SHREE RAMCHANDRA EDUCATION SOCIETY S LONIKAND, PUNE DEPARTMENT OF MECHANICAL ENGINEERING LAB MANUAL. Applied Thermodynamics (ATD) Semester-IV

Similar documents
SINGLE CYLINDER FOUR STROKE PETROL ENGINE TEST RIG WITH EDDY CURRENT DYNAMOMETER

UNIT IV INTERNAL COMBUSTION ENGINES

Comparative Study Of Four Stroke Diesel And Petrol Engine.

CHAPTER-3 EXPERIMENTAL SETUP. The experimental set up is made with necessary. instrumentations to evaluate the performance, emission and

Applied Thermodynamics Internal Combustion Engines

SAMPLE STUDY MATERIAL

I.C ENGINES. CLASSIFICATION I.C Engines are classified according to:

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction

THERMAL ENGINEERING LAB MANUAL

AIM OF THE EXPERIMENT:- To study about two stroke and four stroke petrol engines. APPARATUS REQUIRED:- Sl.no Name of the apparatus Specification Quant

LABORATORY MANUAL I. C. ENGINES & GAS TURBINES (ME-317-E)

THERMODYNAMICS. T85D - Internal Combustion Engine Test Bed

CHAPTER 4 VARIABLE COMPRESSION RATIO ENGINE WITH DATA ACQUISITION SYSTEM

CHAPTER 5 EXPERIMENTAL SET UP AND TESTING PROCEDURES

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER

Chapter 6. Supercharging

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16]

APPENDIX 1 COMPONENTS USED IN ENGINE SETUP

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE


Internal Combustion Engines

CHAPTER 3 EXPERIMENTAL SET-UP AND TECHNIQUES

Internal Combustion Engine. Prepared by- Md Ferdous Alam Lecturer, MEE, SUST

GYANMANJARI INSTITUTE OF TECHNOLOGY (GMIT) SUBJECT: ELEMENTS OF MECHANICAL ENGINEERING Assignment Ch 1

SERVICE MANUAL. Common Rail System for HINO J08C/J05C Type Engine Operation. For DENSO Authorized ECD Service Dealer Only

EXHAUST GAS HEAT UTILIZATION IN IC ENGINES USING PRE-HEATER

Common rail injection system

2. Discuss the effects of the following operating variables on detonation

AT AUTOMOTIVE ENGINES QUESTION BANK

The Four Stroke Cycle

Theory of Machines. CH-1: Fundamentals and type of Mechanisms

Template for the Storyboard stage

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V.

CHAPTER -3 EXPERIMENTAL SETUP AND TEST PROCEDURE

Specification AG150 Eddy Current Dynamometer

THERMAL ANALYSIS OF PISTON BLOCK USING FINITE ELEMENT ANALYSIS

HIGH FUEL PRESSURE LINE

ROGERS MACHINERY COMPANY, INC

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) Summer 15 EXAMINATION Subject Code: Model Answer Page No: 1/18

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5

Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje

Combustion engines. Combustion

Sample Specifications 2110_KA.DOC KOBELCO KNW SERIES 1 OF 10 AIR-COOLED, OIL FREE AIR COMPRESSOR Frame 0, 1, HP

Mechanical Engineering

CH.4 Basic Components of Hydraulic and Pneumatic System/16 M HAP/17522/AE5G

Assignment-1 Air Standard Cycles

Brake Test On Three Phase Induction Motor Lab Manual

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING. Question Bank. UNIT-I THERMODYNAMIC CYCLES Part-A (2 Marks)

Automobile section, showing different parts in detail. and miscellaneous devices.

Gas Power System. By Ertanto Vetra

Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition

ICAL ENG LAB MANUAL. Dharmapuri Regulation : 2013 Branch : B.E. - Mechanical Engineering Year & Semester: II Year / IV Semester VVIT

FRICTION DEVICES: DYNAMOMETER. Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University

2013 THERMAL ENGINEERING-I

MECHATRONICS LAB MANUAL

E/ECE/324/Rev.1/Add.84/Amend.5 E/ECE/TRANS/505/Rev.1/Add.84/Amend.5

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

DESIGN AND ANALYSIS OF CAR RADIATOR BY FINITE ELEMENT METHOD

A system of lubricant dispensing devices (oil or grease) connected by piping to a central pumping unit that is operated automatically or manually.

