Initial Design of a 12 MW Floating Offshore Wind turbine

Similar documents
Development of a 12MW Floating Offshore Wind Turbine

Validation of a FAST Model of the Statoil- Hywind Demo Floating Wind Turbine

Real-time hybrid testing of a braceless semisubmersible

Aero-Elastic Optimization of a 10 MW Wind Turbine

Session 5 Wind Turbine Scaling and Control W. E. Leithead

Composite Long Shaft Coupling Design for Cooling Towers

Wind Turbine Generator System. General Specification for HQ2000

Low Speed Wind Turbines. Current Applications and Technology Development

The Role of Structural/Foundation Damping in Offshore Wind Turbine Dynamics

DeepWind-from idea to 5 MW concept

ATLAS Principle to Product

The DTU 10-MW Reference Wind Turbine

The X-Rotor Offshore Wind Turbine Concept

Hedeager Aarhus N Denmark S (IEC IB)*, :2005

A numerical DP module For design and operations

Experimental Verification of the Implementation of Bend-Twist Coupling in a Wind Turbine Blade

Hywind Scotland status and plans

Hedeager Aarhus N Denmark. Vestas V MW / V MW

1 st DeepWind 5 MW baseline design

Department of Wind Energy

ENERCON GmbH Dreekamp Aurich Germany ENERCON E-82 E4 2.35MW ENERCON E-82 E4 3.0MW. IIA, IEC : Amd1:2010

Standard Uncertainty in AEP (kwh)

LA10 (480 VAC, 3-phase, 60 Hz)

Hedeager Aarhus N Denmark

Multi Rotor Solution for Large Scale Offshore Wind Power

Effects of Large Bending Deflections on Blade Flutter Limits. UpWind Deliverable D2.3. Bjarne Skovmose Kallesøe Morten Hartvig Hansen.

SWCC Summary Report. Eveready Diversified Products (Pty) Ltd T/A Kestrel Renewable Energy. Certification Number: SWCC (240 VAC, 1-phase, 60 Hz)

Aeroelastic Load Simulations and Aerodynamic and Structural Modeling Effects

Hedeager Aarhus N Denmark

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE

GENERAL SPECIFICATIONS

Renewable Energy Systems

Load Reduction of Floating Wind Turbines using Tuned Mass Dampers

Stability Analysis of 6MW Wind Turbine High Speed Coupling using the Finite Element Method

Design. Model Tests for the DP System of a Drilling Semi-Submersible

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain

APPENDIX J V90 3.0MW Turbine Specifications

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain

Technical Documentation Wind Turbine Generator Systems /60 Hz

Lightweight. Geislinger Gesilco

Hedeager Aarhus N Denmark. Vestas V110-2 MW 50 Hz VCS Mk 10

T701 (240 VAC, 1-phase, 60 Hz)

Fault Ride-Through for a Smart Rotor DQ-axis Controlled Wind Turbine with a Jammed Trailing Edge Flap

Optimum combined pitch and trailing edge flap control

Aeroelastic Modelling of the LMH64-5 Blade. C. Lindenburg

One Earth Opp. Magarpatta City Pune, India. Suzlon S120 DFIG 2.1MW (50 Hz)

Hedeager Aarhus N Denmark

Super Watt Wave Catcher Barge

Hedeager Aarhus N Denmark

Wind Generation and its Grid Conection

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

RW-30kW variable pitch wind turbine

Drivetrain Simulation and Load Determination using SIMPACK

aeromaster wind turbines Reliable, compact, flexible and economical

Control of Wind Turbines: A data-driven approach

Dutch Fluid Power Transmission Conference 2017

Jaroslav Maly & team CAE departament. AV ENGINEERING, a.s.

R10 Set No: 1 ''' ' '' '' '' Code No: R31033

Project 1J.1: Hydraulic Transmissions for Wind Energy

Within the 300 GW total, the Energy Department estimates that 54 GW will be required from offshore wind to feed the large coastal demand centers.

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain

Electric Drive - Magnetic Suspension Rotorcraft Technologies

Module 3: Types of Wind Energy Systems

V MW An efficient way to more power

How Multibody-System Simulation Models can Support the Design of Wind Turbines

Technology Requirements for Cold and Tropical Wind-Diesel Applications. Chris McKay Product Manager Northwind 100 Ottawa 2009

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

MARITIME AFTERNOON. Torben Ole Andersen. June 14, 2017 Aalborg University, Denmark

ME 466 PERFORMANCE OF ROAD VEHICLES 2016 Spring Homework 3 Assigned on Due date:

Quantifying the benefits of a slender, high tip speed blade for large offshore wind turbiness

Vehicle functional design from PSA in-house software to AMESim standard library with increased modularity

V MW & 2.0 MW Built on experience

ROBUST PROJECT Norwegian Public Roads Administration / Force Technology Norway AS

Avda. Ciudad de la Innovación Sarriguren (Navarra) Spain G MW IEC IIIA

SeaGen-S 2MW. Proven and commercially viable tidal energy generation

BENEFITS. Maximum output at minimum cost per kwh for low wind sites. - Class IIIA/WZII.

