Power Flow Control and Voltage Profile Improvement Using Unified Power Flow Controller (UPFC) in a Grid Network

Size: px
Start display at page:

Download "Power Flow Control and Voltage Profile Improvement Using Unified Power Flow Controller (UPFC) in a Grid Network"

Transcription

1 Power Flow Control and Voltage Profile Improvement Using Unified Power Flow Controller (UPFC) in a Grid Network Takkolu Kalyani and T. Ramesh Kumar Department of Electrical Engineering, Bapatla Engineering College, Bapatla, India {kalyani.takkolu, rameshparota}@gmail.com G. Siva Prasad Department of Electrical Engineering, KORM College of Engineering, Kadapa, India sivaprasadgodina@gmail.com Abstract Power flow control is the critical factor affecting power transmission system. Unified Power Flow Controller (UPFC) is used to regulate the power flow control in power transmission line. The UPFC is represented with two voltage sources named Voltage Source Model (VSM), which is used to study the behaviour of the UPFC in regulating the active, reactive power and voltage profile in the system. These VSM is incorporated in Newton Raphson (N-R) algorithm. The equations of UPFC and the power balance equations of network are combined in to one set of non-linear algebraic equations by employing Simultaneous method and is calculated according to the Newton raphson algorithm and Performed on the IEEE 30-bus system. Simulation is done in Matlab. The results are compared with and without UPFC in terms of active and reactive power flows in the line and check bus voltages to analyze the performance of UPFC. Index Terms Newton-Raphson algorithm, load flow, unified power flow controller, voltage source model I. INTRODUCTION Electrical power systems are a large interconnected network that requires a careful design to maintain the system with continuous power flow operation without any limitations. Flexible Alternating Current Transmission System (FACTS) is an evolving technology used to help electric utilities fully utilize their transmission assets. This concept was first introduced by N. G. Hingorani [1]. Many types of FACTS devices have been proposed, among them Unified Power Flow Controller (UPFC) is a versatile and flexible device in the FACTS family of controllers which has the ability to simultaneously control all the transmission parameters of power systems i.e., voltage, impedance and phase angle which determines the power flow of a transmission line. This device was proposed by Gyugyi [2] and Gyugyi et al. [3]. The UPFC seem to be consists of two Voltage Source Converters (VSCs), one VSC is connected in series to the transmission line through a series transformer, similarly Manuscript received October 21, 2015; revised March 23, doi: /ijeee the other is connected in shunt to the transmission line through a shunt transformer and both are connected back to back through a DC storage capacitor (Gyugyi et al. [3]). In this paper the performance of UPFC is investigated on power systems effectively, to this it is required to formulate their appropriate model. In the area of power flow analysis the UPFC models have been published (Fuerete-Esquivel and Acha [4], [5]; Noroozian et al. [6]; and Nabavi-Niaki and Iravani [7], [8]) and consider the UPFC as one series voltage source and one shunt current source model or both the series and shunt represented by two voltage sources. In the area of power flow concept the UPFC is represented by two voltage sources called Voltage Source Model (VSM) (Fuerete-Esquivel and Acha [9]) also introduced another model called the Power Injection Model (PIM). The Voltage source model of UPFC is incorporated in N-R algorithm in to estimate the performance of UPFC in power flow control. Generally there are ways of solving power flow solutions, the Sequential and the simultaneous method: In the first method, the equations of UPFC are separated from the power flow equations and both the set of equations are solved separately and sequentially. In simultaneous method, the equations of UPFC and the power flow equations are combined in to one set of non-linear algebraic equations which find less complexity. A Jacobian matrix is then formed and are in non symmetric in nature. Here in this paper the simultaneous method is used. II. OPERATING PRINCIPLE OF UPFC The UPFC consists of two voltage source converters, one connected in series to the transmission line through a series transformer and the other in shunt to the transmission line through a shunt transformer, both are connected back to back through a DC link and can modelled as two ideal voltage sources between the two busses (Fuerete-Esquivel and Acha [9]; and Fuerete-

2 Esquivel et al. [10]). The UPFC allows simultaneous control of active power flow, reactive power flow, and voltage magnitude at the UPFC terminals. Alternatively, the controller may be set to control one or more of these parameters in any combination or to control none of them. The active power demanded by the series converter is drawn by the shunt converter from the AC network and supplied to bus m through the DC link. The output voltage of the series converter is added to the nodal voltage, at say bus k, to boost the nodal voltage at bus m. The output of the series voltage source Vse and se are controllable magnitude and angle between the limits Vsemax Vse Vsemin and 0 se 2π respectively and of the shunt voltage source is Vsh and sh controllable between the limits Vshmax Vsh Vshmin and 0 sh 2π. The voltage magnitude of the output voltage Vse provides voltage regulation, and the phase angle se determines the mode of power flow control. Fig. 1 shows the voltage source model of the UPFC. Zse and Zsh are the impedances of the two transformers between the line and UPFC. III. MODELLING OF UPFC The two ideal series and shunt voltages source equations of the UPFC from Fig. 1 are: (1) Vse V se (cos se j sin se ) Vsh Vsh (cos sh j sin sh ) (2) Based on the voltage source model of UPFC the active and reactive power equations are: At node k: Pk V 2 k Gkk VkVm (Gkm cos( k m ) Bkm sin( k m )) VkVse(Gkm cos( k se ) Bkm sin( k se )) (3) VkVsh (Gsh cos( k sh ) Bsh sin( k sh )) Qk V 2 k Bkk VkVm (Gkm sin( k m ) Bkm cos( k m )) (4) VkVse (Gkm sin( k se ) Bkm cos( k se )) VkVsh (Gsh sin( k sh ) Bsh cos( k sh )) At node m: Pm V 2 mgmm VmVk (Gmk cos( m k ) Bmk sin( m k )) VmVse (Gmm cos( m se ) Bmm sin( m se )) Qm V 2 m Bmm VmVk (Gmk sin( m k ) Bmk cos( m k )) VmVsh (Gmm sin( m se ) Bmm cos( m se )) (5) (6) Series converter: Pse V 2 se Gmm VseVk (Gkm cos( se k ) Bkm sin( se k )) (7) VseVm (Gmm cos( se k ) Bmm sin( se m ) Qse V 2 se Bmm VseVk (Gkm sin( se k ) Bkm cos( se k )) Figure 1. Voltage source model of the UPFC VseVm (Gmm sin( se m ) Bmm cos( se m )) In to providing a supportive role in the active power exchange that take place between a series converter and the AC system, the shunt converter may also generate or absorb reactive power in order to provide independent voltage magnitude regulation at its point of connection with the AC system. Shunt converter: Psh V 2 shgsh VshVk (Gsh cos( sh k ) Bsh sin( sh k ) (9) Qsh V 2 sh Bsh VshVk (Gsh sin( sh k ) Bsh cos( sh k )) (10) where: Ykk Gkk jbkk Z se Z Ymm Gmm jbmm Z Ysh Gsh jbsh Z Figure 2. Simultaneous control of voltage, impedance and angle sh sh (11) (12) se Ykm Ymk Gkm jbkm Z se (13) (14) Assuming the UPFC converters were loss-less in this voltage source model, which implies that there is no absorption or generation of active power by the two converters for its losses and hence the active power supplied to the shunt converter Psh equals the active power demand by the series converter Pse at the DC link. Then the following equality constraint has to be guaranteed. Pse+Psh=0 (15) The converter output voltage was used to control the mode of power flow and voltage regulation at the nodes as follows: The bus voltage magnitude can be controlled by injecting a voltage Vse in phase or anti-phase has shown in Fig. 2. Power flow can be controlled by injecting a voltage V se in quadrature to the line current ( se = m±90, m is the angle between Vm and Im) Fig. 2. Power flow can be controlled by injecting a voltage of magnitude V se in quadrature to node voltage m. Fig. 2. (8) Further more if the coupling transformers are assumed to contain no resistance then the active power at the bus k matches the active power at bus m, then: Psh+Pse=Pk+ Pm = (16)