Noble Group of Institutions, Junagadh. Faculty of Engineering Department of Mechanical Engineering

PNEUMATIC HIGH SPEED SPINDLE WITH AIR BEARINGS

Fundamental Training. Flow Con t

ENGINES ENGINE OPERATION

Operating Characteristics

AN EXPERIMENTAL STUDY ON THE EFFECT OF THERMAL BARRIER COATING ON DIESEL ENGINE PERFORMANCE

2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc.

MAGNETIC FIELD EFFECT ON COMPRESSION IGNITION ENGINE PERFORMANCE

Lab Manual Elements of Mechanical Engineering ( )

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY LAB MANUAL INTERNAL COMBUSTION ENGINES MECHANICAL ENGINEERING DEPARTMENT

COOPERATIVE PATENT CLASSIFICATION

Operating Instructions for Elevator Buffers type LP

B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) Term-End Examination June 2016

Resonance Optimization in Linear Compressor

INTRODUCTION OF FOUR STROKE ENGINE

Unit C: Agricultural Power Systems. Lesson 1: Understanding Principles of Operation of Internal Combustion Engines

Modern Automotive Technology Chapter 16. Engine Size and Performance Measurements

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, March 18, ISSN

POLESTAR HS Management System

ME2301 THERMAL ENGINEERING L T P C OBJECTIVE:

Chapter 1 Internal Combustion Engines

A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines

Infinitely Variable Capacity Control

Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration Compressor

SUPERCHARGER AND TURBOCHARGER

Pneumatic Auto Feed Punching and Riveting Machine

Industrial Mechanic (Millwright) Level 3

Al- Ameen Engg. College. Fluid Machines. Prepared by: AREEF A AP/ ME AL AMEEN ENGINEERING COLLEGE Shoranur.

EMISSION CONTROL (AUX. EMISSION CONTROL DEVICES) H4DOTC

Computerized VCR Single Cylinder Diesel Engine Test Set up

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Module 11: Antilock Brakes Systems

IC ENGINES. Differences between SI and CI engines: Petrol is fuel, which has a high self ignition temperature

Transmitters. Differential Pressure Transmitters Pneumatic Design FOXBORO 13A D/P Cell

Remy HVH250 Application Manual Remy HVH250 Application Manual

GOVERNMENT ENGINEERING COLLEGE, GODHRA

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

Design of Self-Adjusting Strainer Assembly for Off-road Conditions used in Diesel Engine

SERVICE SOLUTIONS For Engine setups

Transcription:

SHREE RAMCHANDRA EDUCATION SOCIETY S SHREE RAMCHANDRA COLLEGE OF ENGINEERING, LONIKAND, PUNE 412 216 DEPARTMENT OF MECHANICAL ENGINEERING LAB MANUAL Applied Thermodynamics (ATD) Semester-IV Prepared by Prof. Gaikwad A.B. (Assistant Professor)

List of Experiments (S.P.UNIPUNE SYLLABUS) Note: - 1.Eight experiments from below list should be performed; out of which at least seven trials should be conducted. Sr. No Name of Experiment 1 Study of Carburetor 2 Study of Fuel pump and injector 3 Study of Ignition System 4 Demonstration & study of commercial exhaust gas analyzers. 5 Test on Multi cylinder Petrol/ Gas engine for determination of Friction power. 6 Test on diesel engine to determine various efficiencies, SFC and Heat balance sheet. 7 Test on variable speed diesel / petrol engine. 8 Test on variable compression ratio engine. 9 Visit to Automobile service station 10 Test on Positive Displacement Air Compressor 11 Assignment on any one advanced technology related to I.C. Engine such as VVT, VGT, HCCI 12 Assignment on alternative fuels used in I.C. Engines SRCOE PUNE

INDEX Sr. No 1 Study of Carburetor Name of Experiment 2 Study of Fuel pump and injector 3 Study of Ignition System 4 Demonstration & study of commercial exhaust gas analyzers. 5 Test on Multi cylinder Petrol/ Gas engine for determination of Friction power. 6 Test on diesel engine to determine various efficiencies, SFC and Heat balance sheet. 7 Test on variable speed diesel / petrol engine. 8 Test on variable compression ratio engine. 9 Visit to Automobile service station 10 Test on Positive Displacement Air Compressor 11 Assignment on any one advanced technology related to I.C. Engine such as VVT, VGT, HCCI 12 Assignment on alternative fuels used in I.C. Engines SRCOE PUNE