G87-ingles 14/12/06 17:44 Página 2 GAMESA G MW

Gearbox Fault Detection

The Dynamic Behavior of Large Floor Plane Structure under Earthquake

BENEFITS. Maximum output at minimum cost per kwh for medium wind sites. - Class IIA.

MAIN SHAFT SUPPORT FOR WIND TURBINE WITH A FIXED AND FLOATING BEARING CONFIGURATION

Design and Test of Transonic Compressor Rotor with Tandem Cascade

GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT.

EP4-Platform: E-126 EP4 / E-141 EP4. Arno Hildebrand, Programm Manager EP4 ENERCON Research & Development

CONTROL DESIGN AND ANALYSIS OF DOUBLY-FED INDUCTION GENERATOR IN WIND POWER APPLICATION SHUKUL MAZARI A THESIS

BENEFITS. Maximum unit power with excellent performance for high winds. - Class IA/WZII/WZIII.

Vertical Axis Wind Turbine Case Study: Cost and Losses associated with Variable Torque and Variable Speed Strategies

V MW The future for low wind sites

Rotor imbalance cancellation

Theory of Machines. CH-1: Fundamentals and type of Mechanisms

ned100 Wind Turbine Generator a step towards your energy independence

ENTWICKLUNG DIESELMOTOREN

Control. Fuel Consumption and Emission Predictions Applications to a DP-FPSO Concept

Evaluation of the Fatigue Life of Aluminum Bogie Structures for the Urban Maglev

A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition

Smart Wind Turbine Solutions 2MW Platform

TetraSpar. Industrialized Floating Foundation

Ingenuity for Life Wind Power Morten Pilgaard Rasmussen. Restricted Siemens AG 2016

AXLE HOUSING AND UNITIZE BEARING PACK SET MODAL CHARACTERISATION

Coupled Aero-Structural Modelling and Optimisation of Deployable Mars Aero-Decelerators

Transcription:

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 1 Initial Design of a 12 MW Floating Offshore Wind turbine Pham Thanh Dam, Byoungcheon Seo, Junbae Kim, Hyeonjeong Ahn, Rupesh Kumar, Dongju Kim and Hyunkyoung Shin * School of Naval Architecture & Ocean Engineering, University of Ulsan, Korea EERA DeepWind 2018, JAN. 17, 2018, Trondheim, Norway

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 2 Outline 12MW FOWT design Numerical Simulation Design Load Cases Results Conclusion

12MW FOWT Design Ocean Engineering Wide Tank Lab., Univ. of Ulsan 3

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 4 UOU 12MW Wind Turbine Model Design Process Blade mass (42,739 kg) 3⁰ UOU 12MW Wind Turbine NREL 5MW Wind Turbine Upscaling process SCSG/Flexible Shaft/Carbon Sparcap Blade (CFRP) Tower Control Platform Hub mass (169,440 kg) Rotor Axis Wind UOU 12MW Wind Turbine 5⁰ Yaw Bearing C.M. 2.94 m 3.04 m 2.71 m Nacelle mass (400,000 kg) Correction for Floating type Optimized platform Negative damping issue Tower 3P issue 118. m Yaw Axis 114.23 m Load Analysis IEC61400-1 IEC61400-3 IEC61400-3-2 7.75 m

Source : EWEA, Wind energy the facts: a guide to the technology, economics and future of wind power, 2009. Ocean Engineering Wide Tank Lab., Univ. of Ulsan 5 12MW Blade Scale ratio PP = CC pp 1 2 ρρaavv3 λλ BBBBBBBBBB = PP 12MMMM PP 5MMMM = 1.549 PP RRRRRRRRRR pppppppppp kkkk ρρ AAAAAA dddddddddddddd (1.225 kkkk/mm 3 ) A : Rotor swept area (mm 3 ) V : Wind speed (m/s) λ BBBBBBBBBB BBBBBBBBBB SSSSSSSSSS RRRRRRRRRR

