For optimum ultraviolet (UV)-curing

Similar documents
UV Spectral Stability as it relates to the UV Bulb Temperature. Jim Borsuk David Armitage

Efsen UV Seminar Optimizing UV and Maintenance

Since It s all we do ULTRAVIOLET CURING SYSTEMS FROM THE LEADER IN U.V. TECHNOLOGY.

Tube Base Arc Voltage¹ UV output¹ Rated¹ Diam. Config. BF - BF Length Power¹ Current Hi 254nm Life mm mm mm W ma V µw/cm² W hrs.

USHIO UV systems from lamps to power supplies and electrics

Laird Thermal Systems Application Note. Cooling Solutions for Automotive Technologies

1.0 F300S Ultraviolet Flood Exposure System

ArcLED. hybrid UV CURING SYSTEM. TWO UV Curing Technologies ONE RHINO Power Supply. gewuv.com

Ultraviolet Lamps. Worldwide Suppliers of Specialty Lamps. Creating True Value and True Partnership

High Power, RF Excited EUV Flow Light Source EUV X LHP500FL Operating Manual

2. Description of Standard NUV Lightsource (350nm-450nm) 3 3. Description of Deep UV (220nm-280nm) and Mid UV (280nm-310nm) Lightsource Systems 3

Germipak UV Cell Lamps

Energy efficient low voltage dichroic mirror halogen reflector lamps

READY-TO-USE PHOTOINITIATOR FORMULATIONS FOR WATER-BORNE UV CURABLE SYSTEMS

White paper: Originally published in ISA InTech Magazine Page 1

Lighting, Lamps, Tube Lamps Curing UV Adhesives

ELLIPTICAL REFLECTORS

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

ConstantColor CMH Supermini

Line Sources Cathodeon

GE ConstantColor CMH TM CMH SuperMini 20W & 35W

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Kinetic Instruments Inc.

PORTABLE 2 UV CURING SYSTEM OPERATING INSTRUCTIONS

INFRAWELD, THROUGH-BEAM WELDING AT THE IR SPECTRUM

UVCS Version 2.0 User Guide For Use with Dymax EC-Series Flood Lamps

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

PRECISION BELLOWS COUPLINGS

Continuous Splicing Techniques

PORTA-RAY 400R User Guide Portable UV Light-Curing Flood Lamp System

Internal Combustion Engines

The development of a differential for the improvement of traction control

Bluephase Style The curing light. The smallest LED for every use

Combustion Control Problem Solution Combustion Process

FLUORESCENT INDUCTION

Compact, flexible, highest availability. H-compact PLUS

Magneto-Rheological (MR) Suspension Systems FOR INDUSTRIAL APPLICATIONS

Product range 2010 /11. isolde the new generation of Philips tanning lamps

JKL Miniature Integrated Lamp Assemblies

Compact, flexible, highest availability.

Do opacimeters have a role in future diesel exhaust gas legislation? By Mike Jones, Senior Controls Engineer at Hartridge Test Products, UK

Thermal-cutoff, Fuse and Fuseholder Incorporated into a Simple Compact Device

isolde The successful tanning lamp program for all, who appreciate proven product quality.

96W Ultraviolet LED Light Bar - Submersible Underwater Light 'L X 200'W Spot VDC

Pretest Module 15 Units 1, 2, 3, 4

GE Lighting. Single Ended G8.5 Ceramic Metal Halide Lamps Product Information for Original Equipment Manufacturers

240 Watt Portable Work Area Light Tower - Extendable Tower W/ Wheels - (4) 60 Watt LED Lights

Luzchem Solar Simulator SolSim2 Updated September 2018

Applications. Compressor-Features The Vilter Advantages. LNG Boil Off Gas Gathering BIO - Gas Digester CO 2 Nitrogen Hydrogen Refrigerant

FIBER BRUSHES: The Maintenance-Free Wind Turbine Slip Ring Contact Material

On-Line Process Analyzers: Potential Uses and Applications

UV Power Puck FLASH. User's Manual

500 Watt Portable LED Work Area Light Cart ft cord - 60,000 Lumens V AC

Application Note Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines

Tuning the System. I. Introduction to Tuning II. Understanding System Response III. Control Scheme Theory IV. BCU Settings and Parameter Ranges

30W High Stability Tungsten- Halogen Light Source - ASB-W Operation Manual

LUXEON I 20 & 26.5mm Range

The Effect of Spring Pressure on Carbon Brush Wear Rate

Vibration damping precision couplings

HYDAC Diesel Fuel Cleanliness Testing White Paper

ENERGY & UTILITIES. Electricity Metering & Sub-Metering Concepts and Applications. BuildingsOne April 30, 2018