SHREE RAMCHANDRA COLLEGE OF ENGG. LONIKAND PRACTICAL EXPERIMENT INSTRUCTION SHEET EXPERIMENT TITLE: Demonstration & study of commercial exhaust gas analyzers DEPARTMENT OF MECHANICAL ENGINEERING EXPERIMENT NO. : SRCOE/MECH/SE/ATD/ SEMESTER : IV(SE) PAGE: EXPERIMENT NO.1 AIM: - to study exhaust gas analyzer & to check vehicle for PUC Front View of AVL gas analyzer:- SRCOE PUNE Page 4

Function keys:- DISPLAYS:- SRCOE PUNE Page 5

SRCOE PUNE Page 6

SRCOE PUNE Page 7

SRCOE PUNE Page 8

Experiment No 2 Trial On Diesel Engine AIM To draw heat/energy balance sheet and determine brake thermal efficiency, indicated thermal efficiency, volumetric efficiency, b. s. f. c. & draw graphs speed vs. η ith, η bth, η mech, η vol THEORY:- 1. SYSTEM DESCRIPTION The equipment consists of following parts: 1.1 Base Stand: Base frame is made up of M.S. C channel and duly powder coated for durability. The Engines & Dynamometer are mounted on Base frame. The Engines are fixed and dynamometer is mounted on wheels which slide in a C channel. The engines are coupled to dynamometer by shaft having universal joints at its both ends. 1.2 Engine: It is Single cylinder Four stroke diesel engine make: Kirloskar. It is water cooled constant speed engine. Specifications: Make: Brand New Kirloskar Model: TV1 Water cooled, Power: 8HP at 1500 R.P.M. Stroke 110 mm, Bore 87.5 mm, Volume: 661 c.c. Compression ratio 9.2:1 1.3 Eddy current dynamometer: These machines make use of the principle of electro-magnetic induction to develop torque and dissipate power. A toothed rotor of high-permeability steel rotates with a fine clearance between water-cooled steel loss plates. Two annular coils generate a magnetic field parallel to the machine axis and motion of the rotor gives rise to changes in the distribution of SRCOE PUNE Page 9

magnetic flux in the loss plates. This in turn gives rise to circulating eddy currents and the dissipation of power in the form of electrical resistive losses. Energy is transferred in the form of heat to cooling water circulating through passages in the loss plates, while some cooling is achieved by the radial flow of air in the gaps between rotor and plates. Varying the current Supplied to the annular exciting coils controls power, and very rapid load changes are possible. 1.4 Rotameter:- Two rotameter are used in this system for measuring mass of water flowing through the engine. 1.5 Accelerator Arrangement: The accelerator arrangement for the engine consists of a slotted bolt and wheel mounted on panel. By rotating the wheel in clockwise direction, we can increase the speed of engine. 1.6 Exhaust Gas Calorimeter: To measure the carried away by exhaust gases, exhaust gas calorimeter is used. It is basically a counter flow type heat exchanger having set of number of forge steel tubes in center. Flue gas is passing through this tube & water is flowing over the tube. Heat is transferred from exhaust gas to the water. Temperatures of air and water entering and leaving the calorimeter are measured with 4 k type thermocouples. Two separate calorimeters are provided for two engines. By knowing the temperatures of gas and water at entry and exit, heat carried away by exhaust gas can be calculated. 1.7 Air Flow Measuring Device: The air box is used to measure the amount of air intake by the engine. The air box is fitted with a fan at its inlet. By measuring the rotations of the fan, air consumption of the engine can be determined. The air box acts as a damping reservoir to damp the air pulses. Both engines are provided with separate air boxes. 1.8 Measuring instruments / Indicators / Switches: a) Fuel measurement unit: Each fuel tank is provided with fuel measurement unit comprising of float operated level switch, Solenoid valve and Digital timer. The level sensor is fitted in a cylindrical container. When the fuel level in the container starts SRCOE PUNE Page 10

