Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

Similar documents
Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Automotive Technology

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Material Science Research India Vol. 7(1), (2010)

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

S S Ragit a *, S K Mohapatra a & K Kundu b. Indian Journal of Engineering & Materials Sciences Vol. 18, June 2011, pp

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

Ester (KOME)-Diesel blends as a Fuel

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

Experimental Analysis of Cotton Seed oil Biodiesel in a Compression Ignition Engine

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

Experimental Investigation of Performance & Emission Characteristics of Diesel Engine Working On Diesel and NOME with Ethanol and Triacetin Blends

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS

Effect of Nano-Fluid Additiveon Emission Reduction in Biodiesel

Government Engineering College, Bhuj.

Effect of Tangential Groove Piston on Diesel Engine with Jatropha Methyl Ester

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

A Comparative Study on Performance and Emission Characteristics of Compression Ignition Engine using Biodiesel Derived from Castor oil

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

International Journal of Modern Engineering Research (IJMER) Vol.3, Issue.1, Jan-Feb pp ISSN:

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

Studies on performance and emission characteristics of multicylinder diesel engine using hybrid fuel blends as fuel

Experimental Analysis of Working Characteristics of Cornoil As An Alternate Fuel of Diesel Engine

Operational Characteristics of Diesel Engine Run by Ester of Sunflower Oil and Compare with Diesel Fuel Operation

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

Performance characteristics of Jatropha ethyl ester as diesel engine fuel at different compression ratios

JJMIE Jordan Journal of Mechanical and Industrial Engineering

PERFORMANCE, EMISSION AND COMBUSTION CHARACTERISTICS OF A VARIABLE COMPRESSION RATIO DIESEL ENGINE FUELED WITH KARANJ BIODIESEL AND ITS BLENDS

Government Engineering College, Bhuj.

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

EFFECT OF SAFFLOWER OIL BIO-DIESEL ON PERFORMANCE AND EMISSION CHARACTERISTICS OF SINGLE CYLINDER DIESEL ENGINE

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

IJMIE Volume 2, Issue 7 ISSN:

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

International Engineering Research Journal Performance and Emission Analysis of a Diesel Engine Fuelled with Waste Turmeric oil.

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

IJRASET 2013: All Rights are Reserved

Experimental Investigation of Performance, Combustion and Emission characteristics of neat Lemongrass oil in DI Diesel engine

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE

Effect of biodiesel and its blends with oxygenated additives on performance and emissions from a diesel engine

Performance, emission and combustion characteristics of fish-oil biodiesel engine

Project Reference No.: 40S_B_MTECH_007

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL

EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review

, RMK College of Engineering and Technology R.S.M.Nagar, Puduvoyal, India Corresponding author

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines

ANALYSIS ON PERFORMANCE CHARACTERISTICS AND EMISSIONS OF DIESEL ENGINE USING DIFFERENT BLENDS OF CALOPHYLLUM INOPHYLLUM, COTTON SEED OIL, KARANJA.

EXPERIMENTAL INVESTIGATION ON VCR ENGINE BY USING DUAL BIODIESEL

An experimental investigation to study combined effect of EGR and tung oil biodiesel blends used for CI engine

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

JCHPS Special Issue 7: 2015 NCRTDSGT 2015 Page 408

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Experimental Investigation of Multi Cylinder Diesel Engine Using Rubber seed oil and Diesel

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER

Performance and Emissions Study in Diesel Engines Using Cotton Seed Biodiesel

Performance and Emissions Characteristics of a C.I. Engine Fuelled with Different Blends of Biodiesel Derived from Waste Mustard Oil

Study of Brake Thermal Efficiencies of Blend Fuels Using CVCRM Engine Test Rig

EFFECT OF L-ASCORBIC ACID AS ADDITIVE FOR EXHAUST EMISSION REDUCTION IN A DIRECT INJECTION DIESEL ENGINE USING MANGO SEED METHYL ESTER

Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online):

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

Effect of Jatropha Biodiesel Blend with Diesel Fuel on Performance of Four Stroke Single Cylinder Diesel Engine

A COMPARATIVE STUDY OF PERFORMANCE AND EMISSION CHARACTERISTICS OF FOUR STROKE DIESEL ENGINE WITH MAHUA AND JATROPHA BIODIESEL BLENDED WITH DIESEL

THEVETIA PERUVIANA BIODIESEL EMULSION USED AS A FUEL IN A SINGLE CYLINDER DIESEL ENGINE REDUCES NOX AND SMOKE

Experimental analysis of a Diesel Engine fuelled with Biodiesel Blend using Di-ethyl ether as fuel additives