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 6 12MW Carbon blades 61.5 (m) 5MW glass blade : 17.7 ton 95.28 (m) 12MW glass blade : 62.6 ton (Too heavy) 95.28 (m) 12MW carbon (sparcap) blade : 42.7 ton 0⁰ Stiffness [Gpa] Density [kg/m 3 ] Blade Weight [ton] Center of Gravity [m] Scale-up blade properties(deflection) EEEE 12 = LL 4 12 EEEE 5 LL 5 CFRP 130 1572 42.7 (Carbon Sparcap) 31.8 LL 12 ww 12 GFRP 41.5 1920 62.6 31.8 LL 5 ww 5 Source : H. G. Lee, Korea Institute of Materials Science(KIMS) N.F. [Hz] 1 st Flapwise 2 nd Flapwise 1 st Edgewise 2 nd Edgewise 12MW Blade 0.5770 1.6254 0.8920 3.2676 (5MW) (12MW)

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 7 12MW Super conductor synchronous generator Rotor body HTS one pole module Modularized generator Stator body Stator teeth Stator coil Cooling pipes Flexible shaft Flux pump exciter

12MW Tower properties Scale up using offshore tower from OC4 definition 12MW Material : steel, Height : 110.88 m, Weight : 781.964 ton (scale-up) [cf. UPWIND report 2011 : 983 ton (10MW), 2,780 ton (20MW)] TT 5 δδ 12 δδ 5 TT 12 LL 12 Beam deflection δδ = TTLL3 3EEEE Scale-up tower properties EEEE 12 2 = 12LL 12 EEEE 2 5 5LL 5 (Beam deflection) δδ 12 δδ 5 = LL 12 LL 5 TT 12 12 MW = TT 5 5 MW TT = CC tt 1 2 ρρaaaa2 LL 5 Tower scale ratio λ TT = 4 EEEE 12 = 4 2 12LL 12 EEEE 2 (5MW) 5 5LL (12MW) 5 = 1.482 Tower Tower-base Tower-base Tower-top Tower-top Tower height diameter thickness diameter thickness mass 5MW 77.6 m 6.5 m 0.027 m 3.87 m 0.019 m 249,718 kg 12MW 110.88 m 9.634 m 0.040 m 5.736 m 0.028 m 781,964 kg 12MW R1 104.23 m 9.634 m 0.040 m 5.736 m 0.028 m 735,066 kg

12MW Campbell diagram (Tower Redesign) Tower Length : 104.23 m Tower Mass : 735,066 kg Rotor speed : 8.25 rpm Rotor 3P-Excitation : 0.4125 Tower 1 st Side to Side Natural Frequency : 0.4337

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 10 Design Summary Rating 5 MW 12 MW Rotor Orientation Upwind, 3 Blades Upwind, 3 Blades Control Variable Speed, Collective Pitch Variable Speed, Collective Pitch Drivetrain High Speed, Multiple-Stage Gearbox Low Speed, Direct Drive(gearless) Rotor, Hub Diameter 126 m, 3 m 195.2 m, 4.64 m Hub Height 90 m 118 m Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 3 m/s, 11.2 m/s, 25 m/s Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 3.03 rpm, 8.25 rpm Overhang, Shaft Tilt, Pre-cone 5 m, 5, 2.5 7.78 m, 5, 3 Rotor Mass 110,000 kg 297,660 kg Nacelle Mass 240,000 kg 400,000 kg (Target) Tower Mass (for offshore) 249,718 kg 735,066 kg

OC4 semi-submersible models Horizontal pipe Diagonal pipe Footing

OC4 semi-submersible models Elements Parameters Unit Main column OC4 semi Original OC4 semi NTNU Optimal (*) OC4 semi UOU-modified Diameter m 6.5 6.5 6.500 Wall thickness m 0.03 0.030 0.030 Elevation above SWL m 10 10.000 10.000 Depth of base below SWL m 20 20.000 20.000 Wall thickness m 0.06 0.060 0.060 Offset Column Elevation above SWL m 12 12.000 12.000 Spacing between OCs m 50 50.000 50.000 Depth of base below SWL m 20 20.000 20.000 Diameter m 12 9.900 9.900 Upper Column Length m 26 26.000 26.000 Height of Ballast (water) m 7.83 2.630 1.390 Diameter m 24 24.000 23.500 Footing Pontoon Length m 6 6.000 6.000 Height of Ballast (water) m 5.0478 5.625 5.880 Mass Platform steel Platform ballast Platform total Total system kg kg kg kg 3,852,000 3,567,000 3,502,000 9,620,820 8,350,000 8,068,000 13,472,820 11,917,000 11,570,000 14,072,538 12,516,718 12,169,718 Bouyancy Volume m3 13,917 12,402 12,054 CB below SWL m -13.15-13.93-13.48 Air vent pipe Air vent pipe Air vent pipe Upper column Footing pontoon Upper column Footing pontoon Upper column Original OC4 Semi Offset column NTNU optimal OC4 semi Offset column OC4 semi UOU modified Offset column Fulfill ballast water in base column tanks (water level is on the top of air vent pipe) will reduce the difference of pressure between inside and outside footing ballast tank (*) Leimeister,NTNU 2016,Rational Upscaling and Modelling of a Semi-Submersible Floating Offshore Wind Turbine Footing pontoon

