Immobilized Candida antarctica Lipase Catalyzed Transesterification of Croton megalocarpus Seed Oil for Biodiesel Production

Similar documents
OPTIMIZATION OF BIODIESEL PRODUCTION FROM COTTON SEED OIL USING KOH AND NAOH AS CATALYSTS

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

SYNTHESIS OF BIODIESEL

Transmission Weight & Efficiency Optimization in Off Road Vehicle (Tractor Gearbox)

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Project Reference No.: 40S_B_MTECH_007

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

Process optimization for production of biodiesel from croton oil using two-stage process

An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil

Piedmont Biofuels R&A

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

The Purification Feasibilityof GlycerinProduced During

Biodiesel Production by Enzymatic Transesterification of Papaya Seed Oil and Rambutan Seed Oil

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

OMICS International. Contact us at:

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP:

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

Thermoelectric Power Generated from Computer Waste Heat

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST

CHAPTER 4 PRODUCTION OF BIODIESEL

Biodiesel Business Environment

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

Kinetic Processes Simulation for Production of the Biodiesel with Using as Enzyme

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds

PRODUCTION OF BIODIESEL FROM FISH WASTE

Enzymatic Alholysis For Biodiesel Production From Waste Cooking Oil

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

Biodiesel production by esterification of palm fatty acid distillate

Study on the Production of Biodiesel from Sunflower Oil

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015

Utilization of Three Non-Edible Vegetable Oils for the Production of Biodiesel Catalysed by Enzyme

Experimental Analysis of Cotton Seed oil Biodiesel in a Compression Ignition Engine

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol

Biodiesel from soybean oil in supercritical methanol with co-solvent

Lipase-Catalyzed Biodiesel Production with Methyl Acetate as Acyl Acceptor

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004)

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

What s s in your Tank?

EXCESS METHANOL RECOVERY IN BIODIESEL PRODUCTION PROCESS USING A DISTILLATION COLUMN: A SIMULATION STUDY

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

Comparative Evaluation between Direct Connected and VSC-HVDC Grid Connected Wind Farm

SYNTHESIS OF BIODIESEL FROM VEGETABLE OIL.

Published in Offshore World, April-May 2006 Archived in

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

Technologies for Biodiesel Production from Non-edible Oils: A Review

Emission Analysis of Biodiesel from Chicken Bone Powder

Towards a Biodiesel-based Biorefinery: Chemical and Physical Properties of Reactively Extracted Rapeseed (Canola)

CHARACTERIZATION OF BIODIESEL PRODUCED BY METH- BUTANOLYSIS OF CASTOR OIL

Role of the Castor Oil Extracted from Seeds of Ricinus Communis for Biodiesel Formation using Novozym 435

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process

[Singh, 2(8): August, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines

Automotive Technology

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

Enzymatic transesterification of Hungarian rapeseed and

Biodiesel Making and Experimented Results from Waste Cooking Oil, in Mongolia

Cataldo De Blasio, Dr. Sc. (Tech.)

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD

Where you find solutions. Strategic Biodiesel Decisions

address: (K. A. Younis), (J. L. Ismail Agha), (K. S.

Rjeas Research Journal in Engineering and Applied Sciences 2(3) Rjeas

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE?

Production of Methyl Ester from Mixed Oil (Dairy Waste Scum & Karanja Oil)

PRODUCTION OF BIODIESEL FROM CHICKEN FAT

BIODIESEL PRODUCTION FROM JATROPHA CURCAS OIL

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.4, pp ,

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst

WASTE TO ENERGY. Commercial Enzymatic Production of Biodiesel

Conventional Homogeneous Catalytic Process with Continuous-typed Microwave and Mechanical Stirrer for Biodiesel Production from Palm Stearin

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels

Palm Fatty Acids Esterification on Heterogeneous Catalysis

Australian Journal of Basic and Applied Sciences

Chemical Modification of Palm Oil for Low Temperature Applications and its Study on Tribological Properties

Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst

This presentation focuses on Biodiesel, scientifically called FAME (Fatty Acid Methyl Ester); a fuel different in either perspective.

