CFD analysis on the aerodynamics characteristics of Jakarta-Bandung high speed train

Similar documents
Influence of pantograph fixing position on aerodynamic characteristics of high-speed trains

INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF CIRCULAR AND DIAMOND PILLARED VANE DISC BRAKE ROTOR USING CFD

Analysis of Aerodynamic Performance of Tesla Model S by CFD

Influence of Ground Effect on Aerodynamic Performance of Maglev Train

Numerical Study on the Flow Characteristics of a Solenoid Valve for Industrial Applications

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

FLOW AND HEAT TRANSFER ENHANCEMENT AROUND STAGGERED TUBES USING RECTANGULAR VORTEX GENERATORS

Effect of concave plug shape of a control valve on the fluid flow characteristics using computational fluid dynamics

CFD Analysis and Comparison of Fluid Flow Through A Single Hole And Multi Hole Orifice Plate

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

A Simulation Study of Flow and Pressure Distribution Patterns in and around of Tandem Blade Rotor of Savonius (TBS) Hydrokinetic Turbine Model

DESIGN OF AUTOMOBILE S BODY SHAPE AND STUDY ON EFFECT OF AERODYNAMIC AIDS USING CFD ANALYSIS

Thermal Analysis of Shell and Tube Heat Exchanger Using Different Fin Cross Section

Scroll Compressor Oil Pump Analysis

ABSTRACT I. INTRODUCTION III. GEOMETRIC MODELING II. LITERATURE REVIW

EFFECT OF SPOILER DESIGN ON HATCHBACK CAR

(1) Keywords: CFD, helicopter fuselage, main rotor, disc actuator

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN

Analysis of Exhaust System using AcuSolve

Aerodynamic Characteristics of Sedan with the Rolling Road Ground Effect Simulation System

INTERCOOLER FOR EXTREMELY LOW TEMPERATURES OF CHARGING

CFD ANALYSIS OF PRESSURE DROP CHARACTERISTICS OF BUTTERFLY AND DUAL PLATE CHECK VALVE

Heat transfer enhancement of a single row of tube

Computational flow field analysis of a Vertical Axis Wind Turbine

Analysis of Air Flow and Heat Transfer in Ventilated Disc Brake Rotor with Diamond Pillars

CFD Investigation of Influence of Tube Bundle Cross-Section over Pressure Drop and Heat Transfer Rate

ISSN (Online)

NUMERICAL INVESTIGATION OF PISTON COOLING USING SINGLE CIRCULAR OIL JET IMPINGEMENT

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report R0. By Kimbal A.

AERODYNAMIC IMPROVEMENT OF A TRUCK BODY BY USING CFD

APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS

Simulation Studies on the Effect of Porous Twisted Plate Inserts on the Performance of Fire Tube Steam Packaged Boiler

Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating Compressor

NUmERiCAL STUdY Of HELiCOPTER fuselage AEROdYNAmiC CHARACTERiSTiCS WiTH influence Of main ROTOR

Numerical Computation of Flow Field in the Spiral Grooves of Steam Turbine Dry Seal

Effect of Stator Shape on the Performance of Torque Converter


CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

Numerical research on hydrodynamic characteristics of end cover of pressure exchanger

COMPRESSIBLE FLOW ANALYSIS IN A CLUTCH PISTON CHAMBER

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces

CFD Analysis of an Energy Scavenging Axial Flow Micro Turbine using Automotive Exhaust Gases

Influence of rear-roof spoiler on the aerodynamic performance of hatchback vehicle

COMPUTATIONAL ANALYSIS OF TWO DIMENSIONAL FLOWS ON A CONVERTIBLE CAR ROOF ABDULLAH B. MUHAMAD NAWI

Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny. Turbomachinery 2015, Design of HP and LP turbine connection

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Design and Analysis of Cutting Blade for Rotary Lawn Mowers

Mixture Preparation in a Small Engine Carburator

Design of A New Non-Contact Screw Seal and Determination of Performance Characteristics