Principle of platform upscaling Main column Offset Columns Upper Columns Footing Pontoons Pipes Diameter K1 Ratio tower base diameter upscale/original Wall thickness K1 Ratio tower base diameter upscale/original Elevation above SWL K Ratio WT mass Upscale/original Depth of base below SWL K Ratio WT mass Upscale/original Wall thickness K Ratio WT mass Upscale/original Elevation above SWL K Ratio WT mass Upscale/original Spacing between OCs K Ratio WT mass Upscale/original Depth of base below SWL K Ratio WT mass Upscale/original Diameter K Ratio WT mass Upscale/original Length K Ratio WT mass Upscale/original Heigh of Ballast (water) K Ratio WT mass Upscale/original Diameter K Ratio WT mass Upscale/original Length K Ratio WT mass Upscale/original Heigh of Ballast (water) K Ratio WT mass Upscale/original Diameter K Ratio WT mass Upscale/original Wall thickness K Ratio WT mass Upscale/original K = 12 MW _ WT _ mass 3 5 MW _ WT _ mass K 1 Tower _ base _ diameter = Towe _ base _ diameter 12MW 5MW WT_mass includes: Rotor (blades and hub) mass, nacelle mass and tower mass

12 MW platform upscaling Elements Parameters Unit 12MW scaled up OC4 Original 12MW scaled up OC4 NTNU Optimize 12MW scaled up OC4 UOU modified 12MW final Main column Offset Column Upper Column Footing Pontoon Mass Diameter m 8.782 8.782 8.782 9.634 Wall thickness m 0.041 0.041 0.041 0.041 Elevation above SWL m 13.510 13.510 13.510 10.000 Depth of base below SWL m 27.020 27.020 27.020 27.020 Wall thickness m 0.081 0.081 0.081 0.081 Elevation above SWL m 16.212 16.212 16.212 12.000 Spacing between OCs m 67.550 67.550 67.550 67.550 Depth of base below SWL m 27.020 27.020 27.020 27.020 Diameter m 16.212 13.375 13.375 13.375 Length m 35.126 35.126 35.126 30.914 Height of Ballast (water) m 10.410 10.410 1.878 3.600 Diameter m 32.424 32.424 31.716 31.716 Length m 8.106 8.106 8.106 8.106 Height of Ballast (water) m 6.820 7.599 7.944 7.944 Platform steel kg 9,501,600 8,798,600 8,638,267 8,168,000 Platform ballast kg 23,731,356 20,596,667 19,901,067 20,855,000 Platform total kg 33,232,956 29,395,267 28,539,333 28,978,000 Total system kg 34,712,260 30,874,571 30,018,638 30,457,418 Bouyancy Volume m3 34,329 30,592 30,049 30,049 CB below SWL m -17.77-18.81943-18.21-18.21

12 MW platform upscaling OC4 semi UOU-modified scaled up for 12 MW FOWT 12 MW FOWT platform - final 16.2m 12m MSL 12 MW FOWT Platform modification based on: - Reduced main column elevation above MSL to 10 m - Reduced offset column elevation above MSL to 12 m (the same as OC4 semi-submersible model)

Platform steel mass reduction Parameters Unit 12MW scaled up OC4 Original 12MW scaled up OC4 NTNU Optimize 12MW scaled up OC4 UOU Modified 12MW final Platform steel ton 9,525 8,822 8,661 8,168 Difference % 0.0% 7.4% 9.1% 14.0%

Checking structure strength Calculate equivalence stress for the inner wall of bottom point of upper column Pressure checking point: inner wall of upper column at lowest position Elements Parameters Unit 5MW OC4 Original 12MW scaled up OC4 Original OC4 NTNU Optimal 12MW scaled up OC4 NTNU Optimize OC4 UOUmodified 12MW scaled up UOU OC4 modified 12MW final Ptank min, Pwater max σ_eq Mpa 47.50 60.17 39.25 49.73 39.25 49.73 49.76 Steel AH36 (t~80mm) Yield stress Mpa 325 325 325 325 325 325 325 Steel SS400 (t~80mm) Yield stress Mpa 245 245 245 245 245 245 245

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 18 12MW Stability analysis y x 14000 Rigting arm GZ "Pitch" 14000 Rigting arm GZ "Roll" 12000 12000 10000 10000 8000 GZ(mm) 6000 4000 2000 0 12MW Original platform 12MW modified platform 0 5 10 15 20 25 30 35 40 45 50 55 60 Degree 8000 GZ(mm) 6000 4000 2000 0 12MW Original platform 12MW modified platform 0 5 10 15 20 25 30 35 40 45 50 55 60 Degree