"Tension Control in a Turret Winder" Clarence Klassen, P.Eng. Abstract:

Lamps CERAMIC METAL HALIDE

The benefits of establishing and

START-UP CHECKLIST. Date: Job Name: Customer Name: Address: City: State: Zip: Model Number: Serial Number: Qualified Start-up Technician:

UVCS Version 2.0 and UVCS 39 User Guide For Use with Fusion Flood Lamps

Multi-Vapor Metal Halide Lamps

Development of the Micro Combustor

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor

ConstantColor CMH Supermini

Diesel-Driven Compressor Torque Pulse Measurement in a Transport Refrigeration Unit

Dr. Jim Henry, P.E. Professor of Engineering University of Tennessee at Chattanooga 615 McCallie Avenue Chattanooga, TN Dr.

High Speed, Low Weight Momentum/reaction Wheels. Larry Wilhide, Valley Forge Composite Tech, Inc. P.O. Box 344 Carlisle, PA (717)

Theimer Printing Light Assemblies VIOLUX 4002T VIOLUX 6002T VIOLUX 8002T. Instruction Manual

GDI measurements with a Fast Particulate Spectrometer

Power Conditioning of Microgrids and Co-Generation Systems

Detection of Volatile Organic Compounds in Gasoline and Diesel Using the znose Edward J. Staples, Electronic Sensor Technology

LEDWP LED Wall Pack Light - 400W Metal Halide Equivalent - 12 LEDs - 10ft Cord High Output

A manufacturer s view of bushing reliability, testing and analysis. Lars Jonsson Håkan Rudegard

Nordson EFD Solutions: Recommendations for High Performance Dispensing in the Life Sciences Industry

by Jim Phillips, P. E.

Air Conditioning Clinic. HVAC System Control One of the Systems Series TRG-TRC017-EN

Energizer Cylindrical Alkaline Application Manual

Technical Information Motorsport Engine Bearings

The Effect of DC Machine Adjustment on Loop Unbalance

Welcome to the SEI presentation on the basics of electricity

24% higher part-load efficiency saves running costs.

ROTAIR LUBRICANTS FOR OIL-INJECTED SCREW COMPRESSORS SECURING OPTIMAL PERFORMANCE

BITZER Liquid Injection Guidelines for CSH Compressors

Welcome to PTI--Photon Technology International--Optical Building Blocks!

Altman Stage Lighting Safety Instructions & Warnings UV-250 Blacklight Floodflight

Barak5/3 Printer. Service Visit Identify problem, fix it and proceed to Maintenance Procedure. Maintenance Procedure. Under Warranty.

56 Watt Vapor Proof LED 4 Foot Light for Outdoor Applications Lumens - IP67 Waterproof

21", 33", 45", & 61" Installation & Operation Manual

25W Red LED Warning Spotlight Lumens - 347/480V AC 1PH - Red Safety Light - IP67

10 Watt LED Vapor Proof Droplight / Handlamp - 50' 16/3 SOOW Cord - UL NEMA 4X

T5 Watt-Miser Linear Fluorescent lamps

Precautions on the use of Multilayer Ceramic Capacitors

ConstantColor CMH Supermini Ultra

Chemical decontamination in nuclear systems radiation protection issues during planning and realization

Transcription:

UV Spectral Stability as it Relates to the UV-Bulb Temperature By Jim Borsuk and David Armitage The art of bulb manufacturing. Technicians ensure precisionmanufactured bulbs of the highest quality standard expected in the UV curing industry. For optimum ultraviolet (UV)-curing efficiency, the material to be cured must match the specific spectral output of a UV bulb. This output, measured in nanometers at each wavelength throughout the UV range, is the defined spectral measurement used to quantify one UV-bulb type from another. Each bulb has its own unique characteristic (or footprint) that separates one type of bulb from another. The chemical composition within the bulb gives the type of bulb its unique spectrum. In the UV-curing process, each bulb is classified by the output in each UV spectral range identified as UVA, UVB, UVC or UVV. UV-curable materials utilize photoinitiators which are formulated to react to energy from specific wavelengths of UV light. The UV energy provides the ability for crosslinking, thus changing any liquid or paste to a semi-solid or solid form. Matching the photoinitiator wavelength to the specific wavelength of the UV bulb will help assure a proper cure for the ink, coating or adhesive. This match is paramount to proper curing. Matching the bulb output to the material s curing characteristics will help to assure a successful cure. Factors such as UV-material formulation, coating thickness and process speed play an important role in selecting the correct UV-curing system. Once the equipment is selected, the bulb type is matched to the material requirements for proper material cure. The UV-spectral wavelength is the most important consideration when selecting a UV bulb. Any change from this material/bulb match will significantly affect the process cure. Spectral Output of UV Bulbs UV bulbs emit UV light through the plasma created in the bulb envelope. The UV-spectral output range is considered to be from 100 to 460 nm (nanometers). Figures 1-6 on the following pages display the different UV-spectral outputs. Each bulb used for UV curing displays a unique output that utilizes a specific part of this range. The ranges are identified as UVC (short wavelength 200-280 nm), UVB (shortmedium wavelength 280-320 nm), UVA (medium wavelength range 320-390 nm) and the UVV (long wavelength 390-460 nm). UVV should not be confused with VUV (vacuum UV 100-200 nm), which does not transmit in air and is, therefore, not referred to when discussing the UV output of bulbs. Specific ranges are matched to the curing requirements of material coatings. Mercury is the main UV-bulb fill ingredient and it helps to create a specific spectral output. When the bulb is energized, the mercury vaporizes and is carried into the plasma, giving considerable output in the UV range. Mercury bulbs have a unique spectrum consisting of a short wavelength 22 RADTECH REPORT SEPTEMBER/OCTOBER 2009

Figure 1 Mercury bulb spectral output One of the most commonly used lamps and frequently referred to as the H bulb; this lamp delivers a good broadband output across all wavelengths. Technical Paper Figure 2 Iron bulb spectral output Frequently referred to as the D bulb, this lamp is rich in UVA output. SEPTEMBER/OCTOBER 2009 RADTECH REPORT 23

Figure 3 Gallium bulb spectral output Frequently referred to as the V bulb, it is a strong performer in the UVV range. This lamp delivers excellent output in the 405 nm to 420 nm wavelength. Figure 4 Indium bulb spectral output Frequently referred to as the Q bulb, it is a strong performer in the UVV wavelengths up to 450 nm. 24 RADTECH REPORT SEPTEMBER/OCTOBER 2009

Figure 5 Mercury+ bulb spectral output Frequently referred to as the H+ bulb, this lamp is similar in output to the mercury bulb, but with enhanced emissions in the shorter UVC wavelength. Technical Paper Figure 6 Lead bulb spectral output Frequently referred to as the M bulb, it has high irradiance in the UVA and UVV range. SEPTEMBER/OCTOBER 2009 RADTECH REPORT 25

continuum and a series of spectral lines, which includes a characteristic sharp peak at 365 nm. This type of bulb may be utilized in applications in which a clear coat is used. Other coatings may exhibit properties that would best be cured using an a specific range characteristic of that particular element. Figure 7 compares the relative spectral output of 10-inch electrodeless 600wpi bulbs. Spectral Output Stability as it Relates to Bulb Temperature of the bulb, the fill material s vapor pressure increases rapidly as the material approaches its boiling point and, therefore, the material is more likely to evaporate and be carried into the plasma. It is only when the additives are in the plasma that the additive bulb. Curing materials, such Along with the UV-bulb spectrum spectral enhancement (shift) occurs. as pigmented coatings, may require match to the coating requirements, Different additives have different vapor the need of a longer wavelength to temperature across the bulb is pressures, so each will be affected penetrate the material to assure considered a critical element for by the lamp wall temperature. If the proper cure. The mercury bulb does success. Not only is bulb life extended lamp wall temperature is below the not have the required long wavelength through cooling of the quartz tube, it material s boiling point, the additive energy to accomplish this. Adding also contributes to the spectral output may condense on the wall. If this specific elements can shift the mercury stabilization. Without this stabilization, temperature is significantly below the spectral output to one more suitable the spectral output could shift, thus wall temperature, then the material for the specific requirements of the reducing the energy within a specific is unlikely to evaporate off the wall material to be cured. Some examples range of a bulb matched to an ink, and will not be available to the are iron, lead, gallium and indium. coating or adhesive. Proper cure would plasma. Moreover, if an additive spends An additive bulb consists of mercury be affected. an extended period in contact with the with the addition of a specific element The reason for the shift is the quartz wall, it can become immobilized that, when carried into the plasma, concentration of the additives in there either through reaction with or shifts the mercury spectral output to the bulb fill. During the energizing migration into the quartz. This reduces Figure 7 Relative spectral output of Coolwave 10 electrodeless 600wpi bulbs 26 RADTECH REPORT SEPTEMBER/OCTOBER 2009

