Modeling and Control of Hybrid Electric Vehicles Tutorial Session

Size: px
Start display at page:

Download "Modeling and Control of Hybrid Electric Vehicles Tutorial Session"

Transcription

1 Modeling and Control of Hybrid Electric Vehicles Tutorial Session Ardalan Vahidi And Students: Ali Borhan, Chen Zhang, Dean Rotenberg Mechanical Engineering, Clemson University Clemson, South Carolina 2008 American Control Conference Seattle June 11, /30

2 The Tutorial Session Overview on Modeling and Control of Hybrid Electric Powertrains (Ardalan Vahidi, Clemson University) Understanding Opportunities for Energy Management Control in HEVs through Degree of Freedom Analysis (Tony Phillips and Ming Kuang, Ford Motor Company) Configuration, Sizing and Control of Power Split Hybrid Vehicles (Huei Peng, University of Michigan) The Role of System Theory in Reducing Energy Losses in Hybrids (Lino Guzzella, ETH, Zurich) Design and Control of a Renewable Energy Based Eco System With Plug In/V2GHybrid Electric Vehicles (Georgio Rizzoni, Ohio State University) 2/30

3 Overview Why Hybrids Improve Fuel Economy Configurations of a Hybrid Powertrain How Systems and Controls Help Supervisory Control Strategies Some Recent Trends 3/30

4 Different Types of Hybrids Main Propulsion: Gasoline or Diesel Engines, Fuel Cells Assist Propulsion: Motors, Generators, Hydraulic Pumps Energy Storage: Batteries, Ultracapacitors, Flywheels, Hydraulic Accumulators The main focus of this talk is on gasoline engine electric hybrid electric vehicles with battery/ ultracapacitor storage with the purpose of improving fuel economy. Main Configurations: Series, Parallel, Powersplit 4/30

5 Well to Wheel Efficiencies Available Online: 5/30

6 How Does Hybridization Help? Reducing braking losses through regeneration Possibility of clutch less operation thus reduced losses Potential for downsizing the engine Enabling operation of the propulsion system at its more efficient operating regions Allowing engine shut down during idle 6/30

7 Role of Control Engineering Engine downsizing, removing the clutch, and hybrid system configurations are mainly design considerations (system engineering perspective is still necessary). Regenerative braking is free energy, so no sophisticated high level control needed. Low level control still needed to optimize regeneration of electrical machine. Control engineering is critical in determining when to run the engine and at what power split ratio. The problem is very complex due to its dynamic nature and uncertainty about future driving conditions. 7/30

8 Engine Fuel Consumption and Efficiency Higher Fuel Rates Engine Max. Efficiency Curve Lower Fuel Rates 8/30

9 Series Configuration of HEVs The engine and the driveline are decoupled. Drawbacks: electrical path losses; motor/generator should be sized for max power. 9/30

10 Parallel Configuration of HEVs Engine power (or torque) can be decoupled from demand power. The engine speed is determined by the vehicle speed (and the transmission). Less power conversion loss compared to series and therefore less power losses. 10/30

11 Power Split or Series Parallel Configuration Combines advantages of parallel and series configuration, the output power can be delivered from both electrical and mechanical paths. Degrees of freedom are battery power and engine speed or torque. 11/30

12 The Challenge of Energy Management In an ideal world where the electrical path had an efficiency of 1, then the battery could be thought of a free buffer and charged/discharged at any time. The fuel economy optimization problem would be simplified to running the engine at most efficient line + charge sustaining considerations. In reality each charge/discharge results in losses: Battery should be used conservatively and predictively. Running the engine at most efficient line is NOT equivalent to running the hybrid most efficiently! Another concern is battery s life which is sensitive to cycling and depth of discharge. (less of a problem for an ultracapacitor). 12/30

13 The Control Objective Minimize fuel use and/or reduce emission without compromising the drivability of the vehicle. Additional Limits: Charge sustaining is needed for vehicle certification. Cycling of the energy storage should be limited to prolong battery life. T demand T engine Velocity SOC Gear Power Management Strategy T motor T generator T brake 13/30

14 Backward Looking or Quasi Static Models (Non Causal) Parallel Hybrid Example: Vehicle Driveline Engine v cycle T traction T engine Fuel rate ω wheel ω eng F road ω motor T motor Voltage Current SOC Electric Machine Battery + Inverter ADVISOR uses a backward simulation model. 14/30

15 Forward Looking or Dynamic Models (Causal) Parallel Hybrid Example: Vehicle Driveline Engine v T traction T engine Fuel rate ω wheel ω eng F road ω motor T motor Voltage Current SOC Electric Machine Battery + Inverter PSAT uses a forward simulation model. 15/30

16 Parallel Hybrid Example: Models of Hybrid Powertrain Components Vehicle Driveline Engine v In forward looking approach velocity is modeled as a dynamic state. T traction ω wheel torque/speed couplers: Static modeling okay. torque converter: Speed dynamics important in transients. T engine ω eng Fuel rate statically mapped from torque and speed. Torque dynamics fast and can be ignored. F road ω motor T motor Efficiency statically mapped from torque and speed. Torque dynamics fast and can be ignored. Voltage Current Power electronics: No need to model dynamics. Battery: State of charge should be modeled as a dynamic state. SOC Electric Machine Battery + Inverter 16/30

17 Energy Management Control strategies used: Rule based Fuzzy Logic/Neural Network Dynamic Programming Analytic Optimal Control Variable Structure Control (Sliding optimal control) ECMS, Adaptive ECMS Model Predictive Control 17/30

18 Rule Based Methods: An Example Assist Mode: Run Motor + Engine High optimal curve Medium optimal curve Run the engine at next higher optimal curve, charge the battery Low optimal curve Pure Electric Region Run in Pure Electric Mode The pure electric threshold is made a function of SOC for charge sustaining. 18/30