Reference location: West of Barra - Scotland 100m water depth Main wind direction: SW Source: LIFE50+ D1.1 Oceanographic and meteorological conditions for the design 2015

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 20 Mooring lines arrangement N Line 1 W E Line 3 Line 2 Main Wind direction S

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 21 Mooring lines arrangement Stud common link Anchor Mooring line components Segment 2 Connector Segment 1 Fairlead A MSL Line 2 20 0 Line 1 &3-900 -800-700 -600-500 -400-300 -200-100 -20 0 100 200 300 400 500 Vertical Z(m) View A-A Mooring lines configuration Segment 1 Connector Segment 2 Anchor Horizontal X (m) -40-60 -80-100 -120 A Anchor

Mooring line properties Water Depth m 100 MooringLine Diameter (d) mm 162 Number of Mooring Lines - 3 Angle Between Adjacent Lines deg 120 Depth to Anchors below SWL m 100 Fairleads Location above SWL m 10 Radius to Anchors from Platform Centerline m 801.5 Radius to Fairleads from Platform Centerline m 45.7 Equivalent Mooring Line Extensional Stiffness EA N 2.360E+09 Minimum Breaking Load N 2.600E+07 Segment 1 (top side) 162mm mooring stud chain, material class R5 Un-stretched Mooring Line Length m 385 Equivalent Mooring Line Mass Density kg/m 522.73 Segment 2 (Anchor side) 2x162mm mooring stud chain, material class R5 Un-stretched Mooring Line Length m 400 Equivalent Mooring Line Mass Density kg/m 1045.46 Equivalent Mooring Line Extensional Stiffness EA N 2.360E+09 Minimum Breaking Load N 2.600E+07 Total tension (kn) 25000 20000 15000 10000 5000 0-40 -20 0 20 40 Deg Mooring line tension excursion Excursion (m) Mooring line angle at fairlead 90 80 70 60 50 40 30 20 10 0-40 -20 0 20 40 Excursion (m)

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 23 PI controller Results using FAST Linearization with frozen wake assumption 12 MW Parameters for pitch and VS control Pitch Sensitivity (watt/rad) 0,E+00-5,E+07-1,E+08-2,E+08-2,E+08-3,E+08-3,E+08-4,E+08 PP θθ = 0 = 6.52eee wwwwwwww/rrrrrr θθ kk = 5.9622 0 5 10 15 20 25 Rotor-Collective Blade-Pitch Angle (⁰) dp/dtheta (watt/rad) Interpolated (watt/rad) Best Fit (watt/rad) ConerFreq PC_DT PC_KI PC_KK PC_KP PC_MaxPit PC_MaxRat PC_MinPit PC_RefSpd VS_CtInSp VS_DT VS_MaxRat VS_MaxTq VS_Rgn2K VS_Rgn2Sp VS_Rgn3MP VS_RtGnSp VS_RtPwr VS_SIPc Parameters 1.225221 rad/s 0.00125 s 0.19685052 0.0948646 rad 0.45931788 s 1.5707963 rad 0.139626 rad/s 0.0000000 rad 0.8639 rad/s 0.29636 rad/s 0.00125 s 4900000 Nm/s 15511547.75 Nm 19341827.070932 Nm/(rad/s) 2 0.38537 rad/s 0.0174533 rad 0.83802 rad/s 12182741.1 W 15.0 % 23

Numerical Simulation Ocean Engineering Wide Tank Lab., Univ. of Ulsan 24

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 25 Flow Diagram of UOU + FAST v8 Pre-processors Simulators Post-processors Airfoil Data Files TurbSim Wind Turbulence CATIA Modeling Control & Elec. System Turbine Configuration WT_perf Performance UOU In-house Code BModes Beam Eigenanalysis Wind Data Files Hydrodynamic Coefficient Beam Properties Mode Shapes FAST Aero-Hydro- Servo-Elastics Includes: ElastoDyn AeroDyn ServoDyn HydroDyn MoorDyn Time-Domain Performance, Response, & Loads Linearized Models Mcrunch, MExtremes, &MLife Data Analysis MBC3 Multi-Blade Transformation Source : J. Jonkman, FASTWorkshop, NREL

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 26 UOU in-house code Hydrodynamic coefficients need for numerical simulation in hydro part Hydrodynamic in-house code modeling: - Consider parts under water line - Neglect pontoons and braces UOU in-house code 3D panel method(bem) Element : 4000 Output 1. Added mass coefficients 2. Radiation Damping coefficients 3. Wave Excitation Forces/Moments