decreasing, the timer starts and when float reaches Lower limit, the timer stops so that time required for consumption of measured quantity of fuel can be measured. When float is at lower limit, supply signal is sent to Solenoid valve which opens and fuel starts flowing into the container. When the container is filled with fuel, float is at Upper limit, supply for solenoid is cutoff and as soon as fuel level starts decreasing, timer starts again. b) Load cell: The Load cell is connected to the swinging field generator. It measures the Load acting on the generator due to torque generated. It is basically a stress - strain gauge c) Load indicator: The digital load indicator indicates the load acting on generator measured by load cell connected to the dynamometer. d) Inductive RPM sensor: The engine speed is measured by means of an inductive RPM sensor. The sensor sends a pulse when a metallic part passes in front of it. These pulses are sent to the indicator which in turns displays the engine speed. e) Optical RPM sensor: The Air fan speed is measured by means of an Optical RPM sensor. The sensor sends a pulse when a radium part passes in front of it. These pulses are sent to the indicator which in turns displays the engine speed. f) RPM indicator: The RPM indicator displays engine speed in RPM measured by inductive sensor. g) K type thermocouples: K type thermocouples suitable for high temperature measurements are used to measure the temperatures at different points. The temperatures measured by thermocouples are indicated in software. The sequence for temperatures on indicator is as follows T1 Water inlet temperature T2 Water outlet temperature T3 Calorimeter water inlet temperature T4 Calorimeter outlet temperature T5 Exhaust gas inlet temperature T6- Exhaust gas outlet temperature h) RTD (PT 100): The ambient temperature is measured by Resistance type RTD (PT 100) sensor. The sensor output is transmitted by transmitter to the computer. i) Pressure sensor: The Piezoelectric transducer type sensor measures pressure inside combustion cylinder. The sensor signal is conditioned by the Pressure transmitter and transmitted to computer. j) Encoder: The encoder measures crank angle and gives signal when piston is at TDC (Top Dead Center) SRCOE PUNE Page 11

2. PRECAUTIONS A. ELECTRICAL: 1. Before experimentation check all electrical connections visually. If there is any loose connection, tight them. 2. Use 230 V AC supply with proper Earthing for the control panel. 3. Ensure that battery terminals of electrically start engines are properly connected. B. MECHANICAL: 1. Keep the trainer on rigid surface & well-ventilated room. Keep the trainer at least 1 meter away from the nearest wall to allow proper air circulation. 2. Before starting the experimentation check the equipment to ensure that there are no loose assemblies. 3. Check that all rotating parts are properly fastened using bolts. 4. Check mounting bolts of engine, generator, magnetic coupling etc are fastened properly, tighten the bolts if required. C. OPERATIONAL: 2. Use only soft water, free from impurities for engine, calorimeter. 3. Ensure that cooling water is supplied to dynamometer at pressure not less than 1 to 1.5 bar. 4. Ensure that water flow through engine and calorimeter is at least 600 LPH. 5. Ensure that sufficient quantity of lubrication oil (SAE 40) available in Lubrication oil sump. 6. Use only Unleaded Diesel as fuel. 7. Ensure that calorimeter water and engine coolant is continuously circulated through the system. 8. Care should be taken to maintain constant flow rate of water through engine and calorimeter throughout the trial. 9. Run the engine at no load for 2-3 minutes. 10. Do not change load on engine suddenly, instead load / unload engine gradually. 11. While unloading the engine, simultaneously decrease the engine speed (for variable speed engines). SRCOE PUNE Page 12

12. While changing load care should be taken to increase load before float reaches to upper limit and timer resets; otherwise next timer reading should be noted. 13. Before ending the experiment, bring the engine to the no load condition and then stop the engine after 2-3 minutes. 14. Run the Entire System at least once in week. 15. Do not increase, speed above 3000 RPM. 16. Don t increase Engine speed suddenly. SRCOE PUNE Page 13

3. Experimental Procedure 1. Ensure that sufficient fuel is available in fuel Tank. 2. Give 230 V A.C. supplies to the trainer by connecting the Three-pin top provided with the trainer to the Distribution board in your laboratory. Switch on the supply. 3. Provide cooling water to Engine, Dynamometer & exhaust gas calorimeter. 4. Switch ON Mains Switch mounted on electrical console. Ensure that all indicators are displaying readings. 5. Open the fuel supply Valve of engine. 6. Start the engine & Run the engine in idle for some time. 7. Run the engine at 1500 rpm under no load condition. Let the engine stabilize. 8. Load the engine using nobe provided on the control panel connected to dynamometer. 9. Note down readings as per observation table. SRCOE PUNE Page 14