19 Pros and Cons of Rule Based Intuitive Simple to implement Fuel economy sensitive to threshold curves Charge sustaining is cycle dependent Fundamentally the optimal curve will depend on FUTURE charging/discharging conditions 19/30

20 Optimization Based Method The goal is to determine the power split that minimizes fuel use over an entire cycle, i.e. find P batt that minimizes: Ensuring that the charge is sustained: subject to the system dynamics. When SOC is the only state: and several inequality constraints, for example motor and engine torque limits. J t = t 0 f m f dt SOCt ( ) = SOCt ( ) f d V V 4R P SOC = dt 2C R 2 oc oc batt batt batt 0 batt 20/30

21 Dynamic Programming Assumes known drive cycle and solves the fuel minimization problem backwards in time based on Bellman s optimality principle. State of Charge time t 0 t 1 t k t k+1 t f minimum fuel path 21/30

22 DP is Non Causal Unfortunately future driving conditions are normally highly uncertain: Driver behavior Road profile Traffic conditions Still DP can be used to: Evaluate an upper bound to fuel economy potential of a hybrid Learn from and extract rules for real time control When future driving cycle can be estimated using telematics or for vehicles that have repeatable cycles. Stochastic DP has also been proposed with a probablistic driver model. 22/30

23 Optimal Control: Let s Simplify J t f = t 0 m f dt d V V 4R P SOC = dt 2C R 2 oc oc batt batt batt batt Find u=p batt that minimizes J. Without inequality constraints, the Hamiltonian is: and V V 4R P Hut (, ) = m f + λ( t) 2CbattR batt 2 oc oc batt batt d H( u, t) λ = = 0 dt SOC In the case of a battery, this renders a constant λ. The constant optimal λ is the one that ensures charge sustaining. AGAIN DEPENDENCE ON FUTURE CYCLE! A constant estimate λ 0 can be obtained by inferring the driving conditions; but fuel economy and final charge very sensitive to this choice. 23/30

24 Equivalent Consumption Minimization Strategies: ECMS Instead of the charge sustaining constraint, use of electrical energy is directly penalized in an instantaneous cost function using a fuel equivalence function Ф: ( ) J = m H +ϕ P f LHV batt The challenge is approximating the equivalence function which depends on energy conversion efficiencies in the future. One popular approach is evaluation of Ф based on the average energy paths from fuel to storage of electrical energy and viceversa. J = m H + s P f LHV batt 24/30

25 Minimize Model Predictive Power Management i+ P ( ) 2 min J = Qm + Q SOC SOC u k= i 2 1 f 2 0 Subject to system dynamics and several constraints. Use a receding horizon approach. Can be translated to a: Nonlinear program, dynamic program or simplified to a quadratic or linear program. MPC suitable for handling complexity of next generation hybrids: Multiple degrees of freedom requires more systematic optimization Pushing system components to their limits: constraints More far sighted than ECMS still causal and real time implementable Ease of integration of future road data 25/30

26 MPC: Preliminary Results Dean shows reduction in fuel use with MPC over his rule-based algorithm for an ultracapacitor parallel hybrid. (Results presented earlier.) Ali shows a more flexible and systematic control design with MPC for multi- DOF hybrids. (Results to appear next year.) Sponsored by Ford Motor Company 26/30

27 Still a Next Step: Use of Future Road Information Preliminary Results: Chen shows up to 4% additional reduction in fuel use when future road grade known in highway driving, depending on the terrain. A modified rulebased was used. (Details in the next ACC) Sponsored by Intermap Technologies 27/30

28 Ultracapacitor Assisted Powertrains BMOD0140 Maxwell ultracapacitor module: Capacitance: 140F Voltage: 48 Volts Mass~13kg Energy: Only 160 kj Power: Up to 30~60kW instantaneously Demonstrated up to 15% reduction in fuel use for city cycle with 2 ultracapacitor modules shown above and a 40kW induction motor. D. Rotenberg, A. Vahidi, and I. Kolmanovsky, Ultracapacitor Assisted Powertrains: Sizing, Modeling and Control, and The Impact on Fuel Economy 2008 ACC. 28/30

29 Finally My Favorite Hybrid: The Electric Bicycle Question: How much of the potential energy can be recovered by regeneration? mgh Undergrads: Maria, Carl, and Seneca riding the E Bike. 29/30

30 Main References L. Guzzella, and A. Sciarretta, Vehicle Propulsion Systems, Springer M. Ehsani, Y. Gao, S. Gay, and A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, CRC Press J. Larminie, and J. Lowry, Electric Vehicle Technology Explained, Wiley And several technical papers. 30/30

Ardalan Vahidi. Clemson Renewable Energy Systems Lab Mechanical Engineering Clemson University

Ardalan Vahidi. Clemson Renewable Energy Systems Lab Mechanical Engineering Clemson University Ardalan Vahidi Clemson Renewable Energy Systems Lab Mechanical Engineering Clemson University Ultracapacitor-assisted conventional powertrains Ultracapacitor-assisted fuel cells Future research plan: Ultracapacitor

More information

Vehicie Propulsion Systems

Vehicie Propulsion Systems Lino Guzzella Antonio Sciarretta Vehicie Propulsion Systems Introduction to Modeling and Optimization Second Edition With 202 Figures and 30 Tables Springer 1 Introduction 1 1.1 Motivation 1 1.2 Objectives

More information

Model Predictive Control of a Power-split Hybrid Electric Vehicle with Combined Battery and Ultracapacitor Energy Storage

Model Predictive Control of a Power-split Hybrid Electric Vehicle with Combined Battery and Ultracapacitor Energy Storage 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 FrA1.2 Model Predictive Control of a Power-split Hybrid Electric Vehicle with Combined Battery and Ultracapacitor

More information

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL Pierre Duysinx LTAS Automotive Engineering University of Liege Academic Year 2015-2016 1 References R. Bosch. «Automotive Handbook». 5th edition. 2002.