Design Load Cases(DLCs) Ocean Engineering Wide Tank Lab., Univ. of Ulsan 27

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 28 Design Load Cases (1/2) DLC Winds Waves Model Speed Model Height Direction Current Controls/Events 1) Power Production 1.1 NTM V_in<V_hub<V_out NSS Hs = E[Hs/V_hub] 0 NCM Normal operation 1.2 NTM V_in<V_hub<V_out NSS Hs = E[Hs/V_hub] 8 directions NCM Normal operation 1.4 EDC V_hub = V_r, V_r+-2m/s NSS Hs = E[Hs/V_hub] 0 NCM Normal operation 1.5 EWS V_in<V_hub<V_out NSS Hs = E[Hs/V_hub] 0 NCM Normal operation 1.6a NTM V_in<V_hub<V_out SSS Hsss 0 NCM Normal operation 2) Power Production Plus Occurrence of Fault 2.3 EOG V_hub = V_r, V_r+-2m/s, V_out Hs = E[Hs/V_hub] 0 NCM Loss of load -> shutdown 6) Parked 6.1a EWM V_hub = V50 ESS Hs = Hs50 0, +-45 ECM Yaw = 0, +-8 Deg 9) Power production: Transient condition between intact and redundancy check condition: 1 mooring line lost 9.1 NTM V_in<V_hub<V_out NSS 0 NCM Normal operation 10) Parked: Transient condition between intact and redundancy check condition: 1 mooring line lost 10.1 EWM V-hub = V_50 ESS Hs = Hs50 0 ECM

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 29 Design Load Cases (2/2) DLC1.1, DLC1.2, DLC9.1 Wave NSS Current NCM V-hub Hs Tp Current m/s m s m/s 4 0.35 3.00 0.08 6 0.73 5.77 0.13 8 1.14 7.18 0.17 10 1.60 8.23 0.21 12 2.12 9.11 0.25 14 2.71 9.88 0.29 16 3.39 10.58 0.34 18 4.18 11.24 0.38 20 5.08 11.85 0.42 22 6.12 12.43 0.46 24 7.31 12.99 0.50 DLC1.6 Wind ETM Wave SSS Current NCM V-hub Hs Tp Current m/s m s m/s 10 11.5 14.4 0.21 11.2 11.5 14.4 0.25 12 15.6 15.2 0.50 24 15.6 15.2 0.50 DLC6.1, DLC10.1 Wind EWM Wave ESS Current ECM V-hub Hs Tp Current m/s m s m/s 50 15.6 15.2 1.82 Simulation time: 3 hours irregular waves (1h x 3 wave seed numbers) DLC1.2: 1 hour simulation

Results Ocean Engineering Wide Tank Lab., Univ. of Ulsan 30

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 31 DLC1.1 Minimum, mean, and maximum values Generator Power (kw) Platform Surge (m) 16000 14000 12000 10000 8000 6000 4000 2000 0 3 5 7 9 11 13 15 17 19 21 23 25 Hub-height Wind Speed (m/s) 14 12 10 8 6 4 2 0-2 3 5 7 9 11 13 15 17 19 21 23 25-4 -6-8 Hub-height Wind Speed (m/s) Nacelle accelerator (m/s^2) Platform Pitch (deg) 2,5 2 1,5 1 0,5 0-0,5-1 -1,5-2 -2,5 6 5 4 3 2 1 0-1 -2-3 3 5 7 9 11 13 15 17 19 21 23 25 Hub-height Wind Speed (m/s) 3 5 7 9 11 13 15 17 19 21 23 25 Hub-height Wind Speed (m/s)

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 32 DLC1.1 Minimum, mean, and maximum values 14 60000 Out of Plane Tip Deflection Blade 1 (m) 12 10 8 6 4 2 0-2 -4-6 3 5 7 9 11 13 15 17 19 21 23 25 Blade 1 Out-of-Plane Bending Moment (kn.m) 50000 40000 30000 20000 10000 0-10000 -20000 3 5 7 9 11 13 15 17 19 21 23 25-8 Hub-height Wind Speed (m/s) -30000 Hub-height Wind Speed (m/s) 1 500000 Tower-Top Fore-Aft Displacement (m) 0,8 0,6 0,4 0,2 0-0,2-0,4-0,6 3 5 7 9 11 13 15 17 19 21 23 25 Hub-height Wind Speed (m/s) Tower Base Fore-Aft Bending Moment (kn.m) 400000 300000 200000 100000 0-100000 -200000-300000 3 5 7 9 11 13 15 17 19 21 23 25 Hub-height Wind Speed (m/s)