3 IV. NEWTON-RAPHSON ALGORITHM AND FLOW CHART WITH INCORPORATION OF THE UNIFIED POWER FLOW CONTROLLER matrix is modified and the power equations were mismatched until convergence was attained. Step 8: If the convergence achieved in Step 7, the output load flow was calculated for PQ bus that includes the Bus bars voltages, gene-ration, transmission line flow and losses. From the mathematical modelling point of view, the set of nonlinear, algebraic equations that describe the electrical power network under the steady state conditions were solved for the power flow solutions. Over the years, several approaches have been put forward to solve for the power flow equations. Early approaches were based on the loop equations and methods using Gauss-type solutions. This method was laborious because the network loops has to be specified by hand by the systems engineer. The drawback of these algorithms is that they exhibit poor convergence characteristics when applied to the solution of the networks. To overcome such limitations, the Newton-Raphson method and derived formulations were developed in the early 1970s and since then it became firmly established throughout the power system industry (Gyugyi et al. [3]). In this project a Newton Raphson power flow algorithm was used to solve for the power flow problem in a transmission line with UPFC as shown in the flow chart in Fig. 3. A. Steps to Solve the Newton-Raphson Algorithm Step 1: Read the input of the system data that includes the data needed for conventional power flow calculation, i.e., the number and types of buses, transmission line data, generation, load data and location of UPFC and the control variables of UPFC, i.e., the magnitude and angles of output voltage series and shunt converters. Step 2: Formation of admittance matrix Ybus of the transmission line between the bus i and j. Step 3: Combining the UPFC power equations with network equation, we get the conventional power flow equation: n Pi jqi VV Y ( i j ij i j ) P i jq i ' ij ' (17) j 1 where: P 'i Q i Active and reactive power flow due to UPFC between the two buses th Pi jqi Active and reactive power flow at the i bus th Vi i Voltage and angle of i bus ' V j j =Voltage and angle at j bus th Step 4: The conventional Jacobian matrix are formed (Pik and Qik) due to the inclusion of UPFC. The inclusion of these variables increases the dimensions of the Jacobian matrix. Step 5: In this step, the Jacobian matrix was modified and power equations are mismatched (ΔPik, ΔQik for i = 2, 3,, m and ΔPiik, ΔQiik). Step 6: The busbar voltages were updated at each iteration and convergence was checked. Step 7: If convergence is not achieved in the next step the algorithm goes back to the step 6 and the Jacobian Figure 3. Flow chart for load flow by N-R method with UPFC V. TEST CASE AND SIMULATION Standard 30-bus network shown in Fig. 4 is tested with and without UPFC to investigate its performance. Flat voltage start is assumed for the two UPFC voltage sources. 484

4 Figure 4. Single line diagram of IEEE 30 bus system VI. RESULT OF SIMULATION The network was tested without UPFC and with UPFC. And it was observed that the UPFC parameters were within limits. It was also observed that the losses between buses 1 and 2 are more compared to the remaining. Hence the UPFC is introduced between buses 1 and 2 to reduce the losses. From Table I it is observed that the power flow for the line active and reactive powers will be regulated due to the UPFC and losses get reduced. The voltages of the buses with and without UPFC are also tabulated in Table II which indicates that the voltage got increased in each bus due to placing of UPFC. Waveforms without UPFC are shown in (Fig. 5-Fig. 9) and Waveforms with UPFC are in (Fig. 10-Fig. 14). Fig. 5 and Fig. 10 show the bus voltages without and with UPFC. From these figures it has been observed that the magnitude of the bus voltages have been increased due to placing of UPFC in the bus network. Fig. 6 and Fig. 11 show the phase angles without and with UPFC. From these figures it has been observed that the magnitude of the phase angles have been decreased due to placing of UPFC in the bus network. Fig. 7 and Fig. 12 show the active power flow without and with UPFC. From these figures it has been observed that the active power flow has been regulated due to placing of UPFC in the bus network. Fig. 8 and Fig. 13 show the reactive power flow without and with UPFC. From these figures it has been observed that the reactive power flow has been regulated due to placing of UPFC in the bus network. Fig. 9 and Fig. 14 show the total losses without and with UPFC. From these figures it has been observed that the total losses have been reduced due to placing of UPFC in the bus network. (MW) (MW) (MW) (Radians) Figure 6. Phase angle without UPFC Figure 7. Active power flow without UPFC Figure 8. Reactive power flow without UPFC Figure 9. Total losses without UPFC (Volts) (Volts) Figure 5. Bus voltages without UPFC Figure 10. Bus voltages with UPFC 485

5 Figure 11. Phase angle with UPFC Figure 13. Reactive power flow with UPFC (MW) (MW) (Radians) (MW) Figure 12. Active power flow with UPFC Figure 14. Total losses with UPFC TABLE I. LINE FLOWS WITH AND WITHOUT UPFC Line No. Line Flows without UPFC Line Flows with UPFC P(MW) Q(MVAR) LOSSES P(MW) Q(MVAR) LOSSES