More information

Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles

Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles Switching Control for Smooth Mode Changes in Hybrid Electric Vehicles Kerem Koprubasi (1), Eric Westervelt (2), Giorgio Rizzoni (3) (1) PhD Student, (2) Assistant Professor, (3) Professor Department of

More information

Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives

Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives Energies 2014, 7, 3512-3536; doi:10.3390/en7063512 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Review and Comparison of Power Management Approaches for Hybrid Vehicles with

More information

Ultracapacitor Assisted Powertrains: Modeling, Control, Sizing, and The Impact on Fuel Economy

Ultracapacitor Assisted Powertrains: Modeling, Control, Sizing, and The Impact on Fuel Economy Clemson University TigerPrints All Theses Theses 9-2008 Ultracapacitor Assisted Powertrains: Modeling, Control, Sizing, and The Impact on Fuel Economy Dean Rotenberg Clemson University, drotenb@clemson.edu

More information

The MathWorks Crossover to Model-Based Design

The MathWorks Crossover to Model-Based Design The MathWorks Crossover to Model-Based Design The Ohio State University Kerem Koprubasi, Ph.D. Candidate Mechanical Engineering The 2008 Challenge X Competition Benefits of MathWorks Tools Model-based

More information

USE OF GT-SUITE TO STUDY PERFORMANCE DIFFERENCES BETWEEN INTERNAL COMBUSTION ENGINE (ICE) AND HYBRID ELECTRIC VEHICLE (HEV) POWERTRAINS

USE OF GT-SUITE TO STUDY PERFORMANCE DIFFERENCES BETWEEN INTERNAL COMBUSTION ENGINE (ICE) AND HYBRID ELECTRIC VEHICLE (HEV) POWERTRAINS Proceedings of the 16 th Int. AMME Conference, 27-29 May, 214 1 Military Technical College Kobry El-Kobbah, Cairo, Egypt. 16 th International Conference on Applied Mechanics and Mechanical Engineering.

More information

PHEV Control Strategy Optimization Using MATLAB Distributed Computing: From Pattern to Tuning

PHEV Control Strategy Optimization Using MATLAB Distributed Computing: From Pattern to Tuning PHEV Control Strategy Optimization Using MATLAB Distributed Computing: From Pattern to Tuning MathWorks Automotive Conference 3 June, 2008 S. Pagerit, D. Karbowski, S. Bittner, A. Rousseau, P. Sharer Argonne

More information

Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune)

Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune) RESEARCH ARTICLE OPEN ACCESS Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune) Abstract: Depleting fossil

More information

HYBRID ELECTRIC VEHICLE SYSTEM MODELING AND CONTROL

HYBRID ELECTRIC VEHICLE SYSTEM MODELING AND CONTROL HYBRID ELECTRIC VEHICLE SYSTEM MODELING AND CONTROL Second Edition Wei Liu General Motors, USA WlLEY Contents Preface List of Abbreviations Nomenclature xiv xviii xxii 1 Introduction 1 1.1 Classification

More information

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles

An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles An Improved Powertrain Topology for Fuel Cell-Battery-Ultracapacitor Vehicles J. Bauman, Student Member, IEEE, M. Kazerani, Senior Member, IEEE Department of Electrical and Computer Engineering, University

More information

Research Report. FD807 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report

Research Report. FD807 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report RD.9/175.3 Ricardo plc 9 1 FD7 Electric Vehicle Component Sizing vs. Vehicle Structural Weight Report Research Report Conducted by Ricardo for The Aluminum Association 9 - RD.9/175.3 Ricardo plc 9 2 Scope

More information

Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving

Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving Clemson University TigerPrints All Dissertations Dissertations 12-2010 Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving Chen Zhang Clemson University,

More information

Supervisory Control of Plug-in Hybrid Electric Vehicle with Hybrid Dynamical System

Supervisory Control of Plug-in Hybrid Electric Vehicle with Hybrid Dynamical System Supervisory Control of Plug-in Hybrid Electric Vehicle with Hybrid Dynamical System Harpreetsingh Banvait, Jianghai Hu and Yaobin chen Abstract In this paper, a supervisory control of Plug-in Hybrid Electric

More information

Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles. Daniel Opila

Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles. Daniel Opila Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Daniel Opila Collaborators Jeff Cook Jessy Grizzle Xiaoyong Wang Ryan McGee Brent Gillespie Deepak Aswani,

More information

Lino Guzzella Antonio Sciarretta Vehicle Propulsion Systems

Lino Guzzella Antonio Sciarretta Vehicle Propulsion Systems Lino Guzzella Antonio Sciarretta Vehicle Propulsion Systems Lino Guzzella Antonio Sciarretta Vehicle Propulsion Systems Introduction to Modeling and Optimization Second Edition With 202 Figures and 30

More information

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1. 1 [Online]. Available:

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1. 1 [Online]. Available: IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Ultracapacitor Assisted Powertrains: Modeling, Control, Sizing, and the Impact on Fuel Economy Dean Rotenberg, Ardalan Vahidi, Member, IEEE, and Ilya Kolmanovsky,

More information

A Decentralized Model Predictive Control Approach to Power Management of a Fuel Cell-Ultracapacitor Hybrid

A Decentralized Model Predictive Control Approach to Power Management of a Fuel Cell-Ultracapacitor Hybrid A Decentralized Model Predictive Control Approach to Power Management of a Fuel Cell-Ultracapacitor Hybrid Ardalan Vahidi Wesley Greenwell Department of Mechanical Engineering, Clemson University Abstract