Analysis of Flow Field for Automotive Exhaust System Based on Computational Fluid Dynamics

A Parametric CFD Study of a Generic Pickup Truck and Rear Box Modifications

CFD Analysis of Oil Cooler Duct for Turboprop Aircraft Engine in Pusher Configuration

HEAT TRANSFER OPTIMIZATION OF SHELL AND TUBE HEAT EXCHANGER THROUGH CFD ANALYSIS

IJSER 1 INTRODUCTION. 1.2 Working of Maglev Train 1.1 Principle of Maglev Train

The influence of aerodynamic forces on the vehicle bodywork of railway traction

Back pressure analysis of an engine muffler using cfd and experimental validation

NUMERICAL INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER CHARACTERISTICS ON THE AERODYNAMICS OF VENTILATED DISC BRAKE ROTOR USING CFD

Performance Calculation of Vehicle Radiator Group using CFD

Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

CONJUGATE HEAT TRANSFER ANALYSIS OF HELICAL COIL HEAT EXCHANGE USING CFD

Clean industrial plants and modern workplaces are

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

AERODYNAMIC DESIGN OPTIMIZATION OF A 200 KW-CLASS RADIAL INFLOW SUPERCRITICAL CARBON DIOXIDE TURBINE

Propeller Particulars and Scale Effect Analysis of ECO-Cap by CFD

Modelling of Shock Waves and Micro Jets Using CFD Analysis

ANALYSIS OF BLADES OF AXIAL FLOW FAN USING ANSYS. Mahajan Vandana N.,* Shekhawat Sanjay P.

Numerical Simulation of the Aerodynamic Drag of a Dimpled Car

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results

Aerodynamic Study of the Ahmed Body in Road-Situations using Computational Fluid Dynamics

CFD ANALYSIS OF FLUID FLOW AND HEAT TRANSFER IN A SINGLE TUBE-FIN ARRANGEMENT OF AN AUTOMOTIVE RADIATOR

Application of Bionics of Tiger Beetle to Aerodynamic Optimization of MIRA Fastback Model

Ansys-CFX Analysis on a Hatch-Back Car with Wheels and without Wheels

DESIGN OF AN INLET TRACK OF A SMALL I. C. ENGINE FOR SWIRL ENHANCEMENT

Design, simulation and construction of a Savonius wind rotor for subsidized houses in Mexico

MSC/Flight Loads and Dynamics Version 1. Greg Sikes Manager, Aerospace Products The MacNeal-Schwendler Corporation

Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online):

Comparison of Velocity Vector Components in a Di Diesel Engine: Analysis through Cfd Simulation

Numerical Analysis of different blade profile of wind turbine

51. Heat transfer characteristic analysis of negative pressure type EGR valve based on CFD

Drag Characteristics of a Pickup Truck according to the Bed Geometry

Investigation for Flow of Cooling Air through the Ventilated Disc Brake Rotor using CFD

Manufacturing Elements affecting the Performance & Durability Characteristics of Catalytic Converter

International Journal of Advance Engineering and Research Development

WIND TUNNEL TEST WITH MOVING VEHICLE MODEL FOR AERODYNAMIC FORCES OF VEHICLE-BRIDGE SYSTEMS UNDER CROSS WIND

Revisiting the Calculations of the Aerodynamic Lift Generated over the Fuselage of the Lockheed Constellation

Role of Aerodynamics and Thermal Management in the Vehicles of Tomorrow

University of Huddersfield Repository

Forced vibration frequency response for a permanent magnetic planetary gear

Modal Analysis of Automobile Brake Drum Based on ANSYS Workbench Dan Yang1, 2,Zhen Yu1, 2, Leilei Zhang1, a * and Wentao Cheng2

Analysis of Scramjet Engine With And Without Strut

THE INFLUENCE OF THE WHEEL CONICITY ON THE HUNTING MOTION CRITICAL SPEED OF THE HIGH SPEED RAILWAY WHEELSET WITH ELASTIC JOINTS

