Development of Contra-Rotating Propeller with Tip-Raked Fins

Similar documents
A Development of a Propeller with Backward Tip Raked Fin

Advanced Design of a Ducted Propeller with High Bollard Pull Performance

A Framework for Energy Saving Device (ESD) Decision Making

CFD on Cavitation around Marine Propellers with Energy-Saving Devices

characteristics, including the ability to turn through 180 degrees for an increase in backing thrust.

SHIP HYDRODYNAMICS LECTURE NOTES OF PROPULSION PART

Design and Experimental Study on a New Concept of Preswirl Stator as an Efficient Energy-Saving Device for Slow Speed Full Body Ship

Large Area Propellers

Design and Test of Transonic Compressor Rotor with Tandem Cascade

Numerical and Experimental Investigation into Cavitation of Propellers Having Blades Designed by Various Load Distributions near the Blade Tips

Propeller Particulars and Scale Effect Analysis of ECO-Cap by CFD

SIMULATION OF PROPELLER EFFECT IN WIND TUNNEL

About us. In this brochure we are pleased to present one of our latest innovations the Becker Mewis Duct.

COMPARISON OF PROPELLER TYPE B-SERIES AND AU-OUTLINE GAWN SERIES FOR IMPROVING ON SUBMARINE PROPULSION PERFORMANCE USING CFD

Improving the Propulsion Efficiency by means of Contracted and Loaded Tip (CLT) Propellers

Kappel Propellers and Other Efficiency Improving Devices. Presentation by MAN Diesel & Turbo

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate

ZEUS and NOAH Projects of NMRI

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

Abstract. 1 Introduction

Voith Schneider Propeller (VSP) - Investigations of the cavitation behaviour

Controllable pitch propellers for future warships and mega yachts

IMO NOISE FROM COMMERCIAL SHIPPING AND ITS ADVERSE IMPACTS ON MARINE LIFE. Reducing underwater noise pollution from large commercial vessels

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

INVESTIGATION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT TSAGI

Hydrodynamic Optimization of Ships

Design and Hydrodynamic Model Test of Mini Submarine Propeller with High Efficiency and Low Cavitation

ABSTRACT INTRODUCTION

CFD Simulations for Ships with Rotating Propeller - Self propulsion, Cavitation & Ship radiated noise -

EFFECT OF SPOILER DESIGN ON HATCHBACK CAR

Contra-Rotating Propellers Combination of DP Capability, Fuel Economy and Environment

A Breakthrough in Waterjet Propulsion Systems

Improving Propulsion Efficiency with SISTEMAR CLT Propellers

IAC-15-C4.3.1 JET INDUCER FOR A TURBO PUMP OF A LIQUID ROCKET ENGINE

Heat Transfer Enhancement for Double Pipe Heat Exchanger Using Twisted Wire Brush Inserts

Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

Influence of Ground Effect on Aerodynamic Performance of Maglev Train

DYNAMIC EFFICIENCY - Propulsors with Contra-Rotating Propellers for Dynamic Positioning

MARITIME AFTERNOON. Torben Ole Andersen. June 14, 2017 Aalborg University, Denmark

PROPELLERS/SHAFTING '94 SYMPOSIUM

Investigation of Different Methods of Noise Reduction for Submerged Marine Propellers and Their Classification

Development of Assist Steering Bogie System for Reducing the Lateral Force

Investigation of converging slot-hole geometry for film cooling of gas turbine blades

Design Considerations for Stability: Civil Aircraft

Efforts toward Development of Energy-Saving Large-Size ROPAX Ferry

EXPERIMENTAL INVESTIGATION OF THE FLOWFIELD OF DUCT FLOW WITH AN INCLINED JET INJECTION DIFFERENCE BETWEEN FLOWFIELDS WITH AND WITHOUT A GUIDE VANE

EXPERIMENTAL RESEARCH ON HELICOPTER TAIL SHAKE PHENOMENON

Effect of Stator Shape on the Performance of Torque Converter

Azipod & CRP Azipod Propulsion

Numerical investigation of open water performance of hybrid CRP podded propulsion system