The Effect of Bio-Fuel Blends and Fuel Injection Pressure on Diesel Engine Emission for Sustainable Environment

Transcription:

American Journal of Applied Sciences 8 (11): 1154-1158, 2011 ISSN 1546-9239 2011 Science Publications Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine 1 B. Deepanraj, 1 C. Dhanesh, 1 R. Senthil, 1 M. Kannan, 1 A. Santhoshkumar and 2 P. Lawrence 1 Department of Mechanical Engineering, Adhiparasakthi Engineering College, Melmaruvathur, India 2 Department of Mechanical Engineering, Priyadarshini Engineering College, Vaniyambadi, India Abstract: Problem statement: The increasing awareness of the environmental hazards and the alarming levels of air pollution have led to more restrictive regulations on engines emission control in recent years. Approach: The dwindling resources and rising cost of crude oil had resulted in an intensified search for alternate fuels. In the present study biodiesel (palm oil methyl ester) blends with diesel was investigated in a direct injection stationary diesel engine. The stationary engine test bed used consists of a single-cylinder four stroke diesel engine, eddy current dynamometer with computer control data acquisition system and exhaust emissions analyzer. Results: Engine tests were conducted at constant speed using neat diesel fuel and various proportions of biodiesel blends. The exhaust emissions such as CO, HC and NOx were measured using exhaust gas analyzer. Performance characteristics like brake thermal efficiency and specific fuel consumption were recorded. The differences in the measured emissions and performance of the biodiesel-diesel fuel blends from the baseline operation of the engine, i.e., when working with neat diesel fuel were determined and compared. Conclusion: It is concluded that the lower blends of biodiesel increased the brake thermal efficiency and reduced the fuel consumption. Biodiesel blends produces lower engine emissions than diesel. From the result, it has been established that 20-40% of palm oil biodiesel can be use as a substitute for diesel without any engine modifications. Key words: Alternate fuel, palm oil, diesel engines, biodiesel, emissions, performance INTRODUCTION fuel and diesel fuel and diesel engines evolved together. In the 1930s and 1940s vegetable oils were used as Diesel engines are the major source of diesel fuel from time to time, but only in emergency transportation, power generation, marine applications, situations. Recently, there has been a renewed focus on etc. Hence diesel is being used extensively, but due to use of vegetable oils and biodiesel fuel (Suryawanshi, the gradual depletion of fossil fuel reserves and the 2006; Prasad et al., 2009). Different kinds of vegetable impact of environmental pollution, there is an urgent oils and biodiesel have been tested in diesel engines. Its need for suitable alternative fuels for the use in CI reducing characteristic for greenhouse gas emissions, engine (Kumar et al., 2008). In view of this, Vegetable its help on reducing a country s reliance on crude oil oils have become more attractive recently because of its imports, its supportive characteristic on agriculture by environmental benefits and the fact that it is made from providing a new market for domestic crops, its effective renewable resources. Vegetable oils are a renewable lubricating property that eliminates the need of any and potentially inexhaustible source of energy with an lubricate additive and its wide acceptance by vehicle energetic content close to diesel. More than one manufacturers can be listed as the most important hundred years ago, Rudolf Diesel tested vegetable oil as advantages of the biodiesel fuel (Srivastava and Verma, the fuel for his engine (Sharma et al., 2008; Anbumani 2008; Karaosmanoplu, 1999; Lawrence et al., 2011; and Singh, 2010). With the advent of cheap petroleum, Singh and Singh, 2010). There are more than 350 oilbearing appropriate crude oil fractions were refined to serve as crops identified, among which only jatropha, Corresponding Author: B. Deepanraj, Department of Mechanical Engineering, Adhiparasakthi Engineering College, Melmaruvathur-603319, Kancheepuram District, Tamilnadu, India 1154