SRCOE PUNE Page 15

Experiment No.3 SRCOE PUNE Page 16

Trial On Petrol Engine AIM To draw heat/energy balance sheet and determine brake thermal efficiency, indicated thermal efficiency, volumetric efficiency, b. s. f. c. & draw graphs speed vs. η ith, η bth, η mech, η vol THEORY:- 1. SYSTEM DESCRIPTION The equipment consists of following parts: 1.1 Base Stand: Base frame is made up of M.S. C channel and duly powder coated for durability. The Engines & Dynamometer are mounted on Base frame. The Engines are fixed and dynamometer is mounted on wheels which slide in a C channel. The engines are coupled to dynamometer by shaft having universal joints at its both ends. 1.2 Engine: It is Single cylinder Four stroke diesel engine make: Kirloskar. It is water cooled constant speed engine. Specifications: Make: Brand New Kirloskar Model: TV1 Water cooled, Power: 8HP at 1500 R.P.M. Stroke 110 mbore 87.5 mm, Volume: 661 c.c. Compression ratio 1:17.5 1.3 Eddy current dynamometer: These machines make use of the principle of electro-magnetic induction to develop torque and dissipate power. A toothed rotor of high-permeability steel rotates with a fine clearance between water-cooled steel loss plates. Two annular coils generate a magnetic field parallel to the machine axis and motion of the rotor gives rise to changes in the distribution of SRCOE PUNE Page 17

magnetic flux in the loss plates. This in turn gives rise to circulating eddy currents and the dissipation of power in the form of electrical resistive losses. Energy is transferred in the form of heat to cooling water circulating through passages in the loss plates, while some cooling is achieved by the radial flow of air in the gaps between rotor and plates. Varying the current Supplied to the annular exciting coils controls power, and very rapid load changes are possible. 1.4 Rotameter:- Two rotameter are used in this system for measuring mass of water flowing through the engine. 1.5 Accelerator Arrangement: The accelerator arrangement for the engine consists of a slotted bolt and wheel mounted on panel. By rotating the wheel in clockwise direction, we can increase the speed of engine. 1.6 Exhaust Gas Calorimeter: To measure the carried away by exhaust gases, exhaust gas calorimeter is used. It is basically a counter flow type heat exchanger having set of number of forge steel tubes in center. Flue gas is passing through this tube & water is flowing over the tube. Heat is transferred from exhaust gas to the water. Temperatures of air and water entering and leaving the calorimeter are measured with 4 k type thermocouples. Two separate calorimeters are provided for two engines. By knowing the temperatures of gas and water at entry and exit, heat carried away by exhaust gas can be calculated. 1.7 Air Flow Measuring Device: The air box is used to measure the amount of air intake by the engine. The air box is fitted with a fan at its inlet. By measuring the rotations of the fan, air consumption of the engine can be determined. The air box acts as a damping reservoir to damp the air pulses. Both engines are provided with separate air boxes. 1.8 Measuring instruments / Indicators / Switches: a) Fuel measurement unit: Each fuel tank is provided with fuel measurement unit comprising of float operated level switch, Solenoid valve and Digital timer. The level sensor is fitted in a cylindrical container. When the fuel level in the container starts SRCOE PUNE Page 18