6 REFERENCES TABLE II. BUS VOLTAGE WITH AND WITHOUT UPFC Bus No Voltage without UPFC V θ rad VII. N. G. Hingorani, High power electronics and flexible AC transmission system, IEEE Power Engineering Review, vol. 8, pp. 3-4, July [2] L. Gyugyi, Unified power flow controller concept for flexible AC transmission system, IEE Proc., vol. 139, no. 4, pp , July [3] L. Gyugyi, C. D. Schauder, S. L Williams, and T. R. Rietman, The unified power flow controller: A new approach to power transmission control, IEEE Trans. on Power Delivery, vol. 10, no. 2, pp , April [4] C. R. Fuerete-Esquiivel and E. Acha, Newton-Raphson algorithm for the reliable solution of large power networks with embedded FACTS, IEE Proc.-Ganev. Tvansnr. Distrib., vol. 143, no. 5, pp , September [5] C. R. Fuerete-Esquivel and E. Acha, Unified power flow controller: A critical comparison of Newton-Raphson UPFC algorithm in power flow studies, IEE Proc.-Gener. Transm. Distrib., vol. 144, no. 5, September [6] M. Noroozian, L. Angquist, M. Ghandhari, and G. Anderson, Use of UPFC for optimal power flow control, in Proc. IEEE ikth Stockholm Power Tech Conference, Stockholm, Sweden, 1995, pp [7] A. Nabavi-Niaki and M. R. Travani, Steady-State and dynamic models of Unified Power Flow Controller (UPFC) for power system studies, presented at 1996 IEEE ipes Winter Meeting, Baltimore, 1996, pp [8] A. Nabavi-Niaki and M. R. Iravani, Steady-State and dynamic models of unified power flow, IEEE Trans. on Power Systems, vol. 11, no. 4, pp , Nov [9] C. R. Fuerete-Esquivel and E. Acha, Incorporation of UPFC model in an optimal power flow using Newton s method, IEE Proc.-Gen. Transm. Distrib., vol. 145, no. 3, pp , May [10] C. R. Fuerete-Esquivel, E. Acha, and H. Ambriz-Perez, Comprehensive Newton-Raphson UPFC model for the quadratic power flow solution of practical power networks, IEEE Trans. on Power Systems, vol. 15, no. 1, pp , Feb [1] Voltage with UPFC V θ rad CONCLUSIONS In this paper the UPFC Voltage Source Model (VSM) is used to investigate the performance of the Unified Power Flow Controller (UPFC) and thereby the load flow studies are done by incorporating the Voltage Source Model of UPFC in the Newton Raphson (N-R) algorithm. The N-R algorithm is able to control the flow of power and voltage individually as well as simultaneously. The result for an IEEE-30 Bus system has been presented above with and without UPFC and are compared in terms of Real and Reactive power flow and the Voltage magnitude. It was observed that the UPFC regulates the real and reactive power of the buses and the lines and it also controls the voltage of the bus within specified limits, thereby reduces the total losses in the lines. Takkolu Kalyani is serving as a Lecturer in the Department of Electrical Engineering, Bapatla Polytechnic College, India. She holds her B. Tech in Electrical Engineering from KORM College of Engineering, Kadapa, AP. She obtained her M. Tech in Electrical Engineering with specialization in Power System from Acharya Nagarjuna University, AP. T. Ramesh Kumar is serving as an Assistant Professor in the Department of Electrical Engineering, Bapatla Engineering College, India. He obtained his M. Tech in Electrical Engineering with specialization in Power System from NIT Warangal. He authored and co-authored many papers in leading international proceedings and journals in Power System. His area of interest is Power System Planning. G. Siva Prasad is serving as an Assistant Professor in the Department of Electrical Engineering, KORM College of Engineering, India. He obtained his M. Tech in Electrical Engineering with specialization in Power System from KSRMCE, Kadapa. He authored and co-authored many papers in leading international proceedings and journals in Power System. His area of interest is Power System Optimization. 487

THE LAST generation FACTS controllers using the selfcommutated

THE LAST generation FACTS controllers using the selfcommutated 1550 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 4, NOVEMBER 2006 A Novel Power Injection Model of IPFC for Power Flow Analysis Inclusive of Practical Constraints Yankui Zhang, Yan Zhang, and Chen

More information

Multi-Line power Flow Control Using Interline Power Flow Controller (IPFC) in Power Transmission system

Multi-Line power Flow Control Using Interline Power Flow Controller (IPFC) in Power Transmission system www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-2 Volume 2 Issue 11 November, 213 Page No. 389-393 Multi-Line power Flow Control Using Interline Power Flow Controller (IPFC)

More information

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line Nitin goel 1, Shilpa 2, Shashi yadav 3 Assistant Professor, Dept. of E.E, YMCA University

More information

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System Raju Pandey, A. K. Kori Abstract FACTS devices can be added to power transmission and distribution systems at appropriate

More information

Analysis of Interline Power Flow Controller (IPFC) Location in Power Transmission Systems

Analysis of Interline Power Flow Controller (IPFC) Location in Power Transmission Systems Research Journal of Applied Sciences, Engineering and Technology 3(7): 633-639, 2011 ISSN: 2040-7467 Maxwell Scientific Orgazation, 2011 Received: May 13, 2011 Accepted: June 07, 2011 Published: July 25,

More information

Power Quality Improvement Using Statcom in Ieee 30 Bus System

Power Quality Improvement Using Statcom in Ieee 30 Bus System Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 727-732 Research India Publications http://www.ripublication.com/aeee.htm Power Quality Improvement Using

More information

Using D-UPFC in Voltage Regulation of Future Distribution Systems

Using D-UPFC in Voltage Regulation of Future Distribution Systems Using D-UPFC in Voltage Regulation of Future Distribution Systems Y. Bot *, A. Allali * * LDDEE, Laboratory Sustainable Development of Electrical Energy, Department of Electrotechnical, Faculty of Electrical

More information

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC Int. J. of P. & Life Sci. (Special Issue Engg. Tech.) Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC Durgesh Kumar and Sonora ME Scholar Department of Electrical