Aguk Zuhdi Muhammad Fathallah 1, Wolfgang Busse 2, Fadhil Rizki Clausthaldi 3

Impacts of Short Tube Orifice Flow and Geometrical Parameters on Flow Discharge Coefficient Characteristics

A Study on the Optimum Shape of Automobile Air Cleaner Diffuser

Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car

Tank mixing systems with liquid jet mixing nozzles

Design of a Custom Vortex generator Optimization of Vehicle Drag and Lift Characteristics

COMPUTATIONAL ANALYSIS TO MAXIMIZE THE HEAT TRANSFER RATE OF DOUBLE TUBE HELICAL COIL HEAT EXCHANGER

Flow Simulation of Diesel Engine for Prolate Combustion Chamber

Transcription:

CFD analysis on the aerodynamics characteristics of Jakarta-Bandung high speed train Tony Utomo 1,*, Berkah Fajar 1, and Hendry Arpriyanto 2 1 Mechanical Engineering Department, Faculty of Engineering, Diponegoro University, Indonesia 2 College of Mechanical Engineering Department, Diponegoro University, Indonesia Abstract. In this study, the aerodynamics characteristics of HST type CRH380A which is planned to be operated on the new railway of Jakarta- Bandung are analysed using Computational Fluid Dynamics. The speed of the train in this simulation was varied from 100 km/h to a maximum designed speed of 350 km/h with the increment of 30 km/h. The train was modelled in 3D computational domain with more than 1.7 million cells. The turbulence model employed in this study was standard k-ω. The simulation results show that the drag coefficient (C D ) is slightly decrease by the increase of speed. At the speed of 100 km/h the C D is 0.216 and decrease to 0.188 at the speed of 350 km/h. The high pressure area is located at the nose of the train. The pressure acting on this location is increase with the increase of the train speed. 1 Introduction The development of high speed train (HST) in the world is very rapid recently. The aerodynamics characteristic such as drag and lift forces become important in a high speed train, since the flows around train are more disturbed due to turbulence of the increased speed of the train [1, 2, 3]. These aerodynamic performances of a high speed train are strongly influence the energy consumption of the train. The Indonesian government in cooperation with PT Kereta Api Cepat Indonesia China (PT KCIC) planned to build Jakarta-Bandung railroads special for a high speed train. The total distance is about 142.3 km, starting from Jakarta Halim station up to the station Tegal Luar in Bandung regency. The distance between stations is about 45 km. For this purpose, the consortium has decided to use a CRH380A high speed train. The CRH380A high speed train is able to reach a maximum operating speed of 350 km/h after a distance of 39.01 km [4]. Such speed can possibly be reached on Jakarta-Bandung railroads. The aerodynamic phenomena with regard to high speed train are strongly dependent on the train speed. Thus, the aerodynamic problems become more important as the train speed increase. In general, the aerodynamic problems are related to the aerodynamic characteristic of a high speed train, and the two of them are aerodynamic drag and lift. The aerodynamic drag and lift are dependent on the geometric parameter of the train, such as cross-sectional area * Corresponding author: msktonysu@yahoo.co.id The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

of train body, train length, shape of train fore- and after-bodies, etc [5]. Hence, the aerodynamics characteristics and flow phenomena around high speed train are necessary to understand. In this study, the influence of train speed on aerodynamics characteristics and flow phenomena around a high speed train are analyzed using computational fluid dynamics method. 2 Computational Method In this study, the computational method is used to solve the three governing equations, which are mass conservation, momentum equation and k-ω standard turbulent model. The method consists of modeling high speed train geometry, generating mesh for computational domain, applying boundary conditions and initial conditions for simulation, and numerical iteration to solve the governing equations. The train model was created using CAD software as shown in Figure 1. This model is a result of the simplification of the actual CRH380A geometry. (a) (b) Fig. 1. Result of 3D model CRH380A (a) side and top view (b) front view(c) isometris view. The computational domain of high speed train in this simulation is shown in Figure 2. In this figure, L is stand for the total length of the train. Inflow has a distance L upstream of the train nose, while the outflow has a distance 2L from the back-end of the train. The width of the computational domain is set to L, while it s height is set as 0,5L. The space between the base of the train to the ground is 0,00235L. Mesh was divided into three main parts that had different dimension for each mesh. The first part was the surface of CRH380A with an element size of 100 mm, the second part was car box with an element size of 375 mm, while the last part was the outer covering of car box with default meshing size. The result of meshing can be seen in Figure 3. The number element is 1.730.605 cells with the maximum skewness of 0.74 (good quality mesh (c) 2