decreasing, the timer starts and when float reaches Lower limit, the timer stops so that time required for consumption of measured quantity of fuel can be measured. When float is at lower limit, supply signal is sent to Solenoid valve which opens and fuel starts flowing into the container. When the container is filled with fuel, float is at Upper limit, supply for solenoid is cutoff and as soon as fuel level starts decreasing, timer starts again. b) Load cell: The Load cell is connected to the swinging field generator. It measures the Load acting on the generator due to torque generated. It is basically a stress - strain gauge c) Load indicator: The digital load indicator indicates the load acting on generator measured by load cell connected to the dynamometer. d) Inductive RPM sensor: The engine speed is measured by means of an inductive RPM sensor. The sensor sends a pulse when a metallic part passes in front of it. These pulses are sent to the indicator which in turns displays the engine speed. e) Optical RPM sensor: The Air fan speed is measured by means of an Optical RPM sensor. The sensor sends a pulse when a radium part passes in front of it. These pulses are sent to the indicator which in turns displays the engine speed. f) RPM indicator: The RPM indicator displays engine speed in RPM measured by inductive sensor. g) K type thermocouples: K type thermocouples suitable for high temperature measurements are used to measure the temperatures at different points. The temperatures measured by thermocouples are indicated in software. The sequence for temperatures on indicator is as follows T1 Water inlet temperature T2 Water outlet temperature T3 Calorimeter water inlet temperature T4 Calorimeter outlet temperature T5 Exhaust gas inlet temperature T6- Exhaust gas outlet temperature h) RTD (PT 100): The ambient temperature is measured by Resistance type RTD (PT 100) sensor. The sensor output is transmitted by transmitter to the computer. i) Pressure sensor: The Piezoelectric transducer type sensor measures pressure inside combustion cylinder. The sensor signal is conditioned by the Pressure transmitter and transmitted to computer. j) Encoder: The encoder measures crank angle and gives signal when piston is at TDC (Top Dead Center) SRCOE PUNE Page 19

2. PRECAUTIONS A. ELECTRICAL: 1. Before experimentation check all electrical connections visually. If there is any loose connection, tight them. 2. Use 230 V AC supply with proper Earthing for the control panel. 3. Ensure that battery terminals of electrically start engines are properly connected. B. MECHANICAL: 1. Keep the trainer on rigid surface & well-ventilated room. Keep the trainer at least 1 meter away from the nearest wall to allow proper air circulation. 2. Before starting the experimentation check the equipment to ensure that there are no loose assemblies. 3. Check that all rotating parts are properly fastened using bolts. 4. Check mounting bolts of engine, generator, magnetic coupling etc are fastened properly, tighten the bolts if required. C. OPERATIONAL: 2. Use only soft water, free from impurities for engine, calorimeter. 3. Ensure that cooling water is supplied to dynamometer at pressure not less than 1 to 1.5 bar. 4. Ensure that water flow through engine and calorimeter is at least 600 LPH. 5. Ensure that sufficient quantity of lubrication oil (SAE 40) available in Lubrication oil sump. 6. Use only Unleaded Diesel as fuel. 7. Ensure that calorimeter water and engine coolant is continuously circulated through the system. 8. Care should be taken to maintain constant flow rate of water through engine and calorimeter throughout the trial. 9. Run the engine at no load for 2-3 minutes. 10. Do not change load on engine suddenly, instead load / unload engine gradually. 11. While unloading the engine, simultaneously decrease the engine speed (for variable speed engines). SRCOE PUNE Page 20

12. While changing load care should be taken to increase load before float reaches to upper limit and timer resets; otherwise next timer reading should be noted. 13. Before ending the experiment, bring the engine to the no load condition and then stop the engine after 2-3 minutes. 14. Run the Entire System at least once in week. 15. Do not increase, speed above 3000 RPM. 16. Don t increase Engine speed suddenly. SRCOE PUNE Page 21

3. Experimental Procedure 1. Ensure that sufficient fuel is available in fuel Tank. 2. Give 230 V A.C. supplies to the trainer by connecting the Three-pin top provided with the trainer to the Distribution board in your laboratory. Switch on the supply. 3. Provide cooling water to Engine, Dynamometer & exhaust gas calorimeter. 4. Switch ON Mains Switch mounted on electrical console. Ensure that all indicators are displaying readings. 5. Open the fuel supply Valve of engine. 6. Start the engine & Run the engine in idle for some time. 7. Run the engine at 1500 rpm under no load condition. Let the engine stabilize. 8. Load the engine using nobe provided on the control panel connected to dynamometer. 9. Note down readings as per observation table. SRCOE PUNE Page 22