the amount of additive available to cause the spectral enhancement and the spectrum shifts back toward a mercury spectrum. Iron-additive bulbs, in particular, are very sensitive to bulb cooling. Iron iodide boils at around 849 C at 1 atm. This value will be even higher inside an operating lamp. Ideally, the bulb wall should not exceed 800-850 C, so the resulting vapor pressure of the iron iodide is always relatively low as it is below its boiling point. Thus, if a bulb is overcooled with the wall temperature below 600 C, this can also result in the spectral enhancement reversion back to that of a mercury bulb. In excessively overcooled lamps, it is also possible to condense the mercury onto the quartz wall. Most UV systems are designed to operate over a wide range of environmental conditions. Cooling temperature is one variable that can affect the stabilization of the spectral output. Plant temperatures, as well as ambient geographical locations, play a big part in the operation of systems throughout these varying operating conditions. Solutions to Provide Bulb Spectral Stability With the advancements of variableoutput UV systems incorporating variable-speed fans, UV-spectral output can be stabilized when selecting a low power output. In electrode lamp technologies, a shift to digital power supplies with wide power setting ranges and the desire to cure with additive bulbs has made it necessary to control bulb temperature. This provides a more controlled process and extends bulb life. In some systems, controlling the cooling air can be accomplished by means of fans, dampers or solenoids set to adjust cooling air depending upon the demanded power output in an open-loop control. More advanced techniques can be utilized to create a closed-loop process to ensure the cooling is always optimum. Here, a stable bulb wall temperature range would allow mercury and its additive to be carried into the bulb plasma. It would be desirable to measure the bulb wall temperature directly, but this is not practical in the field. As a result, other means of control have to be used. For conventional arc-lamp systems, one such method is to regulate the lamp cooling to the exhaust temperature of the cooling air or metalwork close to the lamp. This can be an effective method, but suffers from some drawbacks. First, this is subject to ambient temperature variations of the incoming air, which results in the tolerance limits having to be quite wide. Second, there is the problem of setting the cooling level while the system warms up to its steady-state temperature. Finally, temperature changes give quite a slow control response, which may not be suitable for critical fills such as iron. A more responsive method is to use the differential pressure across Figure 8 the lamp head to control the flow. However, this by itself does not guarantee cooling is present because there can be a pressure differential with no flow. The best approach is a combination of actual lamp power, differential pressure and temperature sensing which can be linked to provide very tight closed-loop control. While testing the Nordson Quadcure lamp system, we varied the output lamp power. Through the closed-loop control, the bulb temperature tracked proportionately while the spectral output remained consistent, proving our theory. In these systems, the controller automatically calculates the desired cooling level dependent on the lamp power and adjusts the cooling flow automatically. Differential pressure sensing is used to give fine, instantaneous control via a PID loop, while the exhaust temperature sensing provides a redundant safety system. The same algorithms are used for all arc systems. Tests have shown that controlling the cooling in this manner leads to improved lamp efficiency by Spectral output versus power setting for IRON 15mm OD/13mm ID 10 600wpi bulb utilizing a constant speed blower Technical Paper SEPTEMBER/OCTOBER 2009 RADTECH REPORT 27

maintaining the optimum spectral output and reduction of volumes of cooling air required. Similar control of the lamp cooling also has benefits for electrodeless systems. Tests, utilizing a Nordson Coolwave 2-610V system with an internal variable-speed blower, have shown that the bulb temperature is kept at a constant ideal temperature for spectral stabilization. The variablespeed blower, part of a closed-loop control, changes speed in relationship to the selected power output, thus keeping the ideal temperature across the bulb and eliminating the possibility of overcooling. Our tests have proven that these advancements assure UV-lamp spectral stabilization. The test data presented in Figure 8 shows the effect of overcooling an iron bulb. With the system power setting at 100 percent, the iron-additive bulb displays a typical spectral output rich in the UVA range. Utilizing a constant-speed blower without closedloop control, the UV light power is reduced to 70 percent and 50 percent. The effects are displayed with the iron spectrum reverting to that of a mercury-only bulb. Figure 9 displays the effect of a variable-speed blower used in a closed-loop control. Even at the 50 percent power setting, the spectral output is stable because the bulb temperature is kept at its optimum operating temperature to assure proper spectral emission. Additional tests utilizing the variable-speed blower, in a closed-loop control showed the iron-additive bulb spectrum is stable throughout the selected power level changes, with no UV spectral shift. Figure 9 Conclusion Utilizing closed-loop control with a variable-speed cooling blower, UV-spectral stability can be best maintained to assure better control of your UV curing process. Jim Borsuk works as a senior application engineer with the Nordson UV Systems Group, in Amherst, Ohio. David Armitage works as a product development engineer with the Nordson UV Group, in Slough, England. Spectral output versus power setting for IRON 15mm OD/13mm ID 10 600wpi bulb utilizing a variablespeed blower in a closed-loop control You are invited to Join RadTech RadTech International North America offers you For more information contact: opportunities for professional development and the chance to chart the course for the growing UV/EB industry. (240) 497-1242 Email: uveb@radtech.org Web: www.radtech.org 28 RADTECH REPORT SEPTEMBER/OCTOBER 2009