More information

OPTIMAL POWER MANAGEMENT OF HYDROGEN FUEL CELL VEHICLES

OPTIMAL POWER MANAGEMENT OF HYDROGEN FUEL CELL VEHICLES OPTIMAL POWER MANAGEMENT OF HYDROGEN FUEL CELL VEHICLES Giuliano Premier Sustainable Environment Research Centre (SERC) Renewable Hydrogen Research & Demonstration Centre University of Glamorgan Baglan

More information

SIL, HIL, and Vehicle Fuel Economy Analysis of a Pre- Transmission Parallel PHEV

SIL, HIL, and Vehicle Fuel Economy Analysis of a Pre- Transmission Parallel PHEV EVS27 Barcelona, Spain, November 17-20, 2013 SIL, HIL, and Vehicle Fuel Economy Analysis of a Pre- Transmission Parallel PHEV Jonathan D. Moore and G. Marshall Molen Mississippi State University Jdm833@msstate.edu

More information

Predictive Control Strategies using Simulink

Predictive Control Strategies using Simulink Example slide Predictive Control Strategies using Simulink Kiran Ravindran, Ashwini Athreya, HEV-SW, EE/MBRDI March 2014 Project Overview 2 Predictive Control Strategies using Simulink Kiran Ravindran

More information

Building Fast and Accurate Powertrain Models for System and Control Development

Building Fast and Accurate Powertrain Models for System and Control Development Building Fast and Accurate Powertrain Models for System and Control Development Prasanna Deshpande 2015 The MathWorks, Inc. 1 Challenges for the Powertrain Engineering Teams How to design and test vehicle

More information

PLUG-IN VEHICLE CONTROL STRATEGY: FROM GLOBAL OPTIMIZATION TO REAL-TIME APPLICATION

PLUG-IN VEHICLE CONTROL STRATEGY: FROM GLOBAL OPTIMIZATION TO REAL-TIME APPLICATION PLUG-IN VEHICLE CONTROL STRATEGY: FROM GLOBAL OPTIMIZATION TO REAL-TIME APPLICATION Dominik Karbowski Argonne National Laboratory Aymeric Rousseau, Sylvain Pagerit, Phillip Sharer Argonne National Laboratory

More information

Ming Cheng, Bo Chen, Michigan Technological University

Ming Cheng, Bo Chen, Michigan Technological University THE MODEL INTEGRATION AND HARDWARE-IN-THE-LOOP (HIL) SIMULATION DESIGN FOR THE ANALYSIS OF A POWER-SPLIT HYBRID ELECTRIC VEHICLE WITH ELECTROCHEMICAL BATTERY MODEL Ming Cheng, Bo Chen, Michigan Technological

More information

Fuzzy Logic Based Power Management Strategy for Plug-in Hybrid Electric Vehicles with Parallel Configuration

Fuzzy Logic Based Power Management Strategy for Plug-in Hybrid Electric Vehicles with Parallel Configuration European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 2) Santiago de Compostela

More information

Model Predictive Control of Velocity and Torque Split in a Parallel Hybrid Vehicle

Model Predictive Control of Velocity and Torque Split in a Parallel Hybrid Vehicle Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 Model Predictive Control of Velocity and Torque Split in a Parallel Hybrid Vehicle

More information

Optimal Predictive Control for Connected HEV AMAA Brussels September 22 nd -23 rd 2016

Optimal Predictive Control for Connected HEV AMAA Brussels September 22 nd -23 rd 2016 Optimal Predictive Control for Connected HEV AMAA Brussels September 22 nd -23 rd 2016 Hamza I.H. AZAMI Toulouse - France www.continental-corporation.com Powertrain Technology Innovation Optimal Predictive

More information

Ultracapacitor Heavy Hybrid Vehicle: Model Predictive Control Using Future Information to Improve Fuel Consumption

Ultracapacitor Heavy Hybrid Vehicle: Model Predictive Control Using Future Information to Improve Fuel Consumption Clemson University TigerPrints All Theses Theses 8-2010 Ultracapacitor Heavy Hybrid Vehicle: Model Predictive Control Using Future Information to Improve Fuel Consumption Seneca Schepmann Clemson University,

More information

Modelling, Control, and Simulation of Electric Propulsion Systems with Electronic Differential and Induction Machines

Modelling, Control, and Simulation of Electric Propulsion Systems with Electronic Differential and Induction Machines Modelling, Control, and Simulation of Electric Propulsion Systems with Electronic Differential and Induction Machines Francisco J. Perez-Pinal Advisor: Dr. Ciro Nunez Grainger Power Electronics and Motor

More information

Energy Management Control Concepts with Preview for Hybrid Commercial Vehicles

Energy Management Control Concepts with Preview for Hybrid Commercial Vehicles Energy Management Control Concepts with Preview for Hybrid Commercial Vehicles Vital van Reeven, Rudolf Huisman, Michiel Pesgens, Robert Koffrie. Abstract In a Hybrid Electric Vehicle (HEV), the main task

More information

Planning T(r)ips for Hybrid Electric Vehicles

Planning T(r)ips for Hybrid Electric Vehicles Planning T(r)ips for Hybrid Electric Vehicles How to Drive in the 21st Century 16.S949 Student Lecture May 14 th, 2012 Example Origin: Sid-Pac Destination: Revere St. Meet Peng in 4 minutes. Need to find

More information

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year

Vehicle Performance. Pierre Duysinx. Research Center in Sustainable Automotive Technologies of University of Liege Academic Year Vehicle Performance Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2015-2016 1 Lesson 4: Fuel consumption and emissions 2 Outline FUEL CONSUMPTION

More information

INTELLIGENT ENERGY MANAGEMENT IN A TWO POWER-BUS VEHICLE SYSTEM

INTELLIGENT ENERGY MANAGEMENT IN A TWO POWER-BUS VEHICLE SYSTEM 2011 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN INTELLIGENT ENERGY MANAGEMENT IN