. Fig.2. Computational domain Fig. 3. Meshing of computational domain. The boundary condition of computational domain is illustrated in Figure 4. The type of boundary condition of surface a is set as velocity inlet, surface b is set as symmetry, surface c is no-slip stationary wall condition, surface d is set as pressure outlet, surface e is stationary wall, and surface f is set as top wall and side wall with symmetry boundary condition type. The simulation was conducted by varying the speed from 100 km/h up to 350 km/h with increments of 30 km/h. Figure 4. Boundary condition of computational domain. 3

3 Results and Discussion Table 1 shows the aerodynamic forces obtained from this simulation. The drag coefficient (C D ) is slightly decrease by the increase of speed. At the speed of 100 km/h the C D is 0.216 and decrease to 0.188 at the speed of 350 km/h. No Velocity km/h V Table 1. Drag and Lift of high speed train type CRH380A at various speed. Reynold Number Re Drag Coefficient C D Pressure Drag Coefficient C D pressure Viscous Drag Coefficient C D Viscous DragForce kn F D LiftForce kn F L 1 100 6.66 x 10 6 0.216 0.077 0.139 0.584-0.084 2 130 8.65 x 10 6 0.210 0.075 0.135 0.958-0.162 3 160 1.06 x 10 7 0.204 0.073 0.131 1.415-0.274 4 190 1.26 x 10 7 0.201 0.072 0.129 1.956-0.418 5 220 1.46 x 10 7 0.197 0.071 0.126 2.579-0.597 6 250 1.66 x 10 7 0.194 0.070 0.124 3.283-0.809 7 280 1.86 x 10 7 0.192 0.069 0.123 4.067-1.057 8 310 2.06 x 10 7 0.190 0.069 0.121 4.930-1.341 9 350 2.33 x 10 7 0.188 0.068 0.119 6.202-1.779 It can be seen that the drag force is increasing proportionally to the increase of train speed. The maximum drag force (6.202 kn) is obtained when the train traveling at it s maximum speed of 350 km/h. The lift force acting on the train is negative. This negative value means a down force. The maximum lift force acting at maximum train speed is -1.779 kn. Figure 5 shows the contour of static pressure around the HST body at the train speed of 100 km/h, 190 km/h, 220 km/h and 350 km/h. It can be seen that the high pressure area is located at the nose of the train. The pressure acting on this location is increase with the increase of the train speed. At low speeds, the intensity of high pressure located around the nose train is not visible. At the higher train speed, the area of high pressure intensity becomes visible. When the train moves at it s maximum operating speed, the high pressure area is observable at front-end of the train nose and at the obstacle deflector located under the train nose. The maximum pressure on the nose and the obstacle deflector is 5.7 kpa. At maximum speed, the pressure drag is high and so is the drag force. An aerodynamically good design of a high speed train can reduce the pressure drag at the front of the train to reduce total drag force for efficient fuel consumption. (a) (b) (c) (d) Fig. 5. Static pressure contour around CRH380A body (a)v=100km/h (b)v=190 km/h (c)v=220 km/h (d)v350 km/h. Figure 6 shows the velocity vector around the back-end of the train at the speed of 100 km/h, 190 km/h, 220 km/h and 350 km/h. Vortex occurs at the speed of 100 km/h and 190 km/h, while it disappear at the speed of 220 km/h and 350 km/h. The disappearance of 4