Two Novel Approaches Used to Produce Biodiesel from Low-Cost Feedstocks

EXTRACTION AND CHARACTERIZATION OF WATERMELON SEED OIL

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

Waste cooking oil as an alternative fuel in compression ignition engine

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Methanolysis of Jatropha Oil Using Conventional Heating

Transcription:

Immobilized Candida antarctica Lipase Catalyzed Transesterification of Croton megalocarpus Seed Oil for Biodiesel Production S.N. Mirie 1*, P.N. Kioni 2, G.T. Thiong o 1 and P.N. Kariuki 2 1. Faculty of science, Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62,000 00200, Nairobi, Kenya. 2. School of Engineering, Department of Mathematics and Physical Sciences, Kimathi University College of Technology, P.O. Box 657-10100 Nyeri, Kenya. * E-mail of the corresponding author: miriesamuel@gmail.com This study was supported by Kimathi University College of Technology and Jomo Kenyatta University of Agriculture and Technology through the Research Production and Extension Division (RPE). Abstract Methanolic transesterification of Croton megalocarpus seed oil to produce biodiesel was investigated using Immobilized Candida antarctica lipase as a catalyst. The reactions were optimized by varying the temperature, amount of methanol and the weight of lipase. The transesterification process yielded 98.71 % biodiesel conversion at optimal conditions of 30 % enzyme (m/m), 50 0 C reaction temperature and oil to alcohol molar ratio of 1:4. Biodiesel from this process had a remarkably high acid value. All the other fuel properties measured were within the range stipulated in the American Society for Testing and Materials (ASTM) and International Standards Organization (ISO) standards. Keywords: Biodiesel, Croton megalocarpus, Transesterification, lipase 1. Introduction The predicted shortage of fossil fuel coupled with the increase in fuel prices has encouraged the research for other substitutes such as biodiesel. Biodiesel can be defined as the alkyl ester of fatty acids, made by the transesterification of oils or fats, from plants or animals, with short chain alcohols such as methanol and ethanol (Pinto et al., 2005). The primary advantage of biodiesel is that it is renewable, non-toxic and biodegradable. The most commonly used catalysts for biodiesel production are sodium hydroxide, potassium hydroxide and sodium methoxide. The disadvantage of these base catalysts is that if biodiesel is prepared with a feedstock high in free fatty acids (FFA), the base reacts with the FFA forming soap. This process leads to loss of the catalyst and the soap will also inhibit later steps during processing such as water washing and glycerol separation. Enzymatic catalysis has an advantage in that even with very high FFA content in the oil a single-step process for biodiesel is feasible. The benefits of an enzyme-catalyzed process (Nielsen et al., 2008) can be summarized as follows: Compatibility with variations in the quality of the raw material; fewer process steps; higher quality of glycerol; improved phase separation (no emulsification from soaps) and reduced energy consumption and wastewater volumes. A range of lipases including those from Candida antarctica (Kose et al., 2004), Candida rugosa (CRL) (Lee et al., 2006), Thermomyces lanuginosa (TLL) (Du et al., 2006) and other esterases have been tested for enzymatic biodiesel synthesis. In this study the methanolysis of Croton megalocarpus seed oil with commercially available immobilized candida antarctica lipase as a catalyst was investigated and the optimum conditions were determined by varying the temperature, oil to alcohol ratio and enzyme weight. Most of the literature on enzymatic alcoholysis available report a biodiesel product characterized by its alkyl ester content but do not discuss if the obtained product is within the given specifications (Nielsen et al., 2008). This study therefore also aimed at measuring some of the properties of the biodiesel obtained from enzymatic alcoholysis to check whether it meets the standards. 20