ongamia, sunflower, safflower, soyabean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The present study aims to investigate the use of palm oil as an alternate fuel for compression ignition engine. MATERIALS AND METHODS Table 1: Properties of diesel and biodiesel Properties Diesel Biodiesel Calorific value (kj/ kg 1 ) 42400.000 39070.000 Specific gravity 0.822 0.843 Viscosity at 40 C (c-s) 3.720 7.100 Flash point ( C) 62.000 108.000 Flash point ( C) 75.000 114.000 Iodine value 38.300 71.440 Biodiesel Preparation: Biodiesel is the ester of vegetable oils produced through a process called transesterification. Transesterification is a chemical reaction which occurs between triglyceride and alcohol (generally methyl alcohol) in the presence of a catalyst (generally sodium hydroxide of potassium hydroxide). It consists of a sequence of three consecutive reactions where triglycerides are converted to diglycerides; diglycerides are converted to monoglycerides followed by the conversion of monoglycerides to glycerol (Fukuda et al., 2001; Vivek and Gupta, 2004). In each step an ester is produced and thus three ester molecules are produced from one molecule of triglyceride. Palm oil used in the present investigation was taken from the local market and filtered by cheesecloth to remove the solid particles. The moisture content was removed by heating the oil in an oven up to 110 C for one hour. Now the oil is taken in a round bottom flask of volume 500 cm 3 and heated around 50-60 C on a hot plate having magnetic stirrer arrangement. Then methanol and sodium hydroxide (catalyst) are added to the oil. The mixture was stirred continuously. Alcohol to vegetable oil molar ratio is one of the important factors that affect the conversion efficiency of the process. For the transesterification process, 3 mol of alcohol are required for each mole of the oil. However, in practice, the molar ratio should be higher than this theoretical ratio in order to drive the reaction towards early completion. After the completion of reaction, the products are allowed to separate into two layers. The lower layer contains glycerol and the top layer contains ester which is separated and purified using distilled water. Hot distilled water (10% by volume) is sprayed over the ester and stirred gently and allowed to settle in the separating funnel. The lower layer is discarded and upper layer (purified biodiesel) is separated (Naik et al., 2006; Anandram et al., 2006). Biodiesel (methyl esters of palm oil) have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The properties of diesel and biodiesel (palm oil methyl ester) used in the present investigation were compared with diesel fuel in Table 1. Table 2: Specification of test engine Engine type 4 stroke, single cylinder, DI Engine Stroke 110 mm Bore 80 mm Power 3.68 kw Rated speed 1500 rpm Cooling type Water cooled Loading type Eddy current dynamometer Fig. 1: Experimental setup Experimental setup and procedure: A four stroke, single cylinder, water cooled, direct injection diesel engine was used for the performance tests. The specification of the test engine is shown in Table 2. The experimental set-up diagram is shown in Fig. 1. Experiments were carried out initially using neat diesel fuel to generate the base line data. After recording the base line data, tests were carried out using 10, 20, 30, 40 and 50% biodiesel blends. The engine tests were conducted at various loads starting from no load to full load and the parameters related to performance and emission characteristics were recorded. 1155

RESULTS AND DISCUSSION The emission and performance characteristics of the engine are presented for different percentages of load for diesel and biodiesel blends. Figure 2 shows the variation of unburned hydrocarbon (HC) emission with respect to load. The unburned hydrocarbon emission gradually increases with increase in load. This is due to the increased amount of fuel injection at higher loads. At maximum load condition B30, B40 and B50 blends produce 17.54, 19.4 and 21.3% lower HC emission respectively than neat diesel fuel. This is due to the complete and stable combustion of the biodiesel, which contains more number of oxygen atoms. Figure 3 shows the variation of carbon monoxide (CO) emission with respect to different loads. The CO emission increases with increase in load. From the figure it is observed that the biodiesel blends produce lower CO emission than diesel. At 50% load condition, B30 and B40 produce 36.5 and 41.23% less CO emission than diesel. This is due to the complete and stable combustion of the biodiesel, which contains more number of oxygen atoms. Figure 4 shows the variation of NOx emission with respect to load. From the figure, it was observed that biodiesel blends produces higher NOx emission than diesel fuel at both full and partial loads. At maximum load, B40 and B50 blend produce 19.6 and 22.13% higher NOx emission than neat diesel fuel. For 50% load condition, these blends produce 18.46 and 29.05% higher NOx emission than diesel fuel. This is because of higher temperature of combustion and the presence of fuel oxygen with the biodiesel blends. Figure 5 shows the variation of brake thermal efficiency with different loads for different biodiesel blends and diesel. The brake thermal efficiency is defined as the actual brake work per cycle divided by the amount of fuel chemical energy. From the figure it is observed that brake thermal efficiency increases with increase of load. At maximum load, B40 and B50 blends produce 8.95 and 12.85% lower brake thermal efficiency than diesel. This reduction in brake thermal efficiency with biodiesel blends was due to higher viscosity, poor spray characteristics and lower calorific value. The higher viscosity leads to decreased atomization, fuel vaporization and combustion and hence the thermal efficiency of the biodiesel blends is lower than that of diesel. Am. J. Applied Sci., 8 (11): 1154-1158, 2011 Specific Fuel Consumption (SFC) is a measure of the efficiency of the engine in using the fuel supplied to produce work. It is desirable to obtain a lower value of SFC meaning that the engine used less fuel to produce the same amount of work. Figure 6 shows the SFC of POME blends with diesel. The specific fuel consumption keeps on decreasing with increasing load. It can be seen from the figure that in case of biodiesel blends, the specific fuel consumption values were determined to be higher than that of neat diesel fuel. At maximum load condition, B40 and B50 blends produce 7.9 and 13.04% higher SFC than neat diesel fuel. This trend was observed owing to the fact that biodiesel blends have lower calorific value than neat diesel fuel and thus more amount of biodiesel blend was required for the maintenance of a constant power output. Figure 7 shows the variation of exhaust gas temperature with different loads for different biodiesel blends and diesel. The results show that the exhaust gas temperature increased with increase in load in all cases. Fig. 2: HC Vs load Fig. 3: CO Vs load 1156