More information

THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE

THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE Jurnal Mekanikal June 2017, Vol 40, 01-08 THE IMPACT OF BATTERY OPERATING TEMPERATURE AND STATE OF CHARGE ON THE LITHIUM-ION BATTERY INTERNAL RESISTANCE Amirul Haniff Mahmud, Zul Hilmi Che Daud, Zainab

More information

Optimal Catalyst Temperature Management of Plug-in Hybrid Electric Vehicles

Optimal Catalyst Temperature Management of Plug-in Hybrid Electric Vehicles American Control Conference on O'Farrell Street, San Francisco, CA, USA June 9 - July, Optimal Catalyst Temperature Management of Plug-in Hybrid Electric Vehicles Dongsuk Kum, Huei Peng, and Norman K.

More information

Energy Management Strategies for Plug-in Hybrid Electric Vehicles. Master of Science Thesis. Henrik Fride n Hanna Sahlin

Energy Management Strategies for Plug-in Hybrid Electric Vehicles. Master of Science Thesis. Henrik Fride n Hanna Sahlin Energy Management Strategies for Plug-in Hybrid Electric Vehicles Master of Science Thesis Henrik Fride n Hanna Sahlin Department of Signals and Systems Division of Automatic Control, Automation and Mechatronics

More information

Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

Optimally Controlling Hybrid Electric Vehicles using Path Forecasting Optimally Controlling Hybrid Electric Vehicles using Path Forecasting The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

Regenerative Braking System for Series Hybrid Electric City Bus

Regenerative Braking System for Series Hybrid Electric City Bus Page 0363 Regenerative Braking System for Series Hybrid Electric City Bus Junzhi Zhang*, Xin Lu*, Junliang Xue*, and Bos Li* Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid

More information

Model-Based Design and Hardware-in-the-Loop Simulation for Clean Vehicles Bo Chen, Ph.D.

Model-Based Design and Hardware-in-the-Loop Simulation for Clean Vehicles Bo Chen, Ph.D. Model-Based Design and Hardware-in-the-Loop Simulation for Clean Vehicles Bo Chen, Ph.D. Dave House Associate Professor of Mechanical Engineering and Electrical Engineering Department of Mechanical Engineering

More information

Adaptive Control of a Hybrid Powertrain with Map-based ECMS

Adaptive Control of a Hybrid Powertrain with Map-based ECMS Milano (Italy) August 8 - September, 11 Adaptive Control of a Hybrid Powertrain with Map-based ECMS Martin Sivertsson, Christofer Sundström, and Lars Eriksson Vehicular Systems, Dept. of Electrical Engineering,

More information

Control of a Hybrid Electric Truck Based on Driving Pattern Recognition

Control of a Hybrid Electric Truck Based on Driving Pattern Recognition roceedings of the 22 Advanced Vehicle Control Conference, Hiroshima, Japan, September 22 Control of a Hybrid Electric Truck Based on Driving attern Recognition Chan-Chiao Lin, Huei eng Soonil Jeon, Jang

More information

Analysis and Simulation of a novel HEV using a Single Electric Machine

Analysis and Simulation of a novel HEV using a Single Electric Machine Analysis and Simulation of a novel HEV using a Single Electric Machine Presenter: Prof. Chengliang Yin, Shanghai Jiao Tong University Authors: Futang Zhu, Chengliang Yin, Li Chen, Cunlei Wang Nov. 2013

More information

Electric cars: Technology

Electric cars: Technology In his lecture, Professor Pavol Bauer explains all about how power is converted between the various power sources and power consumers in an electric vehicle. This is done using power electronic converters.

More information

Construction of a Hybrid Electrical Racing Kart as a Student Project

Construction of a Hybrid Electrical Racing Kart as a Student Project Construction of a Hybrid Electrical Racing Kart as a Student Project Tobias Knoke, Tobias Schneider, Joachim Böcker Paderborn University Institute of Power Electronics and Electrical Drives 33095 Paderborn,

More information

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PLUG-IN HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

HYBRID - ELECTRIC POWER SOURCES ENERGY MANAGEMENT DURING DYNAMIC LOADS IN MILITARY VEHICLE

HYBRID - ELECTRIC POWER SOURCES ENERGY MANAGEMENT DURING DYNAMIC LOADS IN MILITARY VEHICLE HYBRID - ELECTRIC POWER SOURCES ENERGY MANAGEMENT DURING DYNAMIC LOADS IN MILITARY VEHICLE Viktor FERENCEY, Martin BUGÁR, Vladimír STAŇÁK, Juraj MADARÁS, Ján DANKO Abstract: This paper describes a management

More information

Using Trip Information for PHEV Fuel Consumption Minimization

Using Trip Information for PHEV Fuel Consumption Minimization Using Trip Information for PHEV Fuel Consumption Minimization 27 th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS27) Barcelona, Nov. 17-20, 2013 Dominik Karbowski, Vivien

More information

Course Syllabus and Information

Course Syllabus and Information Energy Storage Systems for Electric-based Transportations Course Syllabus and Information College of Engineering Department of Electrical and Computer Engineering Course No. ECE-5995 Selected topics Winter

More information

MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID POWERTRAIN

MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID POWERTRAIN 2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER & MOBILITY (P&M) TECHNICAL SESSION AUGUST 12-14, 2014 - NOVI, MICHIGAN MODELING, VALIDATION AND ANALYSIS OF HMMWV XM1124 HYBRID

More information

Design and evaluate vehicle architectures to reach the best trade-off between performance, range and comfort. Unrestricted.