Aerodynamic Characteristics of Sedan with the Rolling Road Ground Effect Simulation System

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x

Reliable, Silent, Efficient. Voith Linear Jet

Aerodays 2011: Greening the air transport system REMFI. Rear fuselage and empennage flow investigation. Presented by Daniel Redondo / Adel Abbas

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR

ENGINE STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE

Optimization of Hydraulic Retarder Based on CFD Technology

Effect of concave plug shape of a control valve on the fluid flow characteristics using computational fluid dynamics

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

Energy Management for Regenerative Brakes on a DC Feeding System

Prediction of Thermal Deflection at Spindle Nose-tool Holder Interface in HSM

The Azimuth Propulsion Company

THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN

Research and Development on Cycloidal Propellers for Airships

Effects of Dilution Flow Balance and Double-wall Liner on NOx Emission in Aircraft Gas Turbine Engine Combustors

Nose 1. Nose 2 Nose 3. Nose 4 Nose 5. Nose 6 Nose 7

Laboratory Tests for VIV Prediction of Deepwater Risers

CONCEPTUAL DESIGN OF ECOLOGICAL AIRCRAFT FOR COMMUTER AIR TRANSPORTATION

Development of Integrated Vehicle Dynamics Control System S-AWC

Development of Motor-Assisted Hybrid Traction System

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine

THE LONGITUDINAL VIBRATION OF COMPOSITE DRIVE SHAFT

Facts, Fun and Fallacies about Fin-less Model Rocket Design

Super-low Friction Torque Technology of Tapered Roller Bearings for Reduction of Environmental Burdens

CHAPTER 1. Introduction and Literature Review

Chapter 4 Engine characteristics (Lectures 13 to 16)

Moving ahead powerfully: MAN Diesel & Turbo optimizes the efficiency of ship propellers using cutting-edge CFD simulation methods

Impacts of Short Tube Orifice Flow and Geometrical Parameters on Flow Discharge Coefficient Characteristics

Merchant Ships Determined From. Model Tests and Full Scale Trials. Stuart B. Cohen Principal Investigator. for. Hydronautics, Inc. Project Coordinator

A LES/RANS HYBRID SIMULATION OF CANOPY FLOWS

Aerodynamics of cars Drag reduction

THE INVESTIGATION OF CYCLOGYRO DESIGN AND THE PERFORMANCE

IMPROVEMENT ON MOUNTING THERMAL RESISTANCE BETWEEN A CIRCUIT BOARD WITH MANY COMPONENTS AND A LIQUID-COOLED COLD PLATE

P-899 WINMOS SUB-ACTIVITY 2.3

Effect of Relative Wind on Notch Back Car with Add-On Parts

Hydrodynamic Trends in Optimizing Propulsion

Navy Case No Date: 10 October 2008

Research and Reviews: Journal of Engineering and Technology

Methodology for Distributed Electric Propulsion Aircraft Control Development with Simulation and Flight Demonstration

Effect of cavitation during propeller ice interaction. Rod Sampson Emerson Cavitation Tunnel, University of Newcastle, UK

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset

CHANGE IN DRIVERS PARKING PREFERENCE AFTER THE INTRODUCTION OF STRENGTHENED PARKING REGULATIONS

CFD application for an icebreaker propeller design

Research in hydraulic brake components and operational factors influencing the hysteresis losses

HELICOPTER TAIL ROTOR ANALYSIS: EXPERIENCE IN AGUSTA WITH ADAMS

Heat transfer enhancement of a single row of tube

fincantieri / marine systems and components Controllable and Fixed Pitch Propellers

XIV.C. Flight Principles Engine Inoperative

STUDYING THE EFFECT OF PITCH RATIO ON SHEET CAVITATION IN MARINE PROPELLERS

THE INFLUENCE OF THE MICROGROOVES ON THE HYDRODYNAMIC PRESSURE DISTRIBUTION AND LOAD CARRYING CAPACITY OF THE CONICAL SLIDE BEARING

Transcription:

Second International Symposium on Marine Propulsors smp, Hamburg, Germany, June 2 Development of Contra-Rotating Propeller with Tip-Raked Fins Yasuhiko Inukai IHI Marine United Inc., Tokyo, Japan ABSTRACT One of the solutions to reduce fuel oil costs and emission of green house gases of ships is the application of ContraRotating Propeller (CRP), which is considered one of the most effective energy saving devices. IHI Marin United Inc., has continued to develop the CRP technology for a long time and today various sizes of CRPs have already been equipped to more than vessels and they have all attained high performance in service. To improve the efficiency further, we developed advanced CRP combined with tip-raked fins. Special attention was paid to the advantage of blade tip geometries, which realize larger aft propeller diameter. The hydrodynamic characteristics of tip-raked fin propellers (TRP) were investigated by potential theory calculation. After design of tip-raked CRP, its higher efficiency was verified by the open water tests with high Reynolds number. This paper introduces the new concept of CRP with tipraked fins and presents the results of the theoretical and experimental investigations. Keywords Contra-rotating propeller, Energy saving device, Tipraked fins INTRODUCTION Today, social demands for saving energy and reducing greenhouse gases (GHG) is increasing more than ever. To meet such demands, various energy saving devices have already been developed. Among them, CRP is well known as one of the most effective devices. IHI Marine United Inc. (IHIMU) has much experience applying CRPs to various kinds and sizes of vessels, such as VLCC and bulk carriers. Recently, CRPs combined with electric propulsion systems were installed to coastal vessels, and a great amount of fuel oil and GHG reduction was achieved compared with the existing vessels (Inukai 2). Although a high performance of CRP has already been already, the pursuit for an energy saving technology is never ending. To further improve CRP s efficiency, we paid attention to the concept of a propeller with tip-raked fins (TRP), which has special blade tip geometries. The concept of TRP started originally from the airplane wing, (e.g., Cone 962), and applied to marine propeller by several researchers (Andersen & Kappel 25, Suzuki 22, Yamasaki 25). In general, efficiency of TRP can be improved by modifying the lift distribution over the blade and reducing drag. Most successful example of TRP is KAPPEL Propeller, developed by Andersen and Kappel. They have been equipped to various kinds of vessels and the amount of the improvement has been reported around 4-5%. TRP is a very cost effective device because only geometries nearby blade tip are modified without any additional equipment. Accordingly, we tried to apply this advantageous concept to CRP in this study. Firstly, the hydrodynamic characteristics of TRP were investigated by potential theory calculation. Secondly, special attention was paid to the advantage of the blade tip geometries which realize larger aft propeller diameter when TRP concept is applied to CRP. Thirdly, after optimizing CRP s geometries by parametrical numerous study, open water tests with exclusively high Reynolds number were carried out in HSVA s high speed cavitation tunnel. Consequently,.5% higher efficiency compared with the conventional CRP, i.e., without curved rake, was verified by the model tests. This paper introduces the new concept of CRP with tipraked fins and presents the results of the theoretical and experimental investigations. 2 CHARACTERISTICS of TIP-RAKED PROPELLER To investigate the principal hydrodynamic characteristics of TRP, potential theory calculation was applied in this section. The effects of tip and other geometry distribution on propeller performance were examined by the parametric study. 2. Calculation Method To calculate the hydrodynamic performance of single propeller (SP) and CRP, Source and Quasi-Continuous vortex Method (SQCM) developed by Ando (995) for SP were used. CRP s performance can be calculated by iterative calculation with the effect of interaction between aft and forward propellers taken into account. Further, estimation of slipstream is necessary in this CRP study because aft propeller works inside the slipstream of forward propeller. Therefore, the trailing wake vortex model introduced by Kawakita (992) was adapted to the original calculation code. Good accuracy of this calculation method was already confirmed by the comparison between calculation and