Fig. 4: NOx Vs load Fig. 7: EGT Vs load CONCLUSION From the experimental analysis it was found that the blends of POME and diesel could be successfully used with acceptable performance and better emissions up to a certain extent. The result of this analysis was summarized as follows: Fig. 5: BTE Vs. Load The biodiesel blends produce lower carbon monoxide and unburned hydrocarbon emission than neat diesel fuel due to the availability of oxygen content Biodiesel produces higher oxides of nitrogen than diesel because of the higher temperature inside the combustion chamber Biodiesel blends produce lower brake thermal efficiency and higher specific fuel consumption than diesel because of the low calorific value Biodiesel blends produce higher exhaust gas temperature than neat diesel fuel Fig. 6: SFC Vs load At maximum load condition, B50 produces highest EGT which is 28.05% higher than that of diesel. This could be due to higher quantity of fuel being consumed per hour for biodiesel blends compared to that of diesel in each load setting of the engine. 1157 REFERENCES Anandram, V., S. Ramakrishnan, J. Karthik, S. Saravanan and G.L.N. Rao, 2006. Engine analysis of single cylinder di diesel engine fuelled with sunflower oil, sunflower oil methyl ester and its blends. Proceedings of the ASME Internal Combustion Engine Division 2006 Fall Technical Conference, Nov. 5-8, Sacramento, California, USA, pp: 219-224. DOI: 10.1115/ICEF2006-1573 Anbumani, K. and A.P. Singh, 2010. Performance of mustard and neem oil blends with diesel fuel in C.I. engine. ARPN J. Eng. Applied Sci., 5: 14-20. Fukuda, H., A. Kondo and H. Noda 2001. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng., 92: 405-416. DOI: 10.1016/S1389-1723(01)80288-7

Karaosmanoplu, F., 1999. Vegetable oil fuels: A review. Ene. Sour., 21: 221-231. Lawrence, P., K. Mathews and B. Deepanraj, 2011. The effect of prickly poppy methyl ester blends on CI engine performance and emission characteristics. Am. J. Environ. Sci., 7: 145-149. DOI: 10.3844/ajessp.2011.145.149 Singh, P., J. Khurma and A. Singh, 2010. Coconut oil based hybrid fuels as alternative fuel for diesel engines. Am. J. Environ. Sci., 6: 71-77. DOI: 10.3844/ajessp.2010.71.77 Kumar, P.R., K. Rajagopal, R.H. Prakash and B.D. Prasad, 2008. Performance of CI engine using blends of methyl esters of palm oil with diesel. J. Eng. Applied Sci., 3: 217-220. DOI: 10.3923/jeasci.2008.217.220 Sharma, Y.C., B. Singh and S.N. Upadhyay, 2008. Advancements in development and characterization of biodiesel: A review. Fuel, 87: 2355-2373. DOI: 10.1016/j.fuel.2008.01.014 Srivastava, P.K. and M. Verma, 2008. Methyl ester of karanja oil as an alternative renewable source energy. Fuel., 87: 1673-1677. DOI: 10.1016/j.fuel.2007.08.018 Suryawanshi, J., 2006. Performance and emission characteristics of CI engine fueled by coconut oil methyl ester. Visvesvaraya National Institute of Technology. Vivek and A.K. Gupta, 2004. Biodiesel production from karanja oil. J Sci. Indu. Res., 63: 39-47. 1158