Design and evaluate vehicle architectures to reach the best trade-off between performance, range and comfort. Unrestricted. Design and evaluate vehicle architectures to reach the best trade-off between performance, range and comfort. Unrestricted. Introduction Presenter Thomas Desbarats Business Development Simcenter System

More information

End-To-End Cell Pack System Solution: Rechargeable Lithium-Ion Battery

End-To-End Cell Pack System Solution: Rechargeable Lithium-Ion Battery White Paper End-To-End Cell Pack System Solution: Industry has become more interested in developing optimal energy storage systems as a result of increasing gasoline prices and environmental concerns.

More information

Fuel Economy Benefits of Look-ahead Capability in a Mild Hybrid Configuration

Fuel Economy Benefits of Look-ahead Capability in a Mild Hybrid Configuration Proceedings of the 17th World Congress The International Federation of Automatic Control Fuel Economy Benefits of Look-ahead Capability in a Mild Hybrid Configuration Tae Soo Kim 1, Chris Manzie 1,2, Harry

More information

{xuelin, yanzhiwa, pbogdan, 2

{xuelin, yanzhiwa, pbogdan, 2 Reinforcement Learning Based Power Management for Hybrid Electric Vehicles Xue Lin 1, Yanzhi Wang 1, Paul Bogdan 1, Naehyuck Chang 2, and Massoud Pedram 1 1 University of Southern California, Los Angeles,

More information

ENERGY MANAGEMENT FOR VEHICLE POWER NETS

ENERGY MANAGEMENT FOR VEHICLE POWER NETS F24F368 ENERGY MANAGEMENT FOR VEHICLE POWER NETS Koot, Michiel, Kessels, J.T.B.A., de Jager, Bram, van den Bosch, P.P.J. Technische Universiteit Eindhoven, The Netherlands KEYWORDS - Vehicle power net,

More information

Integration of Dual-Clutch Transmissions in Hybrid Electric Vehicle Powertrains

Integration of Dual-Clutch Transmissions in Hybrid Electric Vehicle Powertrains POLITECNICO DI TORINO Cluster MOBILITA - Project ITALY 2020 gomma CRF PhD in Mechanical Engineering XXX cycle Integration of Dual-Clutch Transmissions in Hybrid Electric Vehicle Powertrains Torino, October

More information

Development of Engine Clutch Control for Parallel Hybrid

Development of Engine Clutch Control for Parallel Hybrid EVS27 Barcelona, Spain, November 17-20, 2013 Development of Engine Clutch Control for Parallel Hybrid Vehicles Joonyoung Park 1 1 Hyundai Motor Company, 772-1, Jangduk, Hwaseong, Gyeonggi, 445-706, Korea,

More information

Design an Energy Management Strategy for a Parallel Hybrid Electric Vehicle

Design an Energy Management Strategy for a Parallel Hybrid Electric Vehicle Journal of Asian Electric Vehicles, Volume 13, Number 1, June 215 Design an Energy Management Strategy for a Parallel Hybrid Electric Vehicle Seyyed Ghaffar Nabavi School of Electrical Engineering, Tarbiat

More information

Analysis of Fuel Economy and Battery Life depending on the Types of HEV using Dynamic Programming

Analysis of Fuel Economy and Battery Life depending on the Types of HEV using Dynamic Programming World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - 2013 WEVA Page Page 0320 EVS27 Barcelona, Spain, November 17-20, 2013 Analysis of Fuel Economy and Battery Life depending on the Types of HEV using

More information

Hardware-in-the-loop simulation of regenerative braking for a hybrid electric vehicle

Hardware-in-the-loop simulation of regenerative braking for a hybrid electric vehicle 855 Hardware-in-the-loop simulation of regenerative braking for a hybrid electric vehicle HYeoand HKim* School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea Abstract: A regenerative

More information

4 Wikipedia picture. Brushed DC-Machine. The 4 Quadrants. DC-motor torque characteristics. Brushless DC-Motor. Synchronous AC machines

4 Wikipedia picture. Brushed DC-Machine. The 4 Quadrants. DC-motor torque characteristics. Brushless DC-Motor. Synchronous AC machines Vehicle Propulsion Systems Lecture 5 Hybrid Powertrains Part 2 Component Modeling Lars Eriksson Associate Professor (Docent) Vehicular Systems Linköping University November 5, 21 Energy consumption for

More information

Global Optimization to Real Time Control of HEV Power Flow: Example of a Fuel Cell Hybrid Vehicle

Global Optimization to Real Time Control of HEV Power Flow: Example of a Fuel Cell Hybrid Vehicle Global Optimization to Real Time Control of HEV Power Flow: Example of a Fuel Cell Hybrid Vehicle Sylvain Pagerit, Aymeric Rousseau, Phil Sharer Abstract Hybrid Electrical Vehicle (HEV) fuel economy highly

More information

Rule-Based Equivalent Fuel Consumption Minimization Strategies for Hybrid Vehicles

Rule-Based Equivalent Fuel Consumption Minimization Strategies for Hybrid Vehicles Rule-Based Equivalent Fuel Consumption Minimization Strategies for Hybrid Vehicles T. Hofman, M. Steinbuch, R.M. van Druten, and A.F.A. Serrarens Technische Universiteit Eindhoven, Dept. of Mech. Eng.,

More information

Improving the energy density of hydraulic hybridvehicle (HHVs) and evaluating plug-in HHVs

Improving the energy density of hydraulic hybridvehicle (HHVs) and evaluating plug-in HHVs The University of Toledo The University of Toledo Digital Repository Theses and Dissertations 2009 Improving the energy density of hydraulic hybridvehicle (HHVs) and evaluating plug-in HHVs Xianwu Zeng

More information

Dynamic Modeling and Simulation of a Series Motor Driven Battery Electric Vehicle Integrated With an Ultra Capacitor