More information

STUDY THE POWER FLOW CONTROL OF A POWER SYSTEM WITH UNIFIED POWER FLOW CONTROLLER

STUDY THE POWER FLOW CONTROL OF A POWER SYSTEM WITH UNIFIED POWER FLOW CONTROLLER STUDY THE POWER FLOW CONTROL OF A POWER SYSTEM WITH UNIFIED POWER FLOW CONTROLLER SATYENDRA KUMAR *, ARVIND KUMAR SINGH ** AND UPENDRA PRASAD *** Abstract: Electrical power systems is a large interconnected

More information

Identification of Best Load Flow Calculation Method for IEEE-30 BUS System Using MATLAB

Identification of Best Load Flow Calculation Method for IEEE-30 BUS System Using MATLAB Identification of Best Load Flow Calculation Method for IEEE-30 BUS System Using MATLAB 1 Arshdeep Kaur Kailay, 2 Dr. Yadwinder Singh Brar 1, 2 Department of Electrical Engineering 1, 2 Guru Nanak Dev

More information

A Novel Distribution System Power Flow Algorithm using Forward Backward Matrix Method

A Novel Distribution System Power Flow Algorithm using Forward Backward Matrix Method IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 6 Ver. II (Nov Dec. 2015), PP 46-51 www.iosrjournals.org A Novel Distribution System

More information

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC)

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC) TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC) Nazneen Choudhari Department of Electrical Engineering, Solapur University, Solapur Nida N Shaikh Department of Electrical

More information

Power Flow Control through Transmission Line with UPFC to Mitigate Contingency

Power Flow Control through Transmission Line with UPFC to Mitigate Contingency Power Flow Control through Transmission Line with UPFC to Mitigate Contingency Amit Shiwalkar & N. D. Ghawghawe G.C.O.E. Amravati E-mail : amitashiwalkar@gmail.com, g_nit@rediffmail.com Abstract This paper

More information

Improving Power System Transient Stability by using Facts Devices

Improving Power System Transient Stability by using Facts Devices Improving Power System Transient Stability by using Facts Devices Mr. Ketan G. Damor Assistant Professor,EE Department Bits Edu Campus,varnama,vadodara. Mr. Vinesh Agrawal Head and Professor, EE Department

More information

INTRODUCTION. In today s highly complex and interconnected power systems, mostly made up of thousands of buses and hundreds of generators,

INTRODUCTION. In today s highly complex and interconnected power systems, mostly made up of thousands of buses and hundreds of generators, 1 INTRODUCTION 1.1 GENERAL INTRODUCTION In today s highly complex and interconnected power systems, mostly made up of thousands of buses and hundreds of generators, there is a great need to improve electric

More information

OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System

OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System A. B.Bhattacharyya, B. S.K.Goswami International Science Index, Electrical and Computer Engineering

More information

Master Slave Control Of Interline Power Flow Controller Using PSO Technique

Master Slave Control Of Interline Power Flow Controller Using PSO Technique Master Slave Control Of Interline Power Flow Controller Using PSO Technique D.Lakshman Kumar*, K.Ram Charan** *(M.Tech Student, Department of Electrical Engineering, B.V.C. Engineering College, Odalarevu,

More information

Adaptive Power Flow Method for Distribution Systems With Dispersed Generation

Adaptive Power Flow Method for Distribution Systems With Dispersed Generation 822 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 17, NO. 3, JULY 2002 Adaptive Power Flow Method for Distribution Systems With Dispersed Generation Y. Zhu and K. Tomsovic Abstract Recently, there has been

More information

A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC)

A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC) Volume 116 No. 21 2017, 469-477 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC)

More information

VOLTAGE STABILITY CONSTRAINED ATC COMPUTATIONS IN DEREGULATED POWER SYSTEM USING NOVEL TECHNIQUE

VOLTAGE STABILITY CONSTRAINED ATC COMPUTATIONS IN DEREGULATED POWER SYSTEM USING NOVEL TECHNIQUE VOLTAGE STABILITY CONSTRAINED ATC COMPUTATIONS IN DEREGULATED POWER SYSTEM USING NOVEL TECHNIQUE P. Gopi Krishna 1 and T. Gowri Manohar 2 1 Department of Electrical and Electronics Engineering, Narayana

More information

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT Prof. Chandrashekhar Sakode 1, Vicky R. Khode 2, Harshal R. Malokar 3, Sanket S. Hate 4, Vinay H. Nasre 5, Ashish

More information

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 01 July 2015 ISSN (online): 2349-784X Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC Ravindra Mohana

More information

Simulation of Voltage Stability Analysis in Induction Machine

Simulation of Voltage Stability Analysis in Induction Machine International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 6, Number 1 (2013), pp. 1-12 International Research Publication House http://www.irphouse.com Simulation of Voltage

More information

Implementation SVC and TCSC to Improvement the Efficacy of Diyala Electric Network (132 kv).

Implementation SVC and TCSC to Improvement the Efficacy of Diyala Electric Network (132 kv). American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-5, pp-163-170 www.ajer.org Research Paper Open Access Implementation SVC and TCSC to Improvement the

More information

Complex Power Flow and Loss Calculation for Transmission System Nilam H. Patel 1 A.G.Patel 2 Jay Thakar 3

Complex Power Flow and Loss Calculation for Transmission System Nilam H. Patel 1 A.G.Patel 2 Jay Thakar 3 IJSRD International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 ISSN (online): 23210613 Nilam H. Patel 1 A.G.Patel 2 Jay Thakar 3 1 M.E. student 2,3 Assistant Professor 1,3 Merchant

More information

IMPACT OF THYRISTOR CONTROLLED PHASE ANGLE REGULATOR ON POWER FLOW

IMPACT OF THYRISTOR CONTROLLED PHASE ANGLE REGULATOR ON POWER FLOW International Journal of Electrical Engineering & Technology (IJEET) Volume 8, Issue 2, March- April 2017, pp. 01 07, Article ID: IJEET_08_02_001 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=8&itype=2

More information

DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach

DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach DC Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach F. Akhter 1, D.E. Macpherson 1, G.P. Harrison 1, W.A. Bukhsh 2 1 Institute for Energy System, School of Engineering

More information

Power Losses Estimation in Distribution Network (IEEE-69bus) with Distributed Generation Using Second Order Power Flow Sensitivity Method

Power Losses Estimation in Distribution Network (IEEE-69bus) with Distributed Generation Using Second Order Power Flow Sensitivity Method Power Losses Estimation in Distribution Network (IEEE-69bus) with Distributed Generation Using Second Order Power Flow Method Meghana.T.V 1, Swetha.G 2, R.Prakash 3 1Student, Electrical and Electronics,