SRCOE PUNE Page 23

SRCOE PUNE Page 24

EXPERIMENT NO. 4 AIM:- Test on variable speed diesel / petrol engine. THEORY:- 1. SYSTEM DESCRIPTION The equipment consists of following parts: 1.1 Base Stand: This is made up of S.S. square tubes & sheets. This is painted specially with Powder coating. All equipments are mounted on base stand. 1.2 Engine: The engine is Three Cylinder Four Stroke Petrol Engine. The engine is water cooled type. The capacity of engine is 64 bhp at 6200 RPM (Approximate). This engine is horizontal in construction. 1.3 Hydraulic Dynamometer: This is suitable for above-mentioned Engine. The tension on the rope will be indicated on the spring balance attached with the rope. By (increasing or decreasing tension on the rope) tightening or loosing the rope attached to the wheel, load on the engine can be varied. 1.4 Rotameter:- Two rotameter are used in this system of range 60 to 600 LPH for measuring mass of water flowing through the engine. 1.5 Accelerator Arrangement: The accelerator arrangement for the engine consists of a slotted bolt and wheel mounted on panel. By rotating the wheel in clockwise direction, we can increase the speed of engine. 1.6 Exhaust Gas Calorimeter: It is basically a counter flow type heat exchanger having set of number of forge steel tubes in center. Flue gas is passing through this tube & water is flowing over the tube. Heat is transferred from exhaust gas to the water. By knowing the temperatures of gas and water at entry and exit, heat carried away by exhaust gas can be calculated SRCOE PUNE Page 25

1.7 Air Flow Measuring Device: The air intake measurement system consists of Air box whose lead contains Orifice. The pressure drop created when air flows through the orifice is measured with help of U tube manometer fitted on auxiliary panel. 1.8 Control panel for mounting Indicators:-This is made up of M.S. structure & duly powder coated. Indicators are mounted on Panel are: a. Multipoint Temperature Indicator with temperature sensor: To measure the temperature at different points in the system, k type thermocouples are used. The temperatures measured by thermocouples (Temperature sensors) are displayed on Digital temperature indicator. By rotating the selector switch on the indicator we can choose between different temperatures. This consists of 6 channels 0-400 C. Temperatures are measured at following points T1 Exhaust Gas In. T2 Exhaust Gas Out. T3 Calorimeter Water In. T4 Calorimeter Water Out. T5 Engine Water In. T6 Engine Water Out b. Engine Speed Indicator: This indicates the speed of Engine in RPM using Inductive sensor. The signal of the sensor is transmitted and RPM is displayed on the Indicator c Switches: Mains switch and Ignition switch are mounted on the panel. SRCOE PUNE Page 26

2. PRECAUTIONS:- 1. Before experimentation check all electrical connections visually. If there is any loose connection, tight them. 2. Keep the trainer on rigid surface & well-ventilated room. Keep the trainer at least 1 meter away from the nearest wall to allow proper air circulation. 3. Use 230 V AC supply with proper earthing for the control panel. 4. Before starting the experimentation check the equipment to ensure that there are no loose assemblies. 5. Ensure that sufficient quantity of lubricating oil (oil HD - Type3) is available in Lubrication oil sump. 6. Use only Petrol as fuel. 7. Run the engine at no load for around 5 minutes. Do not remove the load suddenly. 8. Load and unload the Engine gradually by using loading power supply. 9. Before ending the experiment, bring the engine to the no load condition and then stop the engine after 2-3 minutes. 10. Run the Entire System at least once in a week. Later drain the fuel tank and all fuel pipes. 11. Before starting the Engine, Switch on the control panel. 12. Ensure that proper water supply is given to system before starting the Engine. 13. The water flow rate for dynamometer should be 19.5 liter/kw at 16 C to 39.1 liters/kw at 38 C & pressure should be up to 2.75 bar. 14. Don t increase Engine speed suddenly. 15. Do not increase, speed above 3000 RPM. SRCOE PUNE Page 27

3. PROCEDURE:- 1. Ensure that sufficient fuel available in fuel Tank. 2. Give 230 V A.C. supplies to the trainer by connecting the Three-pin top provided with the trainer to the Distribution board in your laboratory. Switch on the supply. 3. Provide cooling water to Engine, Dynamometer & exhaust gas calorimeter. 4. Switch ON Mains Switch mounted on front panel. Ensure that all indicators are displaying readings. 5. Open the fuel supply Valve of engine. 6. Start the engine & Run the engine under no load condition. Let the engine stabilize. 7. Note down the readings at no load. 8. Close the 2 way valve in fuel line and measure time required for consumption of 5 ml / 10 ml fuel using burette 9. Load the engine by rotating the wheel provided on both side of dynamometer. 10. Note down readings as per observation table. 11. Load the engine up to its maximum capacity. 12. After completion of test unload the engine & run the engine for 5 min & then stop the engine using the stop switch of the engine. 13. Switch OFF the mains. 14. Make calculations as per Calculation Procedure. SRCOE PUNE Page 28