vortex at higher train speed is affected by the domination of the inertial forces following the high speed of flow around the train body. Large inertial forces drive the fluids flow sequentially on the geometry of the body profile of the train. (a) (b) (c) (d) Fig. 6. Velocity vector around the end of train body on a plane of 0.8 m high from the ground at various speed (a) V=100 km/h (b) V=190 km/h (c) V=220 km/h (d) V=350 km/h. 0,8 Front of the train Cp 100 km/h Cp 350 km/h 0,6 Pressure Coefficient Koefisien Tekanan 0,4 0,2 0,0-0,2-0,4-12 -10-8 -6-4 -2 0 2 Position Posisi (m) 0,2 Back of the train Cp 100 km/h Cp 350 km/h Pressure Coefficient Koefisien Tekanan 0,1 0,0-0,1-0,2 45 50 55 60 65 70 Position Posisi (m) (m) Fig. 7. Pressure coefficient on train geometries profile at traveling speed of 100 km/h and 350 km/h. 5

Figure 7 shows pressure coefficient on the front and back of the train at speed of 100 km/h and 350 km/h. It can be observed that the pressure coefficient on the front of the train at the speed of 100 km/h is almost the same with that of 350km/h. The highest pressure coefficient is at stagnation point on the front of the train. The pressure coefficient then decrease and at some point increase again caused by the blunt geometries between train and glass body wheelhouse. After passing through the glass rudder, the pressure coefficient tends to have a lower than that at the nose of the train. While at the back of the train, there is different pressure coefficient profile between 100 km/h and 350 km/h of train speed. At the speed of 100 km/h, the pressure coefficient on the back of the train body is lower than the pressure coefficient at the train speed of 350 km/h. The low pressure in the rear of the train makes a large pressure difference between the front and rear of the train, hence the pressure drag coefficient is higher. Therefore, at higher speeds, the pressure drag coefficient is lower than the that at lower speeds. 4 Conclusion The aerodynamic characteristics of Jakarta-Bandung high speed train has been analyzed using CFD. The results show that the drag force is increase proportionally with the train speed. On the other side, the drag coefficient (C D ) is slightly decrease by the increase of train speed. A negative lift force occurs at all speed, means the high speed train is experiencing a down force in all travelling speed from 100 km/h to 350 km/h. This negative lift force or the down force can be referred that the high speed train travel in safety and the risk of lifted out accident caused by the aerodynamic forces can be reduced or eliminated. The total drag coefficient consists of pressure drag coefficient and viscous drag coefficient. In the case of a high speed train, the influence of viscous drag coefficient is more dominant than pressure drag coefficient due to the configuration of a very long body of the train compare to its height or width. Both coefficients are decrease versa the increase of speed. The high pressure area is located at the nose of the train. The pressure acting on this location is increase proportionally to the train speed. At its maximum speed, the pressure drag is high and so is the drag force acting on the train. At a lower traveling speed, the pressure coefficient on the back of the train body is lower that at a higher traveling speed. The low pressure in the rear of the train makes a large pressure difference between the front and rear of the train, hence the pressure drag coefficient is higher. Therefore, at higher speeds, the pressure drag coefficient is lower than the that at lower speeds. References 1. C. Baker, J. Wind. Eng. Aerodyn., 98, 277-298 (2010) 2. R.S. Raghunatan, H. D. Kim, T. Setoguchi, Prog. in Aerospace Sciences, 38, 469-514 (2002) 3. M. Suzuki, K. Tanemoto, T. Maeda, J. Wind. Eng. Aerodyn., 91, 209-218 (2003) 4. Y. Shuanbao, G. Dilong, S. Zhenxu, Y. Guowei, C. Dawei, Comp. and Fluids, 95, 56-73 (2014) 5. J. Paniagua, M. Garcia, A. Crespo, J. Wind. Eng. Aerodyn., 130, 48-61(2014) 6