More information

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load,,, ABSTRACT- In this paper the steady-state analysis of self excited induction generator is presented and a method to calculate

More information

United Power Flow Algorithm for Transmission-Distribution joint system with Distributed Generations

United Power Flow Algorithm for Transmission-Distribution joint system with Distributed Generations rd International Conference on Mechatronics and Industrial Informatics (ICMII 20) United Power Flow Algorithm for Transmission-Distribution joint system with Distributed Generations Yirong Su, a, Xingyue

More information

Optimal Placement of Distributed Generation for Voltage Stability Improvement and Loss Reduction in Distribution Network

Optimal Placement of Distributed Generation for Voltage Stability Improvement and Loss Reduction in Distribution Network ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative esearch in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

AN IMPROVED VOLTAGE REGULATION OF A DISTRIBUTION NETWORK USING FACTS - DEVICES

AN IMPROVED VOLTAGE REGULATION OF A DISTRIBUTION NETWORK USING FACTS - DEVICES Nigerian Journal of Technology (NIJOTECH) ol. 32. No. 2. July 2013, pp. 304 317 Copyright Faculty of Engineering, University of Nigeria, Nsukka, ISSN 1115-8443 www.nijotech.com AN IMPROED OLTAGE REGULATION

More information

Computation of Sensitive Node for IEEE- 14 Bus system Subjected to Load Variation

Computation of Sensitive Node for IEEE- 14 Bus system Subjected to Load Variation Computation of Sensitive Node for IEEE- 4 Bus system Subjected to Load Variation P.R. Sharma, Rajesh Kr.Ahuja 2, Shakti Vashisth 3, Vaibhav Hudda 4, 2, 3 Department of Electrical Engineering, YMCAUST,

More information

LOAD FLOW STUDIES WITH UPFC POWER INJECTION MODEL

LOAD FLOW STUDIES WITH UPFC POWER INJECTION MODEL LOAD FLOW STUDIES WITH UPFC POWER INJECTION MODEL A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF Master of Technology in Power Control and Drives By Mithu Sarkar Roll no-211ee2139

More information

POWER FLOW SIMULATION AND ANALYSIS

POWER FLOW SIMULATION AND ANALYSIS 1.0 Introduction Power flow analysis (also commonly referred to as load flow analysis) is one of the most common studies in power system engineering. We are already aware that the power system is made

More information

A Novel Approach for Optimal Location and Size of Distribution Generation Unit in Radial Distribution Systems Based on Load Centroid Method

A Novel Approach for Optimal Location and Size of Distribution Generation Unit in Radial Distribution Systems Based on Load Centroid Method A Novel Approach for Optimal Location and Size of Distribution Generation Unit in Radial Distribution Systems Based on Load Centroid Method G.Rajyalakshmi, N.Prema Kumar Abstract Optimum DG placement and

More information

The Optimal Location of Interline Power Flow Controller in the Transmission Lines for Reduction Losses using the Particle Swarm Optimization Algorithm

The Optimal Location of Interline Power Flow Controller in the Transmission Lines for Reduction Losses using the Particle Swarm Optimization Algorithm The Optimal Location of Interline Power Flow Controller in the Transmission Lines for Reduction Losses using the Particle Swarm Optimization Algorithm Mehrdad Ahmadi Kamarposhti Department of Electrical

More information

PSAT Model- Based Voltage Stability Analysis for the Kano 330KV Transmission Line

PSAT Model- Based Voltage Stability Analysis for the Kano 330KV Transmission Line SAT Model- Based Voltage Stability Analysis for the Kano 330KV Transmission ne S.M. Lawan Department of Electrical Engineering, Kano University of Science and Technology, Wudil Nigeria Abstract Voltage

More information

Maintaining Voltage Stability in Power System using FACTS Devices

Maintaining Voltage Stability in Power System using FACTS Devices International Journal of Engineering Science Invention Volume 2 Issue 2 ǁ February. 2013 Maintaining Voltage Stability in Power System using FACTS Devices Asha Vijayan 1, S.Padma 2 1 (P.G Research Scholar,

More information

Fuzzy Based Unified Power Flow Controller to Control Reactive Power and Voltage for a Utility System in India

Fuzzy Based Unified Power Flow Controller to Control Reactive Power and Voltage for a Utility System in India International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 6 (2012), pp. 713-722 International Research Publication House http://www.irphouse.com Fuzzy Based Unified Power Flow Controller

More information

Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink

Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink Satvinder Singh Assistant Professor, Department of Electrical Engg. YMCA University of Science & Technology, Faridabad,

More information

Implementation of FC-TCR for Reactive Power Control

Implementation of FC-TCR for Reactive Power Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 5, Issue 5 (May. - Jun. 2013), PP 01-05 Implementation of FC-TCR for Reactive Power Control

More information

VOLTAGE STABILITY IMPROVEMENT IN POWER SYSTEM BY USING STATCOM

VOLTAGE STABILITY IMPROVEMENT IN POWER SYSTEM BY USING STATCOM VOLTAGE STABILITY IMPROVEMENT IN POWER SYSTEM BY USING A.ANBARASAN* Assistant Professor, Department of Electrical and Electronics Engineering, Erode Sengunthar Engineering College, Erode, Tamil Nadu, India

More information

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION International Journal of Latest Research in Science and Technology Volume 3, Issue 1: Page No.68-74,January-February 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 POWER QUALITY IMPROVEMENT

More information

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor 1 Chaudhari Krunal R, 2 Prof. Rajesh Prasad 1 PG Student, 2 Assistant Professor, Electrical Engineering

More information

Optimal placement of SVCs & IPFCs in an Electrical Power System

Optimal placement of SVCs & IPFCs in an Electrical Power System IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 5 (May. 2013), V3 PP 26-30 Optimal placement of SVCs & IPFCs in an Electrical Power System M.V.Ramesh, Dr. V.C.

More information

Reliability Analysis of Radial Distribution Networks with Cost Considerations

Reliability Analysis of Radial Distribution Networks with Cost Considerations I J C T A, 10(5) 2017, pp. 427-437 International Science Press Reliability Analysis of Radial Distribution Networks with Cost Considerations K. Guru Prasad *, J. Sreenivasulu **, V. Sankar *** and P. Srinivasa

More information

USING FACTS STABILITY ANALYSIS OF AC TRANSMISSION LINE

USING FACTS STABILITY ANALYSIS OF AC TRANSMISSION LINE USING FACTS STABILITY ANALYSIS OF AC TRANSMISSION LINE Pardeep Kumar 1, Manjeet 2 1 M.Tech Student, IIET Kinana, Jind 2 Asst. Professor, GNIOT, Greater Noida ABSTRACT Due to the rapid technological progress,

More information

Paper ID: EE19 SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE

Paper ID: EE19 SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE Prof. Mrs. Shrunkhala G. Khadilkar Department of Electrical Engineering Gokhale Education Society.

More information

ECEN 667 Power System Stability Lecture 19: Load Models

ECEN 667 Power System Stability Lecture 19: Load Models ECEN 667 Power System Stability Lecture 19: Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter 7 Homework 6 is

More information

DESIGN AND SIMULATION OF UPFC AND IPFC FOR VOLTAGE STABILITY UNDER A SINGLE LINE CONTINGENCY: A COMPARATIVE STUDY

DESIGN AND SIMULATION OF UPFC AND IPFC FOR VOLTAGE STABILITY UNDER A SINGLE LINE CONTINGENCY: A COMPARATIVE STUDY Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018 DESIGN AND SIMULATION OF UPFC AND IPFC FOR VOLTAGE STABILITY UNDER

More information

A Method for Determining the Generators Share in a Consumer Load

A Method for Determining the Generators Share in a Consumer Load 1376 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 4, NOVEMBER 2000 A Method for Determining the Generators Share in a Consumer Load Ferdinand Gubina, Member, IEEE, David Grgič, Member, IEEE, and Ivo

More information

Load Flow Analysis on 400 KV Sub-Station- A Case Study

Load Flow Analysis on 400 KV Sub-Station- A Case Study International Journal of Emerging Trends in Science and Technology DOI: http://dx.doi.org/10.18535/ijetst/v2i12.01 Load Flow Analysis on 400 KV Sub-Station- A Case Study Authors Takshak V Rabari 1, Viral

More information

Optimal Power Flow Formulation in Market of Retail Wheeling

Optimal Power Flow Formulation in Market of Retail Wheeling Optimal Power Flow Formulation in Market of Retail Wheeling Taiyou Yong, Student Member, IEEE Robert Lasseter, Fellow, IEEE Department of Electrical and Computer Engineering, University of Wisconsin at

More information

Location of UPFC in Electrical Transmission System: Fuzzy Contingency Ranking and Optimal Power Flow

Location of UPFC in Electrical Transmission System: Fuzzy Contingency Ranking and Optimal Power Flow International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 12 (July 2012), PP. 10-20 www.ijerd.com Location of UPFC in Electrical Transmission System: Fuzzy Contingency

More information

COMPARISON OF STATCOM AND TCSC ON VOLTAGE STABILITY USING MLP INDEX

COMPARISON OF STATCOM AND TCSC ON VOLTAGE STABILITY USING MLP INDEX COMPARISON OF AND TCSC ON STABILITY USING MLP INDEX Dr.G.MadhusudhanaRao 1. Professor, EEE Department, TKRCET Abstract: Traditionally shunt and series compensation is used to maximize the transfer capability

More information

Enhanced Genetic Algorithm for Optimal Electric Power Flow using TCSC and TCPS

Enhanced Genetic Algorithm for Optimal Electric Power Flow using TCSC and TCPS Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 3 - July 2, 21, London, U.K. Enhanced Genetic Algorithm for Optimal Electric Power Flow using TCSC and TCPS K. Kalaiselvi, V. Suresh

More information

A COMPUTER CALCULATION FOR TENTATIVE ELECTRICAL SYSTEM IMPROVEMENT BY REACTIVE POWER COMPENSATION CONSIDERING SYSTEM UNBALANCED

A COMPUTER CALCULATION FOR TENTATIVE ELECTRICAL SYSTEM IMPROVEMENT BY REACTIVE POWER COMPENSATION CONSIDERING SYSTEM UNBALANCED A COMPUTER CALCULATION FOR TENTATIVE ELECTRICAL SYSTEM IMPROVEMENT BY REACTIVE POWER COMPENSATION CONSIDERING SYSTEM UNBALANCED Agus Ulinuha 1) Hasyim Asy ari 2) Agus Supardi 3) Department of Electrical

More information

New York Science Journal 2017;10(3)

New York Science Journal 2017;10(3) Improvement of Distribution Network Performance Using Distributed Generation (DG) S. Nagy Faculty of Engineering, Al-Azhar University Sayed.nagy@gmail.com Abstract: Recent changes in the energy industry

More information

EEEE 524/624: Fall 2017 Advances in Power Systems

EEEE 524/624: Fall 2017 Advances in Power Systems EEEE 524/624: Fall 2017 Advances in Power Systems Lecture 6: Economic Dispatch with Network Constraints Prof. Luis Herrera Electrical and Microelectronic Engineering Rochester Institute of Technology Topics

More information

Network Reconfiguration for Loss Reduction and Voltage Profile Improvement of 110-Bus Radial Distribution System Using Exhaustive Search Techniques

Network Reconfiguration for Loss Reduction and Voltage Profile Improvement of 110-Bus Radial Distribution System Using Exhaustive Search Techniques International Journal of Electrical and Computer Engineering (IJECE) Vol. 5, No. 4, August 2015, pp. 788~797 ISSN: 2088-8708 788 Network Reconfiguration for Loss Reduction and Voltage Profile Improvement

More information

Power Quality Improvement Using GUPFC

Power Quality Improvement Using GUPFC Power Quality Improvement Using GUPFC D.Rajesh Reddy Assistant.Professor / EEE Narayana Engineering College, Gudur Andhra Pradesh Dr.R.Veera Sudarasana Reddy Principal Narayana Engineering College, Gudur

More information

An Overview of Facts Devices used for Reactive Power Compensation Techniques

An Overview of Facts Devices used for Reactive Power Compensation Techniques An Overview of Facts Devices used for Reactive Power Compensation Techniques Aishvarya Narain M.Tech Research Scholar Department of Electrical Engineering Madan Mohan Malviya University of Technology Gorakhpur,

More information

Incorporation of FACTS Controllers in Newton Raphson Load Flow for Power Flow Operation, Control and Planning: A Comprehensive Survey

Incorporation of FACTS Controllers in Newton Raphson Load Flow for Power Flow Operation, Control and Planning: A Comprehensive Survey Incorporation of FACTS Controllers in Newton Raphson Load Flow for Power Flow Operation, Control and Planning: A Comprehensive Survey Bindeshwar Singh, N. K. Sharma and A. N. Tiwari, and S.P.Singh Abstract-

More information

Particle Swarm Intelligence based allocation of FACTS controller for the increased load ability of Power system

Particle Swarm Intelligence based allocation of FACTS controller for the increased load ability of Power system International Journal on Electrical Engineering and Informatics Volume 4, Number 4, December 202 Particle Swarm Intelligence based allocation of FACTS controller for the increased load ability of Power

More information

ECE 740. Optimal Power Flow

ECE 740. Optimal Power Flow ECE 740 Optimal Power Flow 1 ED vs OPF Economic Dispatch (ED) ignores the effect the dispatch has on the loading on transmission lines and on bus voltages. OPF couples the ED calculation with power flow

More information

Statcom Operation for Wind Power Generator with Improved Transient Stability

Statcom Operation for Wind Power Generator with Improved Transient Stability Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 3 (2014), pp. 259-264 Research India Publications http://www.ripublication.com/aeee.htm Statcom Operation for Wind Power

More information

Electric Drives Lab PCC 8 EE-456C Electrical Simulation Lab PCC 9 EE-468C Project Workshop SEC

Electric Drives Lab PCC 8 EE-456C Electrical Simulation Lab PCC 9 EE-468C Project Workshop SEC YMCA UNIVERSITY OF SCIENCE AND TECHNOLOGY, FARIDABAD SCHEME OF STUDIES & EXAMINATIONS B.TECH 4 TH YEAR (SEMESTER VIII) ELECTRICAL ENGINEERING (2017-18) Sl.No. Course code. Course Title L T P Credits CAT

More information

An Approach for Formation of Voltage Control Areas based on Voltage Stability Criterion

An Approach for Formation of Voltage Control Areas based on Voltage Stability Criterion 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 636 An Approach for Formation of Voltage Control Areas d on Voltage Stability Criterion Dushyant Juneja, Student Member, IEEE, Manish Prasad,

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) Modeling and Control of Quasi Z-Source Inverter for Advanced Power Conditioning Of Renewable Energy Systems C.Dinakaran 1, Abhimanyu Bhimarjun Panthee 2, Prof.K.Eswaramma 3 PG Scholar (PE&ED), Department

More information

Computer Aided Transient Stability Analysis

Computer Aided Transient Stability Analysis Journal of Computer Science 3 (3): 149-153, 2007 ISSN 1549-3636 2007 Science Publications Corresponding Author: Computer Aided Transient Stability Analysis Nihad M. Al-Rawi, Afaneen Anwar and Ahmed Muhsin

More information

Enhancement of Voltage Stability Margin Using FACTS Controllers

Enhancement of Voltage Stability Margin Using FACTS Controllers International Journal of omputer and Electrical Engineering, Vol. 5, No. 2, April 23 Enhancement of Voltage Stability Margin Using FATS ontrollers H. B. Nagesh and. S. uttaswamy Abstract This paper presents

More information

Analysis of Low Tension Agricultural Distribution Systems

Analysis of Low Tension Agricultural Distribution Systems International Journal of Engineering and Technology Volume 2 No. 3, March, 2012 Analysis of Low Tension Agricultural Distribution Systems K. V. S. Ramachandra Murthy, K. Manikanta, G. V. Phanindra G. V.

More information

Application Method Algorithm Genetic Optimal To Reduce Losses In Transmission System

Application Method Algorithm Genetic Optimal To Reduce Losses In Transmission System Application Method Algorithm Genetic Optimal To Reduce Losses In Transmission System I Ketut Wijaya Faculty of Electrical Engineering (Ergonomics Work Physiology) University of Udayana, Badung, Bali, Indonesia.

More information

Power Consump-on Management and Control for Peak Load Reduc-on in Smart Grids Using UPFC

Power Consump-on Management and Control for Peak Load Reduc-on in Smart Grids Using UPFC 1 Power Consump-on Management and Control for Peak Load Reduc-on in Smart Grids Using UPFC M. R. Aghaebrahimi, M. Tourani, M. Amiri Presented by: Mayssam Amiri University of Birjand Outline 1. Introduction

More information

Available Transfer Capacity with Renewable Energy

Available Transfer Capacity with Renewable Energy Available Transfer Capacity with Renewable Energy 1 Haris K V, 1 Hrudhya Kurian C 1 PG Scholar Thejus engineering college, Thrissur hariskv.kv@gmail.com, hrudhyakurianc888@gmail.com Abstract- Electric

More information

An approach for estimation of optimal energy flows in battery storage devices for electric vehicles in the smart grid

An approach for estimation of optimal energy flows in battery storage devices for electric vehicles in the smart grid An approach for estimation of optimal energy flows in battery storage devices for electric vehicles in the smart grid Gergana Vacheva 1,*, Hristiyan Kanchev 1, Nikolay Hinov 1 and Rad Stanev 2 1 Technical

More information

INDUCTION motors are widely used in various industries

INDUCTION motors are widely used in various industries IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 6, DECEMBER 1997 809 Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control Jae Ho Chang and Byung Kook Kim,

More information

APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM

APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM 1 Rohit Kumar Sahu*, 2 Ashutosh Mishra 1 M.Tech Student, Department of E.E.E, RSR-RCET, Bhilai, Chhattisgarh, INDIA,

More information

Analysis of Grid Connected Solar Farm in ETAP Software

Analysis of Grid Connected Solar Farm in ETAP Software ABSTRACT 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Grid Connected Solar Farm in ETAP Software Komal B. Patil, Prof.

More information

One-Cycle Average Torque Control of Brushless DC Machine Drive Systems

One-Cycle Average Torque Control of Brushless DC Machine Drive Systems One-Cycle Average Torque Control of Brushless DC Machine Drive Systems Najma P.I. 1, Sakkeer Hussain C.K. 2 P.G. Student, Department of Electrical and Electronics Engineering, MEA Engineering College,

More information

IMPROVEMENT OF LOADABILITY IN DISTRIBUTION SYSTEM USING GENETIC ALGORITHM

IMPROVEMENT OF LOADABILITY IN DISTRIBUTION SYSTEM USING GENETIC ALGORITHM IMPROVEMENT OF LOADABILITY IN DISTRIBUTION SYSTEM USING GENETIC ALGORITHM Mojtaba Nouri 1, Mahdi Bayat Mokhtari 2, Sohrab Mirsaeidi 3, Mohammad Reza Miveh 4 1 Department of Electrical Engineering, Saveh