SRCOE PUNE Page 29

CONCLUSION: SRCOE PUNE Page 30

EXPERIMENT NO. 5 AIM:Test on Positive Displacement Air Compressor. THEORY:- Introduction:- The reciprocating Air Compressor is used to compress air, gas or vapour. The compressed air has wide application in industry as well as in commercial equipments. It is commonly used in shops for driving pneumatic tools, air operated controlling equipment etc. A large number of compressors are used in chemical industries like fertilisers plants, refrigeration industry. A machine which takes in air or gas during suction stroke at low pressure & then compresses it to high pressure in a piston cylinder arrangement is known as reciprocating compressor. Working of Reciprocating Air Compressor:- The working of reciprocating air compressor consists of a cylinder piston inlet & outlet valves. The arrangement of reciprocating compressor is shown in given diagram. During the downward motion of the piston pressure walls below atmospheric pressure & the inlet valve open due to the pressure difference. The air is taken into the cylinder until the piston reaches to the bottom dead centre position. As the piston start moving upward the inlet valve, closes & the pressure start increasing continuously. Until the pressure inside the cylinder is above the pressure of the delivery side, which is connected to the receiver. Then the delivery valve open & air is delivered during the remaining upward motion of the piston to the receiver. At the end of the delivery stroke, small volume of high pressure air is left in the clearance space. The high pressure air the clearance space expands as the piston starts moving downward & the pressure of the air falls below atmospheric pressure. The inlet valve opens as the pressure inside the cylinder falls below the atmospheric pressure & air from outside is taken in as the cycle is repeated. The suction, compression & delivery of the air take place within two strokes of the piston or one revolution of the crank. Air Compressor Terminology:- Definitions of the following terms are necessary in the study of the operation & theory of reciprocating air compressor. 1. Single Acting Compressor:- SRCOE PUNE Page 31

In single acting compressor, the suction, compression & delivery of the air takes place on one side of the piston only. Such compressor would have to deliver one stroke per revolution of the crank shaft. 2. Double Acting Compressor:- In double acting compressor, the suction, compression & delivery of air takes place on both sides of piston. Such compressor would have to deliver two strokes per revolution of crank shaft. 3. Single Stage Compressor:- In single stage compressor, the compression of air from the initial pressure to the final pressure is carried out in one cylinder only. 4. Multi Stage Compressor:- When the compressed air is carried out from the initial pressure to the final pressure in more than one cylinder then the compressor is known as multistage compressor. 5. Compression Ratio or Pressure Ratio:- It is the ratio of absolute discharge to absolute inlet pressure. 6. Free Air Delivered:- The free air delivered is the actual volume delivered at the control pressure reduced to intake pressure & temperature and expressed in cubic meter per min. 7. Displacement of Compressor:- The swept volume of the piston in the first cylinder is known as displacement of the compress Where, R = Radius of the cylinder bore L = Stroke of the piston 8. Actual Capacity of Compressor:- The actual free air delivered by the cylinder per cycle or per minute is known as actual capacity of the compressor. It is always given in cubic meter of free air per minute. The actual capacity per strokes is always less than the displacement of the stroke. 9. Volumetric Efficiency:- The ratio of actual air delivered by the compressor per stroke to the displacement of compressor is known as volumetric efficiency of the compressor. SRCOE PUNE Page 32

SPECIFICATIONS:- Diameter of orifice, do = Bore diameter (H.P.), dh = Bore diameter (L.P.), dl = Stroke length, L = Coefficient of discharge, (Cd) = Atmospheric pressure, P1 = Density of water, ρw = Density of air, ρa = Acceleration due to gravity, g = Energy meter constant, k = OBSERVATION TABLE:- APPLIED THERMODYNAMICS (ATD) CALCULATION:- 1. Area of orifice, SRCOE PUNE Page 33

SRCOE PUNE Page 34

SRCOE PUNE Page 35

CONCLUSION:- SRCOE PUNE Page 36