2. Methods 2.1 Materials and Apparatus Croton megalocarpus seeds were obtained from Machakos, Kenya and their identity confirmed at the herbarium in botany department, Jomo Kenyatta University of Agriculture and Technology. A screw press (Ruian grain and oil machinery factory Zhejiang China) was then used to crush and expel oil from the seeds. The oil was first filtered slowly using filter bags then refiltered again using a vacuum pump to remove any particles. Other reagents used in the experiments were of analytical grade. Enzymatic alcoholysis reactions were catalyzed with immobilized Candida antarctica lipase commercially called Novozym 435 which was a gift from Novo Nordisk Industry A/S (Bagsvaerd, Denmark). 2.2 Analytical methods The acid value and FFA content was calculated using a simple titration procedure (Van Gerpen et al., 2004). Kinematic viscosity was measured using a capillary viscometer (No. 38, Kusano Scientific Instrument) immersed in a water bath. Specific gravity was measured using a pycnometer. More fuel properties were measured at Kenya Bureau of Standards (KEBS) Nairobi, using ISO and ASTM test methods. 2.3 Enzymatic transesterification procedure In this study a modified method of Shimada et al (2002) was used. The experiments were done in a solvent free system using a three-step batch methanolysis procedure. The reactions were conducted in conical flasks covered with aluminium foil and agitated in a temperature controlled water bath shaker set at 140 oscillations/minute. 50 g of the vegetable oil together with the appropriate amount of catalyst in a conical flask was first placed in the water bath to attain the required temperature. The amount of methanol to be used for the reactions was divided into three portions and added using a three step procedure. The first addition was done at the start of the experiment, the second after 10 hrs and the last addition was done after a total of 24 hrs. The reaction was continued for another 32 hrs to get a reaction time of 56 hrs in total. After completion of the reaction the contents of the flask were washed with chilled acetone and Candida antarctica B-lipase recovered by filtration. The acetone was then evaporated using a rotary vacuum evaporator and the biodiesel placed in a separating funnel for separation of glycerine. The experiments were done in triplicate and the average biodiesel yields obtained. The viscosity, acid value, percentage (%) yield and the specific gravity of the biodiesel obtained were determined. 3. Results and discussion The crude Croton megalocarpus seed oil used for the experiments had an acid value of 7.5 mg KOH/g, FFA content of 3.7 % and viscosity of 28.30 mm 2 /s. Enzymatic transesterification reactions were optimized by varying the oil to methanol ratio, reaction temperature and the weight of enzyme used. To investigate the effect of enzyme weight, reactions were performed with 4 % weight of catalyst (reaction 1) based on the weight of the reaction mixture at the start of the reaction (sum weight of methanol and vegetable oil at the start of reaction) and 10 % catalyst based on the weight of vegetable oil while the ratio of oil to methanol was kept at 1:3 (reaction 2). To investigate the effect of increasing temperature and enzyme weight, the reaction was repeated at a temperature of 50 0 C with 30 % enzyme weight based on the weight of vegetable oil and oil to alcohol ratio of 1:3 (reaction 3). To investigate the effect of oil to methanol ratio the conditions chosen were 30 % enzyme weight based on the weight of vegetable oil, 1:4 oil to alcohol ratio and a temperature of 50 0 C (reaction 4). Enzyme reuse was investigated by transferring used lipase recovered from reaction 4 to the first step procedure using fresh vegetable oil (reaction 5). The results are shown in Table 1. 3.1 Effect of enzyme weight on transesterification of Croton megalocarpus seed oil Enzymatic catalysed transesterification carried out at 30 0 C and using Candida antarctica B-lipase (CALB) 4 % 21

weight of the total reaction mixture gave a product that showed an acid value of 6.39 mg KOH/g which was lower than that of the crude vegetable oil, 7.5 mg KOH/g. This was consistent with observations made by Shimada et al (2002) while transesterifying waste edible oil using the same enzyme and enzyme weight equivalent to 4 % of the total reaction mixture. As expected the viscosity value of the product was much lower than that of the vegetable oil. Increasing the enzyme weight from 4 % weight of catalyst based on the weight of the reaction mixture at the start of the reaction to 10 % catalyst based on the weight of vegetable oil and retaining the other conditions, the resulting transesterified product gave a slightly lower viscosity value 6.61 mm 2 /s than the viscosity 7.14 mm 2 /s of 4 % wt. However, the acid value was found to increase by over 100 % for 10 % wt enzyme and over 200 % for 30 % wt enzyme. Esterification seems to have occurred together with hydrolysis in the reactions. In the reactions with 10 % wt enzyme and 30 % wt enzyme, glycerine separation was not visible and the viscosity was high suggesting that the biodiesel mixtures probably contained high amounts of triglycerides, monoglycerides and diglycerides in addition to methylesters. This was again consistent with observations made by Kose et al (2004) while studying transesterification of cotton seed oil using Candida antarctica B-lipase (CALB) enzyme as catalyst. Thus it was observed that the acid value of biodiesel increased with increase of enzyme quantity. 3.2 Effect of increasing enzyme weight and temperature on transesterification of Croton megalocarpus seed oil Increasing the temperature and enzyme weight to 50 0 C and 30 % of the weight of oil while leaving oil to methanol ratio at 1:3 lead to an increase in the acid value to 21.74 mg KOH/g. However, the viscosity was lowered to 6.23 mm 2 /s indicating an increase in the ester content of the biodiesel obtained. 3.3 Effect of oil to methanol ratio on transesterification of Croton megalocarpus seed oil Changing the oil to methanol ratio from 1:3 to 1:4 and carrying out the process at 50 0 C gave biodiesel with a viscosity of 4.7 mm 2 /s which indicated a further increase of the methylester content of the biodiesel obtained. This is in agreement with Kose et al (2004) who in an experiment using cotton seed oil and the same enzyme, obtained optimum transesterification conditions of 1:4 oil to alcohol ratio, 30 % enzyme based on the weight of oil, and a temperature of 50 0 C. This seemed to be the optimum conditions for the lipase. A clear and colorless glycerine layer was also observed. 3.4 Effect of using reused enzyme on transesterification of Croton megalocarpus seed oil When used enzyme was reactivated using chilled acetone and applied under optimum conditions, the biodiesel obtained had a viscosity value of 4.17 mm 2 /s and acid value of 13.69 mg KOH/g. The enzyme seems to have been conditioned from the previous experiment. A clear and colorless glycerine layer was also observed in this experiment. 3.5 Measurement of fuel properties A batch experiment to determine more fuel properties was setup and the tests were carried out at Kenya Bureau of Standards (KEBS) Nairobi, using ISO and ASTM test methods. The results are shown in Table 2. The results show that the process of transesterification greatly reduces the viscosities of the vegetable oil which leads to improved fuel properties of the Croton megalocarpus seed oil. The flash point for the fuel measured was above 150 0 C indicating that no residual alcohol was left after processing and hence it is safe to use as there is no risk of explosion. It can be seen from the results that the fuel is not corrosive to copper indicating very little effect on corrosion of the engine. All the other properties measured which include: kinematic viscosity, density and Astm colour meet the particular ASTM or ISO standard. 5. Conclusion Enzymatic transesterification was successful considering the viscosity (4.74 mm 2 /s) of the biodiesel product obtained at the optimum conditions of 30 % enzyme amount, temperature 50 0 C and oil to alcohol ratio 1:4. Enzymatic 22