Dynamic Modeling and Simulation of a Series Motor Driven Battery Electric Vehicle Integrated With an Ultra Capacitor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. II (May Jun. 2015), PP 79-83 www.iosrjournals.org Dynamic Modeling and Simulation

More information

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle

Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle 2012 IEEE International Electric Vehicle Conference (IEVC) Sizing of Ultracapacitors and Batteries for a High Performance Electric Vehicle Wilmar Martinez, Member National University Bogota, Colombia whmartinezm@unal.edu.co

More information

INCORPORATING DRIVER S BEHAVIOR INTO PREDICTIVE POWERTRAIN ENERGY MANAGEMENT FOR A POWER-SPLIT HYBRID ELECTRIC VEHICLE

INCORPORATING DRIVER S BEHAVIOR INTO PREDICTIVE POWERTRAIN ENERGY MANAGEMENT FOR A POWER-SPLIT HYBRID ELECTRIC VEHICLE Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 INCORPORATING DRIVER S BEHAVIOR INTO PREDICTIVE POWERTRAIN ENERGY MANAGEMENT FOR

More information

Computer Model for a Parallel Hybrid Electric Vehicle (PHEV) with CVT

Computer Model for a Parallel Hybrid Electric Vehicle (PHEV) with CVT Proceedings of the American Control Conference Chicago, Illinois June 2000 Computer Model for a Parallel Hybrid Electric Vehicle (PHEV) with CVT Barry Powell, Xianjie Zhang, Robert Baraszu Scientific Research

More information

Paul Bowles ~ Scientific Research Laboratory Ford Motor Company

Paul Bowles ~ Scientific Research Laboratory Ford Motor Company Proceedings of the American Control Conference Chicago, Illinois June 2000 Energy Management in a Parallel Hybrid Electric Vehicle With a Continuously Variable Transmission Paul Bowles ~ Scientific Research

More information

Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles

Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Daniel F. Opila, Deepak Aswani, Ryan McGee, Jeffrey A. Cook, and J.W. Grizzle Abstract Hybrid Vehicle fuel

More information

Optimizing Internal Combustion Engine Efficiency in Hybrid Electric Vehicles

Optimizing Internal Combustion Engine Efficiency in Hybrid Electric Vehicles Optimizing Internal Combustion Engine Efficiency in Hybrid Electric Vehicles Dylan Humenik Ben Plotnick 27 April 2016 TABLE OF CONTENTS Section Points Abstract /10 Motivation /25 Technical /25 background

More information

A conceptual design of main components sizing for UMT PHEV powertrain

A conceptual design of main components sizing for UMT PHEV powertrain IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS A conceptual design of main components sizing for UMT PHEV powertrain Related content - Development of a KT driving cycle for

More information

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 4, MAY

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 4, MAY IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 4, MAY 2014 1567 Energy Management for a Power-Split Plug-in Hybrid Electric Vehicle Based on Dynamic Programming and Neural Networks Zheng Chen,

More information

A Parallel Energy-Sharing Control for Fuel cell Battery-Ultracapacitor Hybrid Vehicle

A Parallel Energy-Sharing Control for Fuel cell Battery-Ultracapacitor Hybrid Vehicle A Parallel Energy-Sharing Control for Fuel cell Battery-Ultracapacitor Hybrid Vehicle JennHwa Wong, N.R.N.Idris, Makbul Anwari, Taufik Taufik Abstract-This paper proposes a parallel energy-sharing control

More information

Approved by Major Professor(s):

Approved by Major Professor(s): Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Entitled For the degree of Is approved

More information

Optimization of Power Management Strategies for a Hydraulic Hybrid Medium Truck

Optimization of Power Management Strategies for a Hydraulic Hybrid Medium Truck Proceedings of the 22 Advanced Vehicle Control Conference, Hiroshima, Japan, September 22. Optimization of Power Management Strategies for a Hydraulic Hybrid Medium Truck Bin Wu, Chan-Chiao Lin, Zoran

More information

Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures

Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures 2013 American Control Conference (ACC) Washington, DC, USA, June 17-19, 2013 Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures Zhekang Du, Kai Loon Cheong, Perry Y. Li

More information

TRIZ methodology adapted to hybrid powertrains performances evaluation

TRIZ methodology adapted to hybrid powertrains performances evaluation TRIZ Future 2013 TRIZ methodology adapted to hybrid powertrains performances evaluation Francis Roy 1,2, Claude Gazo 3,Florence Ossart 2, Claude Marchand 2 1 PSA Peugeot Citroën, La Garenne-Colombes, France,

More information

Energy Scheduling for a Smart Home Applying Stochastic Model Predictive Control

Energy Scheduling for a Smart Home Applying Stochastic Model Predictive Control The Holcombe Department of Electrical and Computer Engineering Clemson University, Clemson, SC, USA Energy Scheduling for a Smart Home Applying Stochastic Model Predictive Control Mehdi Rahmani-andebili

More information

POWER MANAGEMENT CONTROLLER FOR HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC

POWER MANAGEMENT CONTROLLER FOR HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC POWER MANAGEMENT CONTROLLER FOR HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC Muhd Firdause Mangun, Moumen Idres and Kassim Abdullah Department of Mechanical Engineering, Kulliyyah of Engineering, International

More information

University Of California, Berkeley Department of Mechanical Engineering. ME 131 Vehicle Dynamics & Control (4 units)

University Of California, Berkeley Department of Mechanical Engineering. ME 131 Vehicle Dynamics & Control (4 units) CATALOG DESCRIPTION University Of California, Berkeley Department of Mechanical Engineering ME 131 Vehicle Dynamics & Control (4 units) Undergraduate Elective Syllabus Physical understanding of automotive

More information

A Research on Regenerative Braking Control Strategy For Electric Bus

A Research on Regenerative Braking Control Strategy For Electric Bus International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 10 ǁ October. 2017 ǁ PP. 60-64 A Research on Regenerative Braking Control

More information

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Preprint paper to be presented in SAE Truc and Bus Conference, 2003 2003-01-3369 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truc Chan-Chiao Lin, Huei Peng and Jessy

More information

P2 Hybrid Electrification System Cost Reduction Potential Constructed on Original Cost Assessment

P2 Hybrid Electrification System Cost Reduction Potential Constructed on Original Cost Assessment P2 Hybrid Electrification System Cost Reduction Potential Constructed on Original Cost Assessment Prepared for: International Council on Clean Transportation 1225 I Street NW, Suite 900 Washington DC,

More information

Accurate Remaining Range Estimation for Electric Vehicles

Accurate Remaining Range Estimation for Electric Vehicles Accurate Remaining Range Estimation for Electric Vehicles Joonki Hong, Sangjun Park, Naehyuck Chang Dept. of Electrical Engineering KAIST joonki@cad4x.kaist.ac.kr Outline Motivation: Remaining range estimation

More information

Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors

Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors To cite this article:

More information

Offline and Online Optimization of Plug-in Hybrid Electric Vehicle Energy Usage (Home-to-Vehicle and Vehicle-to-Home)

Offline and Online Optimization of Plug-in Hybrid Electric Vehicle Energy Usage (Home-to-Vehicle and Vehicle-to-Home) Offline and Online Optimization of Plug-in Hybrid Electric Vehicle Energy Usage (Home-to-Vehicle and Vehicle-to-Home) Florence Berthold, Benjamin Blunier, David Bouquain, Sheldon Williamson, Abdellatif

More information

Virtual Serial Power Split Strategy for Parallel Hybrid Electric Vehicles

Virtual Serial Power Split Strategy for Parallel Hybrid Electric Vehicles Memorias del Congreso Nacional de Control Automático 12 Cd. del Carmen, Campeche, México, 17 al 19 de Octubre de 12 Virtual Serial Power Split Strategy for Parallel Hybrid Electric Vehicles Alfonso Pantoja-Vazquez

More information

Modeling, Analysis and Control of Fuel Cell Electric Hybrid Power Systems

Modeling, Analysis and Control of Fuel Cell Electric Hybrid Power Systems Fuel Cell Hybrid Power System Modeling, Analysis and Control of Fuel Cell Electric Hybrid Power Systems Transportation Distributed Power Generation Kyungwon Suh June 9 th, 2006 Stand-Alone (APU http://www.gm.com,

More information

Dual power flow Interface for EV, HEV, and PHEV Applications

Dual power flow Interface for EV, HEV, and PHEV Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 4 [Sep. 2014] PP: 20-24 Dual power flow Interface for EV, HEV, and PHEV Applications J Ranga 1 Madhavilatha

More information

Modeling the Electrically Assisted Variable Speed (EAVS) Supercharger

Modeling the Electrically Assisted Variable Speed (EAVS) Supercharger Modeling the Electrically Assisted Variable Speed (EAVS) Supercharger Eaton Corporation Vehicle Group Brian Smith Brandon Biller Overview of EAVS Technology 2 EAVS System Development at Eaton Hardware

More information

A Simple Approach for Hybrid Transmissions Efficiency

A Simple Approach for Hybrid Transmissions Efficiency A Simple Approach for Hybrid Transmissions Efficiency FRANCESCO BOTTIGLIONE Dipartimento di Meccanica, Matematica e Management Politecnico di Bari Viale Japigia 182, Bari ITALY f.bottiglione@poliba.it

More information

Control Strategy with the Slope of SOC Trajectory for Plug-in Diesel Hybrid Electric Vehicle with Dual Clutch Transmission

Control Strategy with the Slope of SOC Trajectory for Plug-in Diesel Hybrid Electric Vehicle with Dual Clutch Transmission EVS28 KINTEX, Korea, May 3-6, 21 Control Strategy with the Slope of SOC Trajectory for Plug-in Diesel Hybrid Electric Vehicle with Dual Clutch Transmission Kyuhyun Sim 1, Houn Jeong 1, Dong-Ryeom Kim 2,

More information

IC Engine Control - the Challenge of Downsizing

IC Engine Control - the Challenge of Downsizing IC Engine Control - the Challenge of Downsizing Dariusz Cieslar* 2nd Workshop on Control of Uncertain Systems: Modelling, Approximation, and Design Department of Engineering, University of Cambridge 23-24/9/2013

More information

Challenging Questions for Power Electronics Engineers/Researchers in Vehicle Electrification

Challenging Questions for Power Electronics Engineers/Researchers in Vehicle Electrification Challenging Questions for Power Electronics Engineers/Researchers in Vehicle Electrification APEC 2015 Industry Session Jun Kikuchi Ford Motor Company Research and Innovation Center Ford Model T 1908 www.thehenryford.org

More information

INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM

INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM INVENTION DISCLOSURE MECHANICAL SUBJECT MATTER EFFICIENCY ENHANCEMENT OF A NEW TWO-MOTOR HYBRID SYSTEM ABSTRACT: A new two-motor hybrid system is developed to maximize powertrain efficiency. Efficiency

More information

Design & Development of Regenerative Braking System at Rear Axle

Design & Development of Regenerative Braking System at Rear Axle International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 8, Number 2 (2018), pp. 165-172 Research India Publications http://www.ripublication.com Design & Development of Regenerative

More information

Battery Evaluation for Plug-In Hybrid Electric Vehicles

Battery Evaluation for Plug-In Hybrid Electric Vehicles Battery Evaluation for Plug-In Hybrid Electric Vehicles Mark S. Duvall Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 9434 Abstract-This paper outlines the development of a battery

More information