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 33 Extreme motions of the FOWT in operation conditions Serviceability Limit States (SLS) during operational: Max. tilt: 10 deg. Nacelle acceleration: 0.3g Parameter Type File Name Unit Calculated Time Extreme (s) PtfmSurge Minimum DLC1.6-25a.out m -1.23 3080.4 PtfmSurge Maximum DLC1.6-12a.out m 17.91 761.1 PtfmSway Minimum DLC1.1-10c.out m -2.18 542.9 PtfmSway Maximum DLC1.1-10a.out m 2.31 826.4 PtfmHeave Minimum DLC1.6-12c.out m -3.22 1306.2 PtfmHeave Maximum DLC1.6-25a.out m 2.83 773.8 PtfmRoll Minimum DLC1.1-12c.out deg -0.33 3402.4 PtfmRoll Maximum DLC1.6-25a.out deg 1.43 3504.3 PtfmPitch Minimum DLC1.6-25a.out deg -5.98 760.5 PtfmPitch Maximum DLC1.6-12b.out deg 8.69 3365.5 PtfmYaw Minimum DLC1.1-24c.out deg -6.83 3548.6 PtfmYaw Maximum DLC1.1-12c.out deg 5.16 3402.1 Nacelle acc. Fore-aft Minimum DLC1.6-12c.out m/s^2-3.12 1305.1 Nacelle acc. Fore-aft Maximum DLC1.6-12b.out m/s^2 3.37 1300.0 Nacelle acc. Side-to-side Minimum DLC1.6-25b.out m/s^2-1.54 1959.9 Nacelle acc. Side-to-side Maximum DLC1.6-25b.out m/s^2 1.59 1956.5

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 34 Extreme motions of the FOWT in parked conditions Serviceability Limit States (SLS) during non-operational: Max. tilt: 15 deg. (max. value) Nacelle acceleration: 0.6g Parameter Type File Name Unit Extreme Time Values (s) PtfmSurge Minimum DLC6.1-H0-Y8.out m 9.40 2242.2 PtfmSurge Maximum DLC6.1-H0-Y8.out m 26.79 2329.6 PtfmSway Minimum DLC6.1-H-45-Y-8.out m -14.28 3490.9 PtfmSway Maximum DLC6.1-H45-Y8.out m 20.51 237.9 PtfmHeave Minimum DLC6.1-H45-Y8.out m -5.68 3198.4 PtfmHeave Maximum DLC6.1-H45-Y8.out m 4.75 3206.3 PtfmRoll Minimum DLC6.1-H-45-Y8.out deg -10.27 1408.1 PtfmRoll Maximum DLC6.1-H-45-Y-8.out deg 10.10 3490.5 PtfmPitch Minimum DLC6.1-H0-Y8.out deg -11.12 2559.0 PtfmPitch Maximum DLC6.1-H0-Y0.out deg 0.35 1706.9 PtfmYaw Minimum DLC6.1-H45-Y8.out deg -3.13 288.6 PtfmYaw Maximum DLC6.1-H45-Y-8.out deg 8.73 3507.4 Nacelle acc. Fore-aft Minimum DLC6.1-H0-Y8.out m/s^2-2.72 2908.8 Nacelle acc. Fore-aft Maximum DLC6.1-H0-Y8.out m/s^2 2.34 2913.7 Nacelle acc. Side-to-side Minimum DLC6.1-H-45-Y-8.out m/s^2-6.33 3497.2 Nacelle acc. Side-to-side Maximum DLC6.1-H45-Y8.out m/s^2 5.93 3128.1

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 35 Maximum Mooring line tensions Fairlead tension (kn) 30000 25000 20000 15000 10000 5000 Maximum fairlead tensions in operation conditions DLC1. DLC2. MBL (26000 kn) Fairlead tension (kn) Maximum fairlead tensions in extreme conditions DLC6.1 30 000 25 000 20 000 15 000 10 000 5 000 MBL (26000 kn) 0 FAIRTEN1 FAIRTEN2 FAIRTEN3 0 FAIRTEN1 FAIRTEN2 FAIRTEN3 Operation Extreme (parked) Max. Fairlead 2 Tension [kn] 9.727E+03 2.36E+04 Min. Breaking Load MBL [kn] 2.60E+04 2.60E+04 Ratio Max/MBL 0.374 0.908

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 36 Ratios of sea to land of absolute extreme values (all DLCs) 2,5 2,5 Ratios of Sea to Land 2 1,5 1 0,5 Ratios of Sea to Land 2 1,5 1 0,5 0 GenPwr RotSpeed LSSGagMya LSSGagMza 0 RootFMxy1 RootMMxy1 TwrBsFxyt TwrBsMxyt Ratios of Sea to Land 2,5 2 1,5 1 0,5 0 4,72 OoPDefl1 IPDefl1 TTDspFA TTDspSS