More information

RECONFIGURATION OF RADIAL DISTRIBUTION SYSTEM ALONG WITH DG ALLOCATION

RECONFIGURATION OF RADIAL DISTRIBUTION SYSTEM ALONG WITH DG ALLOCATION RECONFIGURATION OF RADIAL DISTRIBUTION SYSTEM ALONG WITH DG ALLOCATION 1 Karamveer Chakrawarti, 2 Mr. Nitin Singh 1 Research Scholar, Monad University, U.P., India 2 Assistant Professor and Head (EED),

More information

Improvement of Voltage Profile using ANFIS based Distributed Power Flow Controller

Improvement of Voltage Profile using ANFIS based Distributed Power Flow Controller International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 11 [July 2015] PP: 01-06 Improvement of Voltage Profile using ANFIS based Distributed Power Flow Controller

More information

Power-Flow Development Based on the Modified Backward- Forward for Voltage Profile Improvement of Distribution System

Power-Flow Development Based on the Modified Backward- Forward for Voltage Profile Improvement of Distribution System International Journal of Electrical and Computer Engineering (IJECE) Vol. 6, No. 5, October 2016, pp. 2005~2014 ISSN: 2088-8708, DOI: 10.11591/ijece.v6i5.10648 2005 Power-Flow Development Based on the

More information

Effect of Load Variation on Available Transfer Capability

Effect of Load Variation on Available Transfer Capability Effect of Load Variation on Available Transfer Capability S.S.G.M.C.E, Shegaon ABSTRACT Indication of available transfer capability (ATC) by Independent System Operator is important issue in a deregulated

More information

Predicting Solutions to the Optimal Power Flow Problem

Predicting Solutions to the Optimal Power Flow Problem Thomas Navidi Suvrat Bhooshan Aditya Garg Abstract Predicting Solutions to the Optimal Power Flow Problem This paper discusses an implementation of gradient boosting regression to predict the output of

More information

Decoupling and Control of Real and Reactive Power in Grid-Connected Photovoltaic Power System

Decoupling and Control of Real and Reactive Power in Grid-Connected Photovoltaic Power System Decoupling and Control of Real and Reactive Power in Grid-Connected Photovoltaic Power System Tayeb Allaoui Faculty of Engineering, L2GEGI Laboratory University of Tiaret, Algeria allaoui_tb@yahoo. fr

More information

Modeling and Simulation of Firing Circuit using Cosine Control System

Modeling and Simulation of Firing Circuit using Cosine Control System e t International Journal on Emerging Technologies 7(1): 96-100(2016) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Modeling and Simulation of Firing Circuit using Cosine Control System Abhimanyu

More information

Hybrid Three-Port DC DC Converter for PV-FC Systems

Hybrid Three-Port DC DC Converter for PV-FC Systems Hybrid Three-Port DC DC Converter for PV-FC Systems P Srihari Babu M.Tech (Power Systems) B Ashok Kumar Assistant Professor Dr. A.Purna Chandra Rao Professor & HoD Abstract The proposed a hybrid power

More information

Optimal Location of TCSC to Improve Voltage Stability and Voltage Profile

Optimal Location of TCSC to Improve Voltage Stability and Voltage Profile Optimal Location of TCSC to Improve Voltage Stability and Voltage Profile Nikunj B. Marviya Member IEEE Abstract With the inter connection of the power system, the complexity increases day by day. The

More information

Optimal Power Flow (DC-OPF and AC-OPF)

Optimal Power Flow (DC-OPF and AC-OPF) Optimal Power Flow (DC-OPF and AC-OPF) DTU Summer School 2018 Spyros Chatzivasileiadis What is optimal power flow? 2 DTU Electrical Engineering Optimal Power Flow (DC-OPF and AC-OPF) Jun 25, 2018 Optimal

More information

ELG4125: Flexible AC Transmission Systems (FACTS)

ELG4125: Flexible AC Transmission Systems (FACTS) ELG4125: Flexible AC Transmission Systems (FACTS) The philosophy of FACTS is to use power electronics for controlling power flow in a transmission network, thus allowing the transmission line to be loaded

More information

Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM

Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM Shaila Arif 1 Lecturer, Dept. of EEE, Ahsanullah University of Science & Technology, Tejgaon, Dhaka,

More information

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID 1 SUNNY KUMAR, 2 MAHESWARAPU SYDULU Department of electrical engineering National institute of technology Warangal,

More information

CONGESTION MANAGEMENT IN DEREGULATED POWER SYSTEM USING FACTS DEVICES

CONGESTION MANAGEMENT IN DEREGULATED POWER SYSTEM USING FACTS DEVICES CONGESTION MANAGEMENT IN DEREGULATED POWER SYSTEM USING FACTS DEVICES Hiren Patel 1 and Ravikumar Paliwal 2 1 P.G.Scholar PIT, GTU, Vadodara, India 2 Assistant Professor PIT, GTU, Vadodara, India ABSTRACT

More information

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online:

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online: Multilevel Inverter Analysis and Modeling in Distribution System with FACTS Capability #1 B. PRIYANKA - M.TECH (PE Student), #2 D. SUDHEEKAR - Asst Professor, Dept of EEE HASVITA INSTITUTE OF MANAGEMENT

More information

Benefits of HVDC and FACTS Devices Applied in Power Systems

Benefits of HVDC and FACTS Devices Applied in Power Systems Benefits of HVDC and FACTS Devices Applied in Power Systems 1 P. SURESH KUMAR, 2 G. RAVI KUMAR 1 M.Tech Research Scholar, Priyadarshini Institute of Technology & Management 2 Associate Professor, Priyadarshini

More information

OPTIMUM ALLOCATION OF DISTRIBUTED GENERATION BY LOAD FLOW ANALYSIS METHOD: A CASE STUDY

OPTIMUM ALLOCATION OF DISTRIBUTED GENERATION BY LOAD FLOW ANALYSIS METHOD: A CASE STUDY OPTIMUM ALLOCATION OF DISTRIBUTED GENERATION BY LOAD FLOW ANALYSIS METHOD: A CASE STUDY Wasim Nidgundi 1, Dinesh Ballullaya 2, Mohammad Yunus M Hakim 3 1 PG student, Department of Electrical & Electronics,

More information

Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM Using Fuzzy Logic Controller

Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM Using Fuzzy Logic Controller Bulletin of Electrical Engineering and Informatics ISSN: 2302-9285 Vol. 5, No. 3, September 2016, pp. 271~283, DOI: 10.11591/eei.v5i3.593 271 Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM

More information