experimental results for CRP s open water characteristics, an example of which is shown in Figure. It should be noted that the present calculation method can be applied to a propeller only in open water. Base.9 Kt, Kq,.7 Kt_exp Kq_exp etao_exp Kt_cal Kq_cal etao_cal.6.5.4.3.2..2.4.6.2 J Figure : Comparison of calculation and experimental results for CRP s open water characteristics 2.2 Single Propeller To investigate the principal hydrodynamic characteristics of TRP, we first carried out the tentative calculations with varying tip and other geometries for SP. 2.2. Pressure Distribution Pressure distributions over blades were calculated for propellers with 3 different rake distributions - forward rake (), backward rake () and no-rake propeller () - as shown in Figure 2. The other geometries (e.g., pith, camber, etc.) were kept identical to each other for simplicity. The calculated pressure distributions on the suction side are shown in Figure 3. It is found that the negative pressure of the decreases at the tip region compared with the propeller, whereas it increases for. This moderate negative pressure distribution for can enlarge design flexibility (i.e., reduced blade area, more tip loaded, etc.), which might lead to the improvement of efficiency. Figure 3: Calculated pressure distributions on the suction side.9. w/o viscosity Base % with viscosity..2.4.6.2 -.5 rake/diam eter.5 (w/o vis.) (w/o vis.) (w/o vis.).7.5% -. r/r Figure 2: Rake distributions for calculated propellers.5..3.6.9.2 Figure 4: Calculated efficiencies for propellers with different rake distributions

2.2.2 Efficiency in case of changing only rake distribution.3 Pitch/ Pitch at.7r/r Figure 4 shows the calculated efficiencies of the propellers described in the previous subsection. Calculations were done with and without viscous effect taken into account in this study. Regardless of viscous effect, it is found that the is superior to the. Compared with propeller, the efficiency without viscous effect gets % better in case of. However, the amount of improvement is depressed to.5% when viscous effect is taken into account. The results imply that viscous component of TRP might be larger than that of propeller due to the increase of blade tip area. Figure 5 shows radial circulation distributions along orthogonal mid-chord line. In case of the, the allover circulations are increased compared with propeller. On the other hand, the circulations are increased partially around the blade tip area in case of. From the above, not only rake distribution but also the other geometries such as pitch, camber and skew should be changed to optimize the circulation distribution. typep typep2 typep3 typep4 typep5..9.7.3.9.2 Figure 6: Pitch distributions of calculated propellers w/o viscosity 2%.75.5 (w/o vis.) (w/o vis.) (w/o vis.).4 Γ/πDV.6 r/r.7.3.2.65..6.4..2.4.6 % with viscosity.2 Figure 5: Calculated circulation distributions propellers with different rake distributions.45.5 s/r for Figure 7: Calculated efficiencies of propellers in parametric study 2.2.3 Efficiency in case of changing other geometries Next, we investigated the effect of other geometries pitch, camber, chord length and skew - varying them parametrically, as well as rake distribution. For example, series of pitch distribution shown in Figure 6 are used for this study in combination with other parameters. All calculated efficiencies with various design parameters are plotted in Figure 7. It is found in any case that is superior to in this parametric study and the maximum efficiency gain is around % when viscous effect is included. Contrary to this result, Andersen et al (25) claims that is superior to, and that its gain reaches 4%. Andersen applied the specific coordinate system and a geometric parameter of nose-tail inclination, shown in Figure 8, for special design of TRP. A detailed review is not possible, but one possible reason of this discrepancy would be the difference of TRP-geometry definition. Figure 8: Geometry of the KAPPEL propeller (Andersen el al 25) 2.2.4 Slipstream Figure 9 shows calculated slipstream through the blade tip of 3 propellers described in the Subsection 2.2.. It is

found that the streamline changes according to the shift of the blade tip position. At the aft propeller s position, the slipstream diameter of the is larger than that of the propeller. The change of slipstream diameter at the aft propeller is one of the most important characteristics when TRP concept is applied to CRP. Aft propeller of CRP works in the slipstream of forward propeller and its diameter must be smaller than the streamline diameter to avoid a forward propeller s tip vortex. From the general principle by momentum theory, propeller efficiency is improved as propeller diameter is enlarged. Applying the to forward propeller, aft propeller can be enlarged more which leads to the further improvement of CRP s efficiency. ) Applying backward tip rake to forward propeller with the aim of maximizing aft propeller diameter within a slipstream of forward propeller; 2) Utilizing advantage of moderate negative pressure distribution on the suction side of, optimize forward propeller s geometries within an allowable range of cavitation performance. Figure shows an illustration of the designed tip-raked CRP. To maximize aft propeller diameter, aft propeller has a little forward rake. Table 2 shows the dimensions of the conventional CRP without curved rake (CRP) and the designed CRP with tip rake (CRP2) in model scale. Both CRPs were designed under the same design condition to keep the same thrust. Aft Propeller s position Figure 9: Slipstream of propellers with different rake distributions 2.3 CRP The same approach as described in 2.2 was applied to CRP design with tip-raked fins. Table shows the calculated results for the CRP with different rakecombination. In this case, the other geometries were kept identical to each other. The resultant ranking of efficiency is BB>BF>FB>FF, as shown in the table. CRP with the geometry is superior to that with the, which shows similar results in case of SP-TRP design. The tendencies for the changes of pressure and circulation distribution are also similar to those for the single propeller case. Table : Calculated results for CRPs with different rake distributions Case Base BF BB FB FF No rake Aft No rake J.55.55.55.55.55 Kt.32.32.32.32.32 Kq.464.463.458.466.472 etao.57.57.578.567.56 etao_gain.2%.5% -.4% -.7% 3 DESIGN OF TIP-RAKED CRP Based on the studies mentioned, new tip-raked CRP was designed under the following concept, aimed at improving its efficiency: Figure : Illustration of the designed CRP Table 2: Dimensions of designed CRP and d CRP Model Number Number of Blades Direction of Rotation Diameter (mm) Pitch Ratio at.7r Rake CRP (Base) Aft MP2955 MP2956 4 5 right left 36 3 6.59 Straight CRP2 MP2957 4 right 36 59 Backward Straight Tip Rake (TRP) Aft MP2958 5 left 329.5.87 Tip Rake 4 MODEL TESTS Subsequently, the model tests were carried out to verify the performance of the CRPs in Table 2. In addition, model tests for each aft and forward propeller were also carried out as a single propeller mode. 4. Conditions It is known that TRP is strongly influenced by viscous effect and, thus, open water tests for TRP should be carried out at high Reynolds number (Andersen et al 25). To meet this requirement, open water tests were carried out at HSVA s high speed cavitation tunnel, increasing flow speeds up to 7 m/s with model propellers of up to 36 mm diameters.

4.2 Open Water Tests Results Figure shows the comparison between calculation and experimental results for both CRPs. Both calculation and experiment show that efficiency of CRP2 (designed CRP) was improved compared with the CRP ( CRP). However,.5% efficiency gain derived from experiment is smaller than estimated one. CRP_fore()_exp CRP2_fore(TRP)_exp CRP_fore()_cal CRP2_fore(TRP)_cal Further, in spite of the intention to keep Kt for both forward propellers, Kt for TRP is smaller than that of the propeller as shown in Figure 3. However, the reasons of this discrepancy are not clear up to now. Compared with the conventional propeller (e.g., without curved rake), larger viscous effect appears on TRP as described in the next chapter and the surrounding flow field at the tip region should be more complex. So, inaccuracy for the estimation of viscous effect and trailing wake vortex might be major reasons. To improve the calculation accuracy for TRP, more detailed investigations are necessary. The above discrepancy would be raised by the forward propeller s efficiency in single mode, and so, not as improved as expected, as shown in Figure 2. That is, optimization of forward propeller is still insufficient whereas aft propeller diameter could be increased as arranged. Efficiency gain Calculation.5% Experiment.%.5.5.5 Figure 2: Comparison of efficiencies of CRP s forward propeller () and CRP2 s forward propeller (TRP), experimental results are at Reynolds number=.4*6.7.6 Kt, Kq, 4.3 Reynolds Number Dependency Figure 4 shows the Reynolds dependency of the both CRP and each propeller in single mode at the respective working point (J=.55 for CRPs, J=.6 for forward propellers, and J=.7 for aft propellers). It is found that efficiencies of TRP change steeply compared with the propeller in both case of CRP and single propeller mode. From these findings, it seems necessary to carry out open water tests for TRP over Reynolds number of *6..65 Kt_CRP() Kq_CRP() etao_crp() Kt_CRP2(TRP) Kq_CRP2(TRP) _CRP2(TRP).5.4.3.2..2.4.6.2 J Figure 3: Comparison of open water characteristics of CRP s forward propeller () and CRP2 s forward CRP()_exp CRP2(TRP)_exp CRP()_cal CRP2(TRP)_cal CRP_fore CRP_aft CRP2_fore CRP2_aft CRP CRP2.65.65.5.E+5 Efficiency gain Calculation 3% Experiment.5%.E+6 Reynold's Number (Kempf).E+7 Figure 4: Reynolds dependencies of CRP and CRP2 4.4 Trajectory of Propeller s Tip Vortex.5.5.5 2 Figure : Comparison of efficiencies of CRP () and CRP2 (TRP), experimental results are at Reynolds number=.4*6 During open water tests, trajectory of forward propeller s tip vortex was visualized by depressing static pressure of the tank. As shown in Figure 5, it was observed that the aft propeller works within the trajectory and the tip vortex didn t hit the aft propeller blade. Although it is necessary