process also gave high yields. A clean and pure glycerine layer was also observed. The only drawback of the enzymatic transesterification at optimum conditions is the high acid value (13.86 mg KOH/g) of the biodiesel obtained which was not within the ASTM standard of a maximum of 0.8 mg KOH/g. However, the excess free fatty acids in the biodiesel can be removed as soaps by use of caustic stripping. References Du, D., Liu, L., Wang, Z., Li, L. and Li, W. (2006). Lipase catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis B: Enzymatic, 43, 58 62. Kose, O., Tuter, M. and Asye, H. (2002). Immobilized Candida antarctica lipase catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technology, 83, 125-129. Lee, D. H., Kim, J. M., Shin, H. Y., Kang, S. W. and Kim S. W. (2006). Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnology and Bioprocess Engineering, 11, 522 525. Nielsen, M., Brask, J. and Fjerbaek, L. (2008). Enzymatic biodiesel production: Technical and economical considerations. European Journal of Lipid Science and Technology, 110, 692 700, doi:10.1002/ejlt.200800064. Pinto, A. C., Guarieiro, L., Rezende, M. J., Ribeiro, N. M., Ednildo A. Torres, E. A., Lopes, A. W., Pereira, A. W. and Andrade J. B.(2005). Biodiesel: An Overview. Journal of Brazilian Chemical Society, 16(6B), 1313-1330. Shimada, Y., Watanabe, Y., Sugihara, A. and Tominaga, Y. (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17, 133 142. Van Gerpen, J., Shanks, B., Pruszko, R.., Clements, D. and Knothe, G. (2004). Biodiesel Production Technology. Technical report, National Renewable Energy Laboratory. USA, Colorado; pp 1-52. Table 1. Enzymatic transesterification of Croton megalocarpus seed oil Reaction Enzyme amount Temperature ( 0 C) Oil to methanol ratio Yield (%) Viscosity (mm 2 /s) (40 0 C) Specific Gravity (40 0 C) Acid Value (mgkoh/g) 1 4 wt. % 30 0 C 1:3 97.64±1.63 7.14±0.13 0.90±0.01 6.39± 0.49 2 10 wt. % 30 0 C 1:3 98.47±0.97 6.61 ±0.26 0.88±0.00 14.81±0.67 3 30 wt. % 50 0 C 1:3 98.87±0.82 6.23 ±0.21 0.89± 0.00 21.74± 0.56 4 30 wt. % 50 0 C 1:4 98.98±0.38 4.74 ±0.49 0.89± 0.00 13.86± 0.42 5 30 wt. % 50 0 C 1:4 98.71±1.07 4.17 ±0.07 0.88 ± 0.00 13.69± 0.39 (1:4 oil to methanol ratio = 7.29 g methanol, 1:3 oil to methanol ratio = 5.46 g methanol) 23

Table 2. Fuel properties measurement Property Method Apparatus limits CMEE* Kinematic viscosity at 40 0 C (mm 2 /s) ISO 3104 Automatic viscometer (HMV 472 3.5-5.0 4.32 HERZOG) Astm colour ASTMD 1500 Tintometer (Lovibond PFX880) Max 3.5 1.9 Copper strip corrosion ISO 2160 Air oven (Memmert) Class 1 No tarnish (3 h at 50 0 C rating, Max) Density @15 0 C (kg/m 3 ) ISO 12185 Density meter (DMA4500) 860-900 891 Flash point 0 C, Min ASTMD 93 Pensky Martens closed cup tester 130 Min >150 *Biodiesel from enzymatic process using Croton megalocarpus seed oil, 7.29 g methanol (1:4 oil to alcohol ratio), 15 g enzyme (30 % enzyme based on the weight of oil) and 50 0 C temperature. 24

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing. More information about the publisher can be found in the IISTE s homepage: http:// The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http:///journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors. IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar