Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

Similar documents
International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

Material Science Research India Vol. 7(1), (2010)

Performance and Exhaust Emissions Using Blends on VCR Diesel Engine with Varying Compression Ratio of Hibiscus Oil

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

Experimental Analysis of Working Characteristics of Cornoil As An Alternate Fuel of Diesel Engine

EFFECT OF EMULSIFIER ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING PALM BIODIESEL

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Ester (KOME)-Diesel blends as a Fuel

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

Project Reference No.: 40S_B_MTECH_007

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Performance Analysis of a Diesel Engine with the Help of Blends of Linseed Oil Biodiesel

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Effects of Ethanol-Gasoline blends on Performance and Emissions of Gasoline Engines

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

Automotive Technology

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

Performance Characteristics of Ethanol Derived From Food Waste As A Fuel in Diesel Engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

International Engineering Research Journal Performance and Emission Analysis of a Diesel Engine Fuelled with Waste Turmeric oil.

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

EFFECT OF L-ASCORBIC ACID AS ADDITIVE FOR EXHAUST EMISSION REDUCTION IN A DIRECT INJECTION DIESEL ENGINE USING MANGO SEED METHYL ESTER

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Evaluation of Performance and Emission Characteristics of Flax Oil Ethyl Ester with Ignition Improver on Diesel Engine and Comparison With Jatropha

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

Evaluation of Performance and Emission Characteristics of Four Stroke Diesel Engine with Mahua Bio-Diesel Blends

TO INVESTIGATE THE PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE USING MUSTARD OIL BIODIESEL AS FUEL

Performance, emission and combustion characteristics of fish-oil biodiesel engine

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp.

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

Effect of Nano-Fluid Additiveon Emission Reduction in Biodiesel

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

Sathyabama Institute of Science and Technology,Chennai ,Tamilnadu,India. JSPM s,college of Engineering,Hadapsar,Pune ,Maharashtra,India.

STUDY ON THE PERFORMANCE ANALYSIS OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE FUELLED WITH TOBACCO SEED METHYL ESTERS AND CASTOR SEED METHYL ESTERS.

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online):

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

Feasibility Study of Soyabean Oil as an Alternate Fuel for CI Engine at Variable Compression Ratio

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

AN INVESTIGATION INTO HOW DIFFERENT BLENDS OF BIO-DIESEL AT A RANGE OF TEMPERATURES AFFECT ENGINE HORSEPOWER, TORQUE AND EMISSIONS

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Comparative Analysis of Performance and Emission of Diesel Engine by Varying Compression Ratio Using Different Fuels

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 57-62(2015)

Experimental Investigation of Performance and Emission Characteristics of DI Diesel Engine with Rapeseed Methyl Ester.

Research Article. Effect of exhaust gas recirculation on NOx emission of a annona methyl ester operated diesel engine

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

Experimental studies on a VCR Diesel Engine using blends of diesel fuel with Kusum bio-diesel

EXPERIMENTAL INVESTIGATION OF A DIESEL ENGINE FUELED BY EMULSIFIED B20 BIODIESEL

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

Effect Of Exhaust Gas Recirculation On The Performance And Emission Characteristics Of Diesel Engine With Orange Oil- Diesel Blend

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Investigation of the Performance and Emission Characteristics of CI Engine Using Simarouba Biodiesel as Fuel

Comparative Analysis of Performance and Emission Charactristics of Neem Oil Using 3 And 4 Holes Injection Nozzle on DI Diesel Engine

Experimental Investigation On Performance, Combustion Characteristics Of Diesel Engine By Using Cotton Seed Oil

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

EXPERIMENTAL INVESTIGATION ON VCR ENGINE BY USING DUAL BIODIESEL

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

Performance and Emissions Study in Diesel Engines Using Cotton Seed Biodiesel

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Experimental analysis of a Diesel Engine fuelled with Biodiesel Blend using Di-ethyl ether as fuel additives

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER

Effect of Jatropha Biodiesel Blend with Diesel Fuel on Performance of Four Stroke Single Cylinder Diesel Engine

COMBUSTION AND EMISSION CHARACTERISTICS OF A DIESEL ENGINE FUELLED WITH JATROPHA AND DIESEL OIL BLENDS

Performance and Emission Analysis of Diesel Engine using Biodiesel and Preheated Jatropha Oil

Government Engineering College, Bhuj.

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

Experimental Analysis of a VCR Engine Performance Using Neem Methyl Ester and its Diesel Blends

INVESTIGATION OF CI DIESEL ENGINE EMISSION CONTROL AND PERFORMANCE PARAMETERS USING BIODIESEL WITH YSZ COATED PISTON CROWN

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online):

CHAPTER 4 VARIABLE COMPRESSION RATIO ENGINE WITH DATA ACQUISITION SYSTEM

Performance And Emissions Characteristics Of Diesel Engine Fuelled With Rice Bran Oil

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

Experimental Investigation of Performance and Emission Characteristics of Simarouba Biodiesel and Its Blends on LHR Engine

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

EFFECT OF BUTANOL-DIESEL BLENDS IN A COMPRESSION IGNITION ENGINE TO REDUCE EMISSION

Transcription:

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel U. Santhan Kumar 1, K. Ravi Kumar 2 1 M.Tech Student, Thermal engineering, V.R Siddhartha Engineering College, JNTU 2 Assistant Professor, Mechanical Engineering, V.R Siddhartha Engineering College, JNTU Vijayawada, Andhra Pradesh, India Abstract Petroleum based fuels is a finite resource that is rapidly depleting. Consequently, petroleum reserves are not sufficient enough to last many years. Biodiesel is one of the alternative fuel made from vegetable oil, friendly for environment and has no effect on health and can reduce the emission compared with diesel fuel. In this paper will be examined the use of diesel-corn oil mixtures in diesel four-stroke For those mixtures the brake thermal efficiency, brake specific fuel consumption and combustion characteristics. The gas emissions of carbon dioxide (CO 2 ), hydrocarbons (HC), are being measured. Keywords Bio fuels, corn oil, engine performance, combustion and emissions I. INTRODUCTION Diesel engines have been use since the last 18 th century. The first diesel engine was developed to run on a peanut oil. Once the technology becomes widely known in the 1900 s, the abundance and low cost of fossil fuels, caused a paradigm shift away from vegetable based fuels [1]. At the turn of current century, the same paradigm was beginning to shift back, due to rising fuel cost, the environmental impact and an abundance of waste feedstock available. Thus there is a demand to find alternative fuels for diesel engines. It is thus very essential to make all possible efforts to search for alternate fuel oils [2]. To ever increasing number of auto mobiles has lead to increase in demand of fossil fuels (petroleum). The increasing cost of petroleum is another concern for developing countries as it will increase their import bill. Fossil fuels have limited life and the ever increasing cost of these fuels has led to the search of alternative renewable fuels for ensuring energy security and environmental protection [3]. In this paper, to study the performance, combustion and emission characteristics, the experimental setup consists of a single cylinder four stroke diesel engine, coupled with electrical dynamometer. The mixtures used are the following: diesel-15%cornoil, diesel-30%cornoil, diesel-45%corn oil, diesel-60%corn oil. LITERATURE SURVEY S.Ganesan, Dr.A.Elango [4] is conducted test on blends castor oil and ethanol using C.I The experimental investigation has been carried out on single cylinder CI Engine and the results has been recorded.they observed lower HC and NO emissions. Brake thermal efficiency and exhaust gas temperature are less compared to diesel. C.Solaimuthu, D.Senthil kumar [5] studied the diesel engine performance, combustion and emission characteristics mahua bio diesel (mahua oil methyl ester) and its blends in different volumetric proportions with diesel. They found that the brake thermal efficiency is almost same and less fuel consumption and also show that reduced NOX and HC emissions. Ahmet necati ozsen, Mustafa canacki [6] investigated experimentally on canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). They found that the brake power reduced by 4 5%, while the brake specific fuel consumption increased by 9 10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59 67%, in unburned hydrocarbon (HC) by 17 26%, in carbon dioxide (CO) by 5 8%, and smoke opacity by 56 63%. M.G. Bannikov [7] has studied on Mustard methyl esters (further biodiesel) and regular diesel fuel were tested in direct injection diesel Analysis of experimental data was supported by an analysis of fuel injection and combustion characteristics. Engine fuelled with biodiesel had increased brake specific fuel consumption, reduced nitrogen oxides emission and smoke opacity, moderate increase in carbon monoxide emission with essentially unchanged unburned hydrocarbons emission. II. BIO DIESEL PRODUCTION PROCESS The chemical process commonly used make bio-oils less viscous, turning them into biodiesel is called Transesterification [8]. A. Transesterification Process Corn oil was used as the raw oil to be transesterified with methanol in a reacting tank. The temperature values are below ISSN: 2231-5381 http://www.ijettjournal.org Page 3904

the boiling point of methanol (63 0 C), to prevent the methanol in the reactant mixture from evaporating [9]. The potassium hydroxide was stirred with methanol for 10 minutes using an electric-magnetic stirrer to form potassium methoxide, which was then poured into the reacting tank and mixed with the corn oil [10]. The total reaction time was 60 minutes. Almost total conversion to corn oil bio diesel was achieved quickly after a few minutes from the start of the reaction, depending on the ambient conditions. The chemical formula for biodiesel Transesterification is: measuring FSN for exhaust gases. The test rig is installed with AVL software for obtaining various curves and results during operation. A five gas analyser is used to obtain the exhaust gas composition. B. Properties of biodiesel comparison with diesel Properties Corn oil Pure diesel Density at15 0 c (gm/cc) Viscosity at 40 0 c (Centi stokes) Cloud point ( 0 C) Pour point ( 0 C) Carbon Residue (%) Calorific value ( KJ/kg) 0.8944 0.82 6.71 5 18-6 -8 3 0.42 0.1 36204 42,500 III. EXPERIMENTAL INVESTIGATION In order to evaluate and compare the performances, combustions and emission characteristics of the fuel, the experiments were conducted using a diesel engine in thermal laboratory. This section deals with description of the experimental set up, various instruments and software used for testing. A. Description of test rig The diesel engine is a high speed, four stroke, vertical, air cooled type. The loading is by means of an electrical dynamometer. The fuel tank is connected to graduated burette to measure the quantity of fuel consumed in unit time. An orifice meter with U-tube manometer is provided along with an air tank on the suction line for measuring air consumption. An AVL415 smoke meter is provided for B. Test engine specifications Type: four stroke single cylinder vertical air cooled diesel Rated power Rated speed Bore Dia (D) Stroke(L) TABLE I 4.4 KW 1500 rpm 87.5 mm 110 mm Compression ratio 17.5:1 Orifice diameter Coefficient of discharge(c d ) 13.6 mm C. Test methodology The present set of experiments were conducted on a four stroke single cylinder vertical air cooled diesel engine equipped with eddy current dynamometer. First the maximum torque of the engine is calculated and the engine is started under no load condition by hand cranking using de-compression lever. The engine is run under no load condition for a few minutes so that the speed stabilizes at rated value. The engine is run under constant speed and fuel consumption time indicator is arranged with 10cc of fuel quantity. Using eddy current dynamometer the experiment conducted for variable loads. The engine test were performed using bio diesel and the results were recorded. The above procedure is repeated at the same operating conditions for all the blends. The four types of 0.6 ISSN: 2231-5381 http://www.ijettjournal.org Page 3905

blends (B15, B30, B45, B60) were used in this experiment. The different parameters required for evaluation of fuel was noted. D. Results and discussions 1. Performance characteristics: The brake thermal efficiency variation with brake power for the corn oil and diesel are shown in figure1. It can be seen that in the beginning with increasing brake power of the engine the brake thermal efficiency of various concentration of blends and pure diesel were increased. The maximum brake thermal efficiency of the engine was 28.07 for corn oil B15 at brake power 3.32 where it is 25.46 for diesel. This is due to improved atomization fuel vaporization, better spray characteristics and improved combustion through mixture. Fig. 2 Brake specific fuel consumption against brake power 2. Combustion Characteristics The variation of cylinder pressure with crank angle is shown in figure-3.is is found that B60 concentrations provide high cylinder pressure compared to that of pure diesel and other blended fuels. The maximum cylinder pressure observed as 69bar for B60 blends, at maximum brake power of the Fig. 1 Brake Thermal Efficiency against Brake power Fig. 2 shows Brake specific fuel consumption variation brake power for the corn oil and pure diesel. It is observed that the brake specific fuel consumption is found to decrease with increase in load. Among the blends B15 concentration shows the minimum specific fuel consumption than other blends and pure diesel. The minimum BSFC is observed as 0.31 for B15 blend where as for pure diesel it was 0.33 at initial load of the This may due to better combustion and an increase in the energy content of the blend. This is also due to lower calorific value of the blended fuel as compared with diesel. Fig. 3 Cylinder pressure against crank angle Figure 4 shows variation of heat release rate with crank angle for pure diesel and blended fuel at full load. The heat release rates are higher for B30 blend than pure diesel and other blends. The higher heat release rate is observed as 105kj/m 3 deg at maximum brake power of the This is due to better combustion. ISSN: 2231-5381 http://www.ijettjournal.org Page 3906

Fig. 4 Heat release rate against Crank angle 3. Emission Characteristics The variation of carbon dioxide with brake power of the engine is shown in figure-5. It is observed that carbon dioxide emission increase with increase of brake power. The Minimum carbon dioxide value for the corn oil was 1.4 at B45&B60 and at the initial brake power 0.06 at it was 2.4 for diesel. This is a result of low availability of oxygen during combustion. Fig. 5 Carbon dioxide against Brake power The hydro carbons variation with brake power for the corn oil and diesel are shown figure-6.the hydro carbons are lower for all the blends for the corn oil compared with diesel. The lowest value of HC was 18 at brake power 0.06 and it was 25 for diesel. This result depends on oxygen quantity and fuel viscosity, in turn atomization. Fig. 6 Hydro carbons against Brake power IV. Conclusions The performance, combustion and emission characteristics of diesel and bio diesel were investigated on four stroke single cylinder vertical air cooled diesel The conclusions of this investigating at are as follows. The maximum brake thermal efficiency 28.07% was observed with the blend B15 as compared to pure diesel and the other blend at the brake power 3.32kw of the The specific fuel consumption of the 0.31kg/kw-hr was observed with the blend B15 the SFC is lower for above blend than that of other blends and pure diesel. In the combustion analysis, the maximum cylinder pressure observed as 69bar for B60 blends than all the other blends at maximum brake power of the The heat release rate are also higher for B30 blend than pure diesel and all the other blends. The CO 2 percentage increased with increase of loads. The minimum value occurred at B45&B60. The hydro carbons are also lower for all the blends compared with diesel REFERENCES [1] A.P Patil, M.V Patil: maize oil blended with diesel as an eco friendly energy source IOSR Technical paper. ISSN: 2278-1684, PP: 46-50. [2] M.V.Nagarhalli,K.C.Mohite: Emission and performance characteristics of karanga bio diesel and its blendsin a CI engine and its economics.arpn journal paper. ISSN 1819-6608. Feb, 2010. [3] N. EI Boulifi, A. Bouiad, M. Martinez, J. Aracil: Process optimization for bio diesel production from corn oil and its oxidative stability.ijoce paper. Doi:10.1155/2010/518070. [4] S.Ganesan, Dr.A.Elango: performance analysis of CI engine using blends of castor oil and ethanol. IJMME paper. ISSN 2320-4060.2013. [5] C.Soliamuthu, D. Senthil kumar an experimental investigation on performance, combustion and emission characteristics of mahua oil methyl ester on four stroke direct injection diesel engine. IJEMS paper.vol.20,feb 2013pp.42-50 [6] Ahmet necati ozsezen, Mustafa canakci: determination of performance and combustion characteristics of diesel engine fuelled with canola and ISSN: 2231-5381 http://www.ijettjournal.org Page 3907

waste palm oil methyl esters. ELSEVIER paper. Energy conversion and management 52 (2011) 108-116 [7] M.G.Bannikov : combustion and emission characteristics of mustard biodiesel. 6 th internationaladvanced technologies symposium(iats 11), 16-18 may2011 elazig turkey [8] Mr.Jalpesh solanki, prof. ashish agarwal: to study of vegetable oils and their effects on diesel engine performance. IJSR publications. Vol2, issue 10, Oct 2012 [9] Avinash kumar agarwal: bio fuels (alcohols and biodiesel) applications as fuels for internal combustion engines. ELSEVIER paper. Energy and combustion science 33(2007)233-271 [10] Hsing-pang liu, shanon strank: combustion emission modeling and testing of neat bio diesel fuels. ASME paper. May 2010 ISSN: 2231-5381 http://www.ijettjournal.org Page 3908