpa@dtu.dk Luca Vita a Helge A. Madsen a Jesper Hattel b Ewen Ritchie c

More information

Synthetic Inertia from Wind Turbine Generation

Synthetic Inertia from Wind Turbine Generation Synthetic Inertia from Wind Turbine Generation Midwest Reliability Organization 2017 Fall Reliability Conference St. Paul, MN October 25, 2017 Sr Grid Interfaces Engineer Schenectady, NY USA randal.voges@ge.com

More information

Maximum Power Point Tracking in DFIG based Wind Energy Conversion System using HCS Algorithm

Maximum Power Point Tracking in DFIG based Wind Energy Conversion System using HCS Algorithm IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Maximum Power Point Tracking in DFIG based Wind Energy Conversion System using HCS Algorithm

More information

Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles

Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles Vehicle Dynamics and Drive Control for Adaptive Cruise Vehicles Dileep K 1, Sreepriya S 2, Sreedeep Krishnan 3 1,3 Assistant Professor, Dept. of AE&I, ASIET Kalady, Kerala, India 2Associate Professor,

More information

Siemens Cold Climate Strategy

Siemens Cold Climate Strategy Siemens Cold Climate Strategy Improving output in harsh conditions Unrestricted Siemens Wind Power, 2015 All rights reserved. Agenda Siemens Wind Power Blade De-Icing Experience Next Steps & Challenges

More information

New dimensions. Siemens Wind Turbine SWT Answers for energy.

New dimensions. Siemens Wind Turbine SWT Answers for energy. New dimensions Siemens Wind Turbine SWT-3.6-107 Answers for energy. 2 New dimensions The SWT-3.6-107 wind turbine is the largest model in the Siemens Wind Po wer product portfolio. It was specifically

More information