to investigate cavitation behavior in ship wake field, the basic concept to enlarge aft propeller diameter inside the slipstream of forward propeller goes well in homo flow. REFERENCES Ando, J., Maita, S. & Nakatake, K. (995). ʻA Simple Surface Panel Method to Predict Steady Marine Propeller Performance. Journal of the Society of Naval Architects of Japan 78. Cone, Jr. C. D. (962). The theory of induced lift and minimum drag of nonplanar lifting systems. NASA Technical Report R-39. Kawakita, C. (992). A Surface Panel Method for Ducted Propellers with New Wake Model Based on Velocity Measurements. Journal of the Society of Naval Architects of Japan 72. Inukai, Y. (2). A Development of the Electric Propulsion Vessels with Contra-Rotating Propeller. International Propulsion Symposium 2, Japan. Figure 5: Pictures of the trajectory of tip vortex of the CRP 5 Conclusion To improve CRP s efficiency further, we applied tipraked fins to conventional CRP and its performance was verified by model tests and calculations. Concluding remarks are summarized as follows: ) From the investigation of basic characteristics of TRP by potential calculation, negative pressure on the suction side is moderated by backward tip rake; 2) According to the calculation, it is found that the slipstream moves according to the shift of the blade tip position. By applying backward tip rake to forward propeller, aft propeller diameter can be increased which leads to the improvement of efficiency; 3) CRP with increased aft propeller diameter was designed and its performance was verified by model tests in HSVA s high speed cavitation tunnel. The efficiency of the designed CRP with tip rake was improved by.5% compared with the conventional CRP without curved rake; 4) It is found by the model test that the viscous effect for TRP is larger than that for the conventional propeller; 5) According to the calculation, the efficiency of propeller with backward rake is improved compared with the conventional propeller. However, its model tests show no gain from the conventional propeller. In this study, the improvement of CRP efficiency has been attained by application of tip-raked propeller. To improve the performance of the tip-raked CRP more, the following items should be investigated in the future: ) Accurate calculation method for TRP and application of the present method to a wake adapted propeller; 2) Cavitation behavior of tip-raked CRP in ship wake; 3) Self-propulsion factors with tip-raked CRP. Andersen, P., Friesch, J., Kappel, J. J., Lundegaard, L. & Patience, G. (25). Development of a Marine Propeller with Non-Planar Lifting Surfaces. Marine Technology 42(3). Suzuki, K., Fukumori, S. & Mizuno, S. (22). A Study for Tip-Raked Propeller. The Hitachi Zosen Technical Review 62 (4). Yamasaki, S. & Okazaki, A. (25). Cavitation test on a straight leading edge propeller and a tip rake propeller. Journal of the Japan Society of Naval Architect and Ocean Engineers 2.