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 37 DLC1.2 Fatigue analysis Comparison between sea and land wind turbine based on : - The same wind conditions - The same controller - Root of blade m= 10, ultimate load L_Ult= 4600 kn - Tower base m=4, ultimate load L_Ult= 8000 kn Ratios of Sea to Land 1,15 1,1 1,05 1 0,95 0,9 Lifetime Damage Equivalent Load Ratios of Sea to Land RootFxc1 RootFyc1 TwrBsFxt TwrBsFyt

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 38 DLC9.1 Motions of the FOWT after a mooring line loss Wind turbine trajectories after mooring line 2 was lost y o x

Conclusion Ocean Engineering Wide Tank Lab., Univ. of Ulsan 39

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 40 Conclusion A design of the 12 MW FOWT was suggested. Lighting wind turbine mass such as super conductor generator, carbon fiber blade, short tower drive a smaller platform scale ratio. Strong wave and high current speed has a significant effect to the design of mooring system. Mooring line provided in 2 segments with heavier segment at anchor side to avoid the lift up force at the anchor. Loads and displacements of blades and tower in sea are higher than those in land Wind and wave misalignments have strong effects to nacelle side to side acceleration Future work - Consider 2 nd order wave loads - Optimize mooring system

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 41 THANK YOU! ACKNOWLEDGMENTS This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20154030200970 and No. 20142020103560).

Added mass Added mass (ton) 4,00E+04 3,50E+04 3,00E+04 2,50E+04 UOU A11 2,00E+04 UOU A22 1,50E+04 UOU A33 1,00E+04 5,00E+03 0,00E+00 0,0 1,0 2,0 3,0 4,0 Freq. rad/s Added mass (tonm^2) 4,00E+07 3,50E+07 3,00E+07 2,50E+07 UOU A44 2,00E+07 UOU A55 1,50E+07 UOU A66 1,00E+07 5,00E+06 0,00E+00 0,0 1,0 2,0 3,0 4,0 Freq. rad/s 4,00E+05 3,00E+05 UOU A15 UOU A51 UOU A24 UOU A42 Added mass (tonm) 2,00E+05 1,00E+05 0,00E+00 0,0-1,00E+05 1,0 2,0 3,0 4,0-2,00E+05-3,00E+05-4,00E+05 Frq. Rad/s

Damping Damping (tonf/s) 1,00E+04 9,00E+03 8,00E+03 7,00E+03 UOU-B-11 6,00E+03 UOU-B-22 5,00E+03 4,00E+03 UOU-B-33 3,00E+03 2,00E+03 1,00E+03 0,00E+00 0,00E+00 1,00E+00 2,00E+00 3,00E+00 4,00E+00 Freq rad/s Damping (tonfm/s) 1,60E+07 1,40E+07 1,20E+07 UOU-B-44 1,00E+07 UOU-B-55 8,00E+06 UOU-B-66 6,00E+06 4,00E+06 2,00E+06 0,00E+00 0,00E+00 1,00E+00 2,00E+00 3,00E+00 4,00E+00 Freq rad/s Damping (tonfm/s) 1,50E+05 UOU-B-15 1,00E+05 UOU-B-24 5,00E+04 UOU B51 UOU B42 0,00E+00 0,00E+00 1,00E+00 2,00E+00 3,00E+00 4,00E+00-5,00E+04-1,00E+05-1,50E+05 Freq rad/s

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 44 Hydrodynamic coefficients(1/2) Excitation force in Surge (Tonf) 7,95E+02 6,95E+02 Wave excitation forces F2 5,95E+02 F3 4,95E+02 3,95E+02 2,95E+02 1,95E+02 9,50E+01-5,00E+00 0,00 0,50 1,00 1,50 2,00 2,50 3,00 Freq rad/s F1 Excitation force in Pitch (Tonf*m) Wave excitation moments 2,48E+04 F4 1,98E+04 F5 F6 1,48E+04 9,80E+03 4,80E+03-2,00E+02 0,00 0,50 1,00 1,50 2,00 2,50 3,00 Freq. rad/s

Ocean Engineering Wide Tank Lab., Univ. of Ulsan 45 Design process for a floating offshore wind turbine 1. Initial design 2. Land based design 3. Check the platform without RNA 4. Tower redesign Control redesign 6. Optimization to make a costeffective design 5. Source: IEC61400-3-2 Fully Coupled Analysis - Ultimate strength(50-yr) - Fatigue strength(20-yr)

DOFs of a floating wind turbine (DNV-OS-J103) Ocean Engineering Wide Tank Lab., Univ. of Ulsan 46