SPROCKET ENGINEERING DATA

Similar documents
SPROCKET ENGINEERING DATA

Index SECTION L PLASTICS

FOR MORE INFORMATION CALL CLARK ROLLER CHAIN SPROCKETS INDEX...E-1 - E-2 MADE-TO-ORDER CAPABILITIES...

ROLLER CHAIN SPROCKETS INDEX...E-1 E-2 MADE-TO-ORDER CAPABILITIES...E-3

Selection Procedure, Example... PT13-16 Basic Horsepower Ratings... PT13-20

CONTENTS Sprockets for Roller Chain

ROLLER CHAIN SPROCKETS INDEX...E-1 - E-2 MADE-TO-ORDER CAPABILITIES...E-3

Shaft Mounted Speed Reducer Selection

Flexible Jaw Couplings

QT Power Chain Sprockets & Belts

Specifications. Trantorque GT CALL FAX

L Jaw Type Couplings. Coupling Selection Example

Chain Drives. Pitch. Basic Types -There are six major types of power-

COUPLINGS HRC FLEXIBLE COUPLINGS CHAIN SHAFT COUPLINGS SPLINE CLUTCHES TORQUE LIMITERS TORQUE LIMITER COUPLINGS

ROLLER LUBRICANT VISCOSITY RATING

Section 9: Gearboxes: Series K

Ribbed Belts FRICTION BELT DRIVES FRICTION BELT DRIVES. Drive Design & Maintenance Manual

Section 9: Gearboxes: Series F

Installation Tensioning Procedure

SHAFT MOUNT REDUCERS. For Additional Models of Shaft Mount Reducers See Sections F & J G-1

4 Fenner Torque Drive Plus 3

SHAFT MOUNTED HELICAL GEAR REDUCER

Gear Engineering Data. Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables

SYNCHRONOUS BELT DRIVES

L-Jaw Elastomeric Couplings

PLASTICS INDEX...L-1 PLASTIC CAPABILITIES...L-2

Shaft Mounted Speed Reducer. Technical Catalogue

Viking s helical gear reducers are available in three basic sizes, each size offering several gear ratios.

Features / Benefits Fixed Pitch Drives... PT8-2 Variable Pitch Drives... PT8-2

DIAMOND ROLLER CHAIN. For Agricultural and Construction Equipment

SYNCHRONOUS BELT DRIVES

SYNCHRONOUS BELT DRIVES SYNCHRONOUS BELT DRIVES

GEARED TO EXCEL SMSR GEAR BOX PLUMMER BLOCK HELICAL GEAR PUMP V BELT PULLEY

LAMBDA Chain. U.S. Tsubaki, Inc. The Next Generation of Lube-Free Roller Chain. Better than ever!

chain sprocket SIMPLEX DUPLEX TRIPLEX

U.S. TSUBAKI DRIVE CHAINS

ROSTA Tensioner Devices

Viking Helical Gear Reducers


Section 4: Synchronous Belt Drives

PRODUCT MANUAL B-FLEX COUPLING

DRIVE CHAINS ENGINEERED STEEL DRIVE CHAINS DRIVE CHAINS

Engineering Data Tensioner Arms idler Sprocket Sets Idler Roller Pulley Sets

DIAMOND CHAIN COMPANY INC. Maintenance Guide

Premium Flexible Drive Couplings

SPECIALTY PRODUCTS INDEX... A-1 MTO SPECIALTY PRODUCTS... A-2. Bronze Bushed... A-3. Ball Bearing... A-4. Ball Bearing - Non-Metallic...

(d) Bore Size Check from Dimensions table (page 112) that chosen flanges can accommodate required bores.

Design Manual Poly Chain GT2. BMW Graphic Design VT-T-T1

Shaft Mounted Speed Reducers

Products Catalogue. Quality Guaranteed

BAJAJ STEEL INDUSTRIES LIMITED

Product Range Modules ROSTA Tensioner Devices

Variable Speed Drives

CAUTION MAINTENANCE INFORMATION CONNECTING AND DISCONNECTING CHAIN

Stainless Steel Couplings, Universal Joints & Shaft Accessories

Section 9: Gearboxes: Series W

Power Transmission Product Range

Universal Series Style Reference Guide

Conveyor chain catalogue

Tooth thickness Dedendum. Addendum. Centre distance Nominal

Series 54 and S54 Resilient Couplings

Marine Engineering Exam Resource Review of Couplings

Couplings Technical Catalogue

LESSON Transmission of Power Introduction

TRANSMISSIONS. Mechanical Power Transmission

Specification: Pulleys XL Pitch... PT10-3. L Pitch... PT H Pitch... PT10-6 XH Pitch... PT10-7 Reborable... PT10-9

DF / DFB / DFC DOUBLE WIDTH DOUBLE INLET FORWARD CURVED FANS

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

Free Flow Chain U.S. TSUBAKI FREE FLOW CHAIN B - CONVEYOR CHAINS

FEATURES / BENEFITS... 2 SPECIFICATION / HOW TO ORDER... 4 NOMENCLATURE... 11

Clutch Couplings FW/FWW. Overrunning Ball Bearing Supported, Sprag Clutch Couplings. FW Series. FWW Series. Typical Applications

TRANTORQUE GT BENEFITS

Premium V-Belt Drives

E2/20099 ED Design Manual. NEW PowerGrip GT3. Industrial Synchronous Belts PowerGrip GT3 PowerGrip HTD PowerGrip

Townsend Bearings. Rosta Tensioner Devices. Revision 1

The gear boxes can be run at the same speeds as the actuator models. Do not exceed torque ratings.

Belt drives. Table (5.1) types of Belts Belt type Sketch Joint Size range Centre distance yes Flat. Yes D = 8. to 4

Gear Coupling. Applications

Helical Gears. Section Contents

Amerigear Standard Gear Couplings Flanged and Continuous Sleeve Designs

RING-flex. Torsionally Rigid Disc Couplings US Partner for performance 1. RINGFEDER Products are available from MARYLAND METRICS

Air Champ RPM DPC-15T DPC-13T DPC-11T DPC-11T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T DPC-9T

FUNCTION OF A BEARING

RESULTS... less weight, space, noise... and less cost for parts and assembly. MORSE HV DRIVE ADVANTAGES H-1 DESIGN FEATURES

Instruction and Installation Manual

Martin Series 800 Conveyor Sprockets

Ball Rail Systems RE / The Drive & Control Company

Taper Bore Sprockets for 3 /8 Pitch British Standard Chains Type 06B

Chapter 11. Keys, Couplings and Seals. Keys. Parallel Keys

MTY (81) General Purpose Clutches

PRECISION ROLLER CHAIN AGRICULTURAL, STEEL PINTLE STEEL DETACHABLE CHAIN, T-BAR AND T-ROD WELDED STEEL CHAIN AND ATTACHMENTS...

LONG LENGTH DESIGN MANUAL CONTENTS PAGE. Introduction Long Length features & benefits... 2 Long Length belting programme... 7

MECHANICAL POWER TRANSMISSION. HT500 synchronous drive system

MAE 322 Machine Design Shafts -3. Dr. Hodge Jenkins Mercer University

Link-Belt Cylindrical Roller Bearings

index Megadyne PV-belts 2 Belt features and structure 3 Belt cross sections and dimensions 4 Pulleys 5 Standard belt range 6 Symbols, units, terms 8

Jaw In-Shear Type JIS JIS-1

Dura-Flex Couplings FEATURES

DESIGN MANUAL Ultra PLUS 140 Wedge Belts

Cross Tensioners. Frames. Bearings. Springs. Mounting Holes. Adjustment Marks

Transcription:

Engineering SPROCKET ENGINEERING DATA ROLLER CHAIN DIMENSIONS SPROCKET TOOTH DIMENSIONS MAXIMUM HUB RECOMMENDATIONS APPLICATION AND SELECTION HARDENING CHAIN LENGTH CALCULATION SPEED RATIOS SPROCKET DIAMETERS HORSEPOWER RATINGS American sprocket manufacturers have adopted 4 specific types of sprocket construction styles as American Standards. In addition to the standard sprockets, special sprockets may be available in the same styles. Style A - Flat sprocket with no hub extension either side. Style B - Sprocket with hub extension one side. Style C - Sprocket with hub extension both sides. Style D - Sprocket with a detachable bolt on hub attached to a plate. LTB Pitch Dia. Outside Dia. Hub Diam. Pitch Dia. Hub Dia. Length Thru Single Type A Hub Single Type B Hub Single Type C Hub Single Type D Hub E-2

Multiple Strand Sprockets - Listed using a letter prefix starting with the letter D for Double Strand, E for Triple Strand, and F for Quadruple, etc. They also have the same hub configuration letter designation listed on previous page. In addition to the four specific types, sprockets may also be made in various other styles. Double Sprocket Nomenclature Triple Five common styles are: O.D. QD The QD (quick detachable) sprocket; here a tapered bushing is bolted into the bore machined in the sprocket. This bushing, when inserted into the sprocket, compresses onto the shaft providing a tight grip. MST The MST (Martin Split Taper ) is another style of bushed sprocket. The bushing is similar to the QD style except it has an external key that fits into the driven product. HOD Bore TB The TB (taper bushed) sprocket is another style of an interchangeable bushed sprocket, which provides a positive grip on a driven shaft. Length Thru Split A split type sprocket is used in place of solid type to allow quick installation without disruption of shaft and alignment. Shear Pin Sprocket A shear pin type hub is bolted to a sprocket providing an overload device; as sprocket torque ratings are exceeded the shear device disengages sprocket from drive. E-

Sprocket Nomenclature Sprocket nomenclatures provide the chain pitch written to the left of the hub style code letter followed by the number of teeth in the sprocket. If the sprocket is to be multiple strand, the prefix code letter is added to the beginning of the part number. A suffix of H is added if the teeth are to be heat treated. If the sprocket is to be bored for QD, Taper Bushed or MST, the center hub letter is changed. For QD and MST styles the letter designation of the bushing is used in lieu of the hub style code. If a taper bushing is to be used, the two letters TB are added behind the hub code letter. In some instances, the material a sprocket is to be manufactured from will be added into the part number as a suffix. For example: SS - Stainless Steel Material NM- Non-Metallic BR - Brass or Bronze Material CD - Cadmium Plated Zi - Zinc Plated Ni - Nickel Plated CH - Chrome Plated If the part is to be used with a shear pin device, the center hub style letter is substituted with an SP. Most manufacturers of sprockets conform to the ANSI (American Standards Institute) and conforms to the Type II tooth form as given in the standard B29. - 97. It is not necessary to show detailed tooth information on sprocket drawings, just specify ANSI standard tooth form. Face Width Caliper Diameter Bottom Dia. Bore Pitch Dia. Outside Dia. Maximum Hub and Groove Dia. LTB E-4

Sprocket Nomenclature Sprocket Dimensional Specifications Bottom Diameter - The diameter of a circle tangent to the bottoms of the (B.D.) tooth spaces. Caliper Diameter - Since the bottom diameter of a sprocket with odd number of teeth cannot be measured directly, caliper diameters are the measurement across the tooth spaces nearly opposite. Pitch Diameter - The diameter across to the pitch circle which is the circle (P.D.) followed by the centers of the chain pins as the sprocket revolves in mesh with the chain. PD = PITCH SIN (80/Nt) Outside Diameter - The measurement from the tip of the sprocket tooth (O.D.) across to the corresponding point directly across the sprocket. It is comparatively unimportant as the tooth length is not vital to proper meshing with the chain. The outside diameter may vary depending on type of cutter used. OD = (Pitch) (.6 + COT [80 / Nt]) Hub Diameter - That distance across the hub from one side to another. (HOD) This diameter must not exceed the calculated diameter of the inside of the chain side bars. Maximum Sprocket - Maximum Sprocket Bore is determined by the required Bore hub wall thickness for proper strength. Allowance must be made for keyway and setscrews. Face Width - Face width is limited in its maximum dimension to allow proper clearance to provide for chain engagement and disengagement. The minimum width is limited to provide the proper strength to carry the imposed loads. Length Thru Bore - Length Thru Bore (or L.T.B.) must be sufficient to allow (LTB) a long enough key to withstand the torque transmitted by the shaft. This also assures stability of the sprocket on the shaft. E-

Roller Chain Dimensions Inside Cottered Riveted Average ANSI Roller Roller Link Plate Chain Chain Tensile Number Width Diam. Height Width* Width* Strength STANDARD SERIES CHAIN 2 8.0.27.7.4 87 2-2 8.0.27.6.9 70 2-8.0.27.88.84 2626 6.200.6.6.0 200-2 6.200.6.96.90 4200-6.200.6.6. 600-4 6.200.6.76.70 8400-6.200.6 2.6 2. 000-6 6.200.6 2.7 2. 2600 40 6.2.47.72.67 700 40-2 6.2.47.29.24 7400 40-6.2.47.8.80 00 40-4 6.2.47 2.42 2.7 4800 40-6 6.2.47.6. 22200 4 4.06.8.6.7 2000 0 8.400.94.89.8 6600 0-2 8.400.94.60. 200 0-8.400.94 2. 2.26 9800 0-4 8.400.94.0 2.97 26400 0-8.400.94.7.69 000 0-6 8.400.94 4.46 4.40 9600 60 2.469.72..04 800 60-2 2.469.72 2.0.94 7000 60-2.469.72 2.9 2.84 200 60-4 2.469.72.8.74 4000 60-2.469.72 4.7 4.64 4200 60-6 2.469.72.60. 000 80 8.62.90.44.2 400 80-2 8.62.90 2.9 2.47 29000 80-8.62.90.74.62 400 80-4 8.62.90 4.90 4.79 8000 80-8.62.90 6.06.94 7200 80-6 8.62.90 7.22 7.0 87000 *Dimensions are across pins. Inside Cottered Riveted Average ANSI Roller Roller Link Plate Chain Chain Tensile Number Width Diam. Height Width* Width* Strength STANDARD SERIES CHAIN 00 4.70.87.7.6 24000 00-2 4.70.87.4.02 48000 00-4.70.87 4.6 4.4 72000 00-4 4.70.87.97.84 96000 00-4.70.87 7.8 7.2 20000 00-6 4.70.87 8.78 8.66 44000 20.87.42 2.4 2.00 4000 20-2.87.42.9.79 68000 20-.87.42.72.8 02000 20-4.87.42 7.2 7.8 6000 20-.87.42 9. 9.7 70000 20-6.87.42.0 0.96 204000 40.000.662 2. 2.4 46000 40-2.000.662 4.24 4.07 92000 40-.000.662 6.6 6.00 8000 40-4.000.662 8.09 7.9 84000 40-6.000.662.94.78 276000 60 4.2.900 2.7 2.4 8000 60-2 4.2.900.04 4.8 6000 60-4.2.900 7. 7.6 74000 60-4 4.2.900 9.66 9.47 22000 60-6 4.2.900 4.27 4.09 48000 80 2.406 2.7. 2.88 76000 80-2 2.406 2.7.7.48 2000 80-2.406 2.7 8.4 8.07 228000 200 2.62 2.7.44.2 9000 200-2 2.62 2.7 6.26.94 90000 200-2.62 2.7 9.08 8.76 28000 200-4 2.62 2.7.90.8 80000 200-6 2.62 2.7 7.2 7.2 70000 240 7 8.87 2.82 4.06.72 0000 240-2 7 8.87 2.82 7.2 7.8 260000 *Dimensions are across pins. STANDARD KEYWAYS AND SETSCREWS Diameter Keyway Diameter Keyway of Shaft Width x Depth Setscrew of Shaft Width x Depth 2-9 6 8-7 8 6-4 6-8 7 6-4 6-2 4 8 x 6 0-24 2 6 2 4 6 x 2 4 x 8 6 x 2 8 x 6 2 x 4 4 2 6 4 6 6 4 *Hub size may require smaller setscrews in some instances. 8 x 6 4 x 8 7 8 x 7 6 6 6 4 2 x 2 8 4 9 6 2 4 x 8 2* 9 6 6 2 2 x 4 Setscrew 8* 8* 4 4 4 4 STANDARD BORE TOLERANCES " and Less +.00 -.000 6" to 2" +.002 -.000 2 6" to " +.00 -.000 6" & up +.004 -.000 Bores with closer tolerances will be supplied at a slight increase in price. E-6

Sprocket Tooth Dimensions Sprocket Tooth Dimensions TMR SINGLE HOT ROLLED STEEL PLATE t t2 M7 M6 M M4 M M M2 M2 K K K K K K K T4 PITCH LINE SINGLE DOUBLE AND TRIPLE QUADRUPLE AND OTHER MULTIPLES Chain A.S.A. Data For All Sprockets Single For 4 or more Strands Minus Double and Triple Roller Strand Tolerance Strand on t Chain Pitch Width Roller t and and M No. P W Diameter T HR t 2 M 2 M t 4 M 2 M M 4 M M 6 M 8 M 0 M 2 M 6 K Machined 2 4 8.0.0.07.9.6.096.48.600.82.04.6.860 2.64 2.868.876.22.007.02 8 6.200.68.62.6.960.49.48.947.46.74 2.44 2.942.740 4.8 6.4.99.008.027 4 2 4.06.227.009.02 40 2 6.2.284.27.84.407.26.822.88.94 2.20.086 4.28.20 6.482 8.746.66.009.0 0 8 8.400.4.2.04.78..024.77 2.40.6.876.02 6.728 8.4.006.7.00.06 60 4 2.469.49.444.4 2.28.48. 2.22.08 4.006 4.90 6.697 8.49 0.28.87.897.0.06 80 8.62.7.7.700 2.86.26.679 2.82.98.8 6.29 8.97 0.90.209 7.82..02.040 00 4 Dimensions in Inches STANDARD SERIES ROLLER CHAIN 4.70.692.669 2.077.484.6 2.04.449 4.87 6.26 7.67 0.489.0 6.2 2.7.408.04.046 20 2.87.924.894 2.68 4.472.848 2.67 4.426 6.2 8.004 9.79.7 6.949 20.27.789.06.07 40 4.000.924.894 2.88 4.742.848 2.772 4.696 6.620 8.44 0.468 4.6 8.64 22.02.924.06.07 60 2 4.2.6.9.424.729.06.68.67 7.978 0.28 2.88 7.98 2.808 2.0.09.062 80 2 4 2.406.0.29.8 6.44.97.789 6.8 8.97.6 4.7 9.4 2.92 -.020 -.068 200 2 2 2.62.89.44 4.6 6.978.278 4.09 6.92 9.729 2.46.6 20.997 2.87.02.072 240 7 8.87.78.682.40 8.98.60.09 8.7.97.4 8.89.48 -.02 -.087 Minus Tolerance on T HR HEAVY SERIES CHAIN 60H.70.00.469.49.444.472 2.00.48.446 2.474.02 4.0.8 7.64.028 -.0 -.06 80H.000.62.62.7.7.840.2.26.809.092 4.7.68 6.94 9.07.28 -.02 -.040 00H.20.70.70.692.669 2.208.747.6 2.72.7.20 6.789 8.28.406.9 -.04 -.046 20H.00.000.87.924.894 2.88 4.742.848 2.772 4.696 6.620 8.44 0.468 4.6.924 -.06 -.07 40H.70.000.000.924.894 2.949.004.848 2.90 4.98 7.0 9.068.2.2 2.0 -.06 -.07 60H 2.000.20.2.6.9..99.06.499.9 8.7 0.807.24 8. 2.46 -.09 -.062 80H 2.20.406.406.0.29.982 6.70.97.920 6.64 9.66 2.089 4.82 20.28 2.72 -.020 -.068 200H 2.00.00.62.89.44 4.427 7.0.278 4.6 7.444 0.27.60 6.69 22.89.08 -.02 -.072 = Not made in multiple strands. E-7

Maximum Hub Dimensions AMERICAN STANDARD NO. 2 Recommended Max. Hub and Bore Sizes STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 9 of 64... 6 6940 9 2 6 26 864 49 64 4 7 00 Diameter Keyway Set- Setscrew Setscrew 64... 7 7290 64 8 27 86 64 4 8 2080 6... 8 790 8 4 28 860 6 4 of Shaft Width x Depth screw over Key not over Key 9 2860 7 6 4 9 7840 7 2 6 29 862 2 64 4 8 2 x 64 6 7 6 8 0 60 2 4 20 800 9 64 7 8 0 880 2 2 6 7 6 2 x 64 6 2 8 40 9 6 6 2 820 8 7 8 840 2 64 8 2-9 6 8 x 6 6 2 8 2 4960 4 64 8 22 870 29 64 6 2 846 2 4 2 8-7 8 6 x 2 6 2 40 47 64 7 6 2 8480 7 2 8200 2 64 6 6 - x 8 2 4 6070 6 9 6 24 860 9 64 6 40 780 2 7 64 7 8 6-8 6 x 2 6 6 8 60 7 64 9 6 2 860 6 6 4 6820 9 2 2 4 7 6-8 x 6 8 8 AMERICAN STANDARD NO. STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 290 of 64... 6 60 2 6 26 42 2 4 64 4 7 680 8... 7 80 9 2 6 27 40 2 64 4 Diameter Keyway Set- Setscrew Setscrew 8 090 2 4 8 970 2 2 6 28 42 2 9 64 7 8 of Shaft Width x Depth screw over Key not over Key 9 49 8 8 9 400 27 2 4 29 40 2 2 7 6 2 x 64 6 2 8 0 88 4 2 20 420 6 64 4 0 4490 2 2 8 2-9 6 8 x 6 6 2 8 2260 64 9 6 2 400 2 64 6 4470 9 2 2 4 8-7 8 6 x 2 6 2 2 290 6 64 9 6 22 480 2 64 7 6 2 440 2 64 2 4 6 - x 8 2 2900 7 64 6 2 440 2 6 9 6 4290 4 2 2 6-8 6 x 2 6 6 8 4 70 64 6 24 4480 2 7 6 6 40 970 4 2 64 2 6 7 6-8 x 6 8 8 420 2 64 7 8 2 40 2 9 6 4 4 70 4 6 64 4 6-2 2 x 2 2 AMERICAN STANDARD NO. 4 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 27 6 0 of 64 8 6 60 2 6 6 26 2040 4 64 2 8 9 7 0 2 6 7 720 2 64 7 6 27 2040 64 2 9 6 Diameter Keyway Set- Setscrew Setscrew 8 49 49 64 2 8 790 2 2 64 8 28 2040 4 2 4 of Shaft Width x Depth screw over Key not over Key 9 67 6 9 6 9 80 2 64 4 29 2040 4 2 2 4 8-7 8 6 x 2 6 2 0 80 2 6 20 890 2 2 2 4 0 2020 4 6 2 6 6 - x 8 2 020 7 64 7 8 2 940 2 7 8 7 8 2020 4 2 2 6 6-8 6 x 2 6 6 8 2 70 27 64 7 8 22 970 2 2 2 2000 4 4 64 8 7 6-8 x 6 8 8 0 7 64 6 2 2000 6 2 6 90 7 64 6 6-2 2 x 2 2 4 40 4 4 24 2020 2 64 2 4 40 780 29 2 7 8 2 6-2 8 x 6 8 7 8 40 29 2 4 2 200 64 2 4 4 600 6 4 64 4 6 2 6 - x 8 2 2 AMERICAN STANDARD NO. 40 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 2 6 220 of 64... 6 2720 6 64 4 26 400 7 64 2 6 7 0 2 4 7 2860 2 9 64 6 27 40 47 64 2 7 6 Diameter Keyway Set- Setscrew Setscrew 8 820 4 64 8 8 2980 2 9 64 2 28 40 29 2 2 8 of Shaft Width x Depth screw over Key not over Key 9 2 27 2 9 6 9 080 2 29 64 6 29 9 4 6 2 4 8-7 8 6 x 2 6 2 0 420 8 20 60 2 8 4 0 70 4 7 2 2 4 6 - x 8 2 690 64 4 2 20 2 2 2 4 60 4 8 2 7 8 6-8 6 x 2 6 6 8 2 940 2 64 7 8 22 290 2 6 6 2 0 4 64 7 6-8 x 6 8 8 280 2 2 0 2 2 6 220 64 4 6-2 2 x 2 2 4 280 2 2 8 24 60 7 64 2 4 40 2970 6 6 2 6-2 8 x 6 8 7 8 260 6 4 2 80 27 64 2 4 4 2670 6 9 64 4 6 2 6 - x 8 2 2 AMERICAN STANDARD NO. 0 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 27 6 of 64 8 6 960 2 64 6 26 244 4 64 2 6 4 7 70 64 8 7 2060 2 6 4 27 240 4 6 6 Diameter Keyway Set- Setscrew Setscrew 8 90 27 2 9 6 8 20 2 7 64 7 8 28 244 4 7 64 4 of Shaft Width x Depth screw over Key not over Key 9 80 6 6 9 2220 64 2 6 29 2440 64 6 8-7 8 6 x 2 6 2 0 020 7 64 7 8 20 2280 9 2 2 4 0 240 9 2 2 6 - x 8 2 220 2 6 2 20 64 2 4 24 64 6 6-8 6 x 2 6 6 8 2 400 4 64 8 22 270 6 2 7 6 2 29 6 4 7 6-8 x 6 8 8 70 7 8 4 2 2400 7 64 2 8 220 6 9 2 4 9 2 6-2 2 x 2 2 4 720 2 64 6 24 2420 4 64 2 4 40 240 7 9 2 2 2 6-2 8 x 6 8 7 8 80 2 9 2 2 2 2440 4 9 2 2 4 4 90 8 9 2 6 4 2 6 - x 8 2 2 AMERICAN STANDARD NO. 60 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 20 of 64 4 6 480 2 6 64 6 26 840 2 64 8 49 7 27 64 2 7 0 7 2 2 6 27 84 8 4 Diameter Keyway Set- Setscrew Setscrew 8 44 2 8 8 60 2 2 4 28 840 7 8 7 8 of Shaft Width x Depth screw over Key not over Key 9 60 9 2 7 8 9 670 4 64 2 7 6 29 8 6 7 64 4 6 6 - x 8 2 0 770 64 20 720 6 64 2 6 0 80 6 2 4 9 6 6-8 6 x 2 6 6 8 920 49 64 4 2 70 4 6 2 4 8 6 9 2 4 6 7 6-8 x 6 8 8 2 00 2 64 4 22 780 4 7 6 2 6 2 800 6 64 6 6-2 2 x 2 2 80 2 4 2 2 800 4 4 64 8 740 7 64 2 2 6-2 8 x 6 8 7 8 4 290 2 2 4 24 820 4 29 2 4 40 60 8 4 6 2 2 6 - x 8 2 2 90 2 4 4 2 80 2 8 4 40 9 6 7 7 6 6-7 8 x 7 6 2 8 E-8

Maximum Hub Dimensions Recommended Max. Hub and Bore Sizes AMERICAN STANDARD NO. 80 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 4 6 7 7 of 64 6 6 9 6 64 2 6 26 6 7 64 7 6 7 7 Diameter Keyway Set- Setscrew Setscrew 64 8 7 98 4 6 2 6 27 70 6 64 2 8 280 7 8 8 8 020 4 4 64 8 28 70 7 27 2 6 of Shaft Width x Depth screw over Key not over Key 9 8 2 2 6 9 060 4 6 64 4 29 6 8 2 6 8 6 - x 8 2 0 48 2 64 4 20 090 9 2 2 0 60 8 64 6 7 6 6-8 6 x 2 6 6 8 80 2 8 8 2 0 9 2 4 8 64 6 2 7 6-8 x 6 8 8 2 670 2 4 64 4 22 0 9 64 7 8 2 4 9 7 64 6 9 6 6-2 2 x 2 2 70 64 2 2 0 6 64 4 6 0 0 64 7 2 2 6-2 8 x 6 8 7 8 4 820 2 2 4 24 60 6 9 6 4 6 40 020 4 64 8 8 2 6 - x 8 2 2 880 4 64 2 8 2 60 6 7 8 8 4 920 7 64 9 4 6-7 8 x 7 6 2 8 AMERICAN STANDARD NO. 00 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 7 9 of 8 6 6 670 4 26 80 9 64 6 2 7 2 7 Diameter Keyway Set- Setscrew Setscrew 6 8 7 700 2 8 27 8 9 2 6 7 8 8 200 47 64 6 8 70 64 4 28 80 9 6 7 6 of Shaft Width x Depth screw over Key not over Key 9 27 2 9 64 8 9 7 6 64 4 6 29 80 0 64 7 2 6-8 6 x 2 6 6 8 0 0 2 9 6 4 20 77 6 9 64 4 64 0 82 0 9 64 7 9 6 7 6-8 x 6 8 8 4 2 2 6 2 790 7 4 820 8 6-2 2 x 2 2 2 47 8 2 4 22 80 7 2 2 2 8 2 8 8 2 6-2 8 x 6 8 7 8 2 2 2 2 2 8 7 6 6 790 2 9 64 9 6 2 6 - x 8 2 2 4 8 4 6 2 4 24 82 8 64 6 6 40 70 4 9 2... 6-7 8 x 7 6 2 8 60 4 9 2 6 2 80 8 9 64 6 2 4 6 6 9 2... 6-4 2 x 2 2 2 2 AMERICAN STANDARD NO. 20 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 40 of 6 6 6 20 6 4 26 60 0 6 7 64 7 00 7 Diameter Keyway Set- Setscrew Setscrew 64 6 7 0 6 64 4 7 6 27 60 9 64 8 4 8 2 64 6 8 70 6 2 6 28 60 2 2 8 8 of Shaft Width x Depth screw over Key not over Key 9 2 2 7 64 4 9 90 7 29 64 2 29 60 2 4 8 6 7 6-8 x 6 8 8 0 270 64 2 6 20 60 7 6 6 0 64 2 47 64 9 6 6-2 2 x 2 2 2 7 64 2 6 2 620 8 27 64 6 8 64 7 2 9 6 2 6-2 8 x 6 8 7 8 2 7 4 6 2 4 22 60 8 7 64 6 2 2 640 6 0 6 2 6 - x 8 2 2 4 4 64 2 640 9 8 6 7 8 6 8... 6-7 8 x 7 6 2 8 4 4 2 4 24 64 9 64 7 6 40 70 7 64... 6-4 2 x 2 2 2 2 490 64 4 2 60 0 2 7 2 4 9 9 64... 4 9 6-2 x 8 2 8 AMERICAN STANDARD NO. 40 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 0 7 of 4 8 6 80 7 64 4 26 47 2 8 9 8 7 70 27 Diameter Keyway Set- Setscrew Setscrew 2 4 7 400 7 7 64 9 6 27 47 6 9 6 8 2 7 6 6 8 4 8 9 64 6 8 28 47 4 0 4 of Shaft Width x Depth screw over Key not over Key 9 0 64 2 9 40 8 4 64 6 2 29 47 4 9 64 0 4 7 6-8 x 6 8 8 0 200 9 2 2 6 20 440 9 7 64 6 4 0 470 4 64... 6-2 2 x 2 2 2 4 64 2 4 2 40 9 64 7 6 470 27 64... 2 6-2 8 x 6 8 7 8 2 270 4 4 4 22 460 0 2 64 7 2 2 46 6 64... 2 6 - x 8 2 2 0 6 9 6 2 46 0 6 7 6 40 7 2 2... 6-7 8 x 7 6 2 8 4 7 8 7 8 24 470 2 8 2 40 4 20 29 64... 6-4 2 x 2 2 2 2 60 6 29 64 4 7 6 2 47 2 6 8 6 4 7 2 64... 4 9 6-2 x 8 2 8 AMERICAN STANDARD NO. 60 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 2 27 7 of 64 8 6 2 8 64 6 26 40 4 7 6 0 6 7 60 2 7 Diameter Keyway Set- Setscrew Setscrew 64 8 7 40 8 2 2 6 2 27 40 64... 8 00 2 64 4 8 9 6 6 6 28 40 2 2... of Shaft Width x Depth screw over Key not over Key 9 29 64 2 4 9 6 9 6 64 7 7 6 29 400 6 2 64... 6-2 2 x 2 2 0 70 4 8 2 4 20 7 0 9 2 7 9 6 0 400 7... 2 6-2 8 x 6 8 7 8 200 4 2 2 4 2 8 64 8 6 400 7 8... 2 6-4 x 8 2 2 2 20 27 64 8 22 90 7 8 8 7 8 2 9 8 7 64... 6-7 8 x 7 6 2 8 260 6 64 4 6 2 9 2 64 9 80 20 6... 6-4 2 x 2 2 2 2 4 280 6 22 2 4 6 24 400 2 9 8 40 2 8... 4 9 6-2 x 8 2 8 0 7 8 2 2 400 64 0 4 4 20 26 9 6... 9 6-6 2 2 x 2 AMERICAN STANDARD NO. 200 STD. KEYWAY (Am. Std.) and SETSCREW No. of Max. Max. Max. No. of Max. Max. Max. No. of Max. Max. Max. Min. added to bore for Teeth RPM Hub Bore Teeth RPM Hub Bore Teeth RPM Hub Bore Diam. adequate hub wall Steel Sprockets 6 20 of 64 4 6 2 0 2 7 2 26 290 8 64... 7 4 2 2 Diameter Keyway Set- Setscrew Setscrew 2 7 8 7 24 0 27 2 7 6 27 290 8 64... 8 70 2 2 4 8 2 4 64 8 8 28 290 9 2 2... of Shaft Width x Depth screw over Key not over Key 9 9 4 2 64 2 6 9 26 2 7 6 8 6 29 290 20 29 64... 2 6-2 8 x 6 8 7 8 0 20 2 8 20 270 4 9 4 0 290 2 4... 2 6 - x 8 2 2 4 6 64 6 2 280 4 64 0 2 400 22 64... 6-7 8 x 7 6 2 8 2 6 6 64 22 280 4 27 2... 2 28 22 27 2... 6-4 2 x 2 2 2 2 8 7 9 64 9 6 2 28 2 2... 27 2 64... 4 9 6-2 x 8 2 8 4 20 8 27 64 6 8 24 290 6 29 64... 40 2 29 64... 9 6-6 2 2 x 2 220 9 7 2 6 2 2 290 7 4... 4 20 7 2... 6 9 6-7 2 x 2 2 E-9

Sprocket Selection Application Data and Selection Procedure How to Check Horsepower Rating of Installed Drive. Determine the types of driving and driven loads and obtain the proper service factor, as explained in Steps and 2 under Selection Procedures. 2. Find the multiple strand factor, for the number of chain strands in the drive, from the Multiple Strand Factor Table, in Horsepower Tables (Page E-86 thru E-92).. From the horsepower rating table for the chain pitch, read the figure under the RPM of the small sprocket and to the right of the column giving number of teeth in the small sprocket. 4. The horsepower this drive can properly transmit is as follows: HORSEPOWER Rating Table Multiple Strand DRIVE CAN = ( Horsepower ) X ( Factor ) TRANSMIT Service Factor Center Distance The following general principals should be applied in determining shaft center distances. The center distance must always be greater than one-half the sum of the sprocket outside diameters to avoid interference of teeth. When the speed ratio is greater than to, the center distance should be not less than the sum of the sprocket diameters. Chain wrap should be at least 20 of the small sprocket one-third of the teeth meshing. Longer center distances give greater chain wrap. For average applications a center distance of 0 to 0 pitches of chain is recommended for best results. For pulsating loads, a center distance of 20 to 0 pitches may be desirable. For center distances of 80 pitches or greater, idlers or chain guides should be used to support the chain. Slightly adjustable center distances will provide chain tension as the chain elongates with wear. Alignment Accurate alignment of shafts and sprocket tooth faces provide uniform distribution of the load across the entire chain width and contributes substantially to optimum drive life. Shafting, bearings, and foundations should be suitable to maintain the initial alignment. Periodic maintenance should include an inspection of alignment to insure optimum chain life. Design Horsepower When making drive selections consideration is given to the loads imposed on the chain. Service factors based on the type of equipment to be driven (Table I, Page E62) and the type of input power (Table II, Page E62) are used to compensate for these loads. Horsepower Rating Tables The horsepower ratings in this catalog apply to lubricated single pitch, single strand precision roller chains, both standard and double pitch roller chain. The ratings reflect a service factor of, a chain length of approximately 00 pitches, use of recommended lubrication methods, and a drive arrangement where two aligned sprockets are mounted on parallel horizontal shafts. The horsepower ratings relate to the speed of the smaller sprocket and drive selections are made on this basis, whether the drive is speed reducing or speed increasing. For ratings of multiple strand roller chains refer to Multiple Strand Factor in Horsepower Tables. Lubrication It has been shown that a separate wedge of fluid lubricant is formed in operating chain joints much like that formed in journal bearings. Therefore, fluid lubricant must be applied to assure an oil supply to the joints and minimize metal to metal contact. Lubrication, if supplied in sufficient volume, also provides effective cooling and impact damping at the higher speeds. For this reason, it is important that the lubrication recommendations be followed. The horsepower rating tables shown throughout this catalog, apply only to drives lubricated in the manner specified in the tables. Chain drives should be protected against dirt and moisture and the oil supply kept free of contamination. Periodic oil change is desirable. A good grade of non-detergent petro leum base oil is recommended. Heavy oils and grease are generally too stiff to enter and fill the chain joints. E-60

Application Data and Selection Procedure Sprocket Selection Types of Lubrication There are four basic types of lubrication for chain drives. The recommended type shown in the horsepower rating tables is influenced by chain speed and the amount of power transmitted. These are minimum lubrication requirements and the use of a better type (for example, Type C instead of Type B) is acceptable and may be beneficial. Chain life can vary appreciably depending upon the way the drive is lubricated. The better the lubrication, the longer the chain and sprocket life. For this reason, it is important that the lubrication recommendations be followed when using the rating tables given in this catalog. Lubrication TYPE A Manual Lubrication. Oil applied periodically with brush or spout can. TYPE B Oil Bath or Oil Slinger. Oil level maintained in casing at predetermined height. TYPE C Oil Stream. Oil supplied by circulating pump inside chain loop on lower span. NOTE: Drip Lubrication. Oil applied between link plate edges from a drip lubricator and should be used in clean environments only. Most roller chain drive applications allow considerable latitude in the selection of sprocket sizes and chain pitch, although usually one combination will best fulfill the requirements of power, speed, space limitations and economy. Chain and Sprocket Selection Procedure Steps:. Determine class of driven load. 2. Select service factor.. Calculate design horsepower. 4. Select chain pitch.. Select number of teeth in small sprocket. 6. Determine number of teeth in larger sprocket. 7. Determine center distance. 8. Calculate chain length. Drive Positions Selection of Roller Chain Drives The following information is necessary for the proper selection and design of Roller Chain Drives:. Type of input horsepower (electrical motor, internal combustion engine.) 2. Type of equipment to be driven.. Horsepower to be transmitted. 4. Full load speed of the fastest running shaft. (R.P.M.). Desired speed of the slow speed shaft. (R.P.M.) 6. Diameters of the driving and driven shafts. 7. Center to center distance of shafts. 8. Position of drive and space limitations. 9. Method of lubrication. 0. Conditions of drive, steady or fluctuating load, hours of operation, lubrication. Good Avoid Except with Adjustable Centers Permissible Avoid E-6

Sprocket Selection Application Data and Selection Procedure Step I Step III Uniform Load Agitators, Liquid Blowers, Centrifugal Conveyors, Even Load Elevators, Even Load Fans, Centrifugal Moderate Shock Load Beaters Compressors, Centrifugal Conveyors, Uneven Load Elevators, Uneven Load Grinders, Pulp Kilns and Dryers Heavy Shock Load Brick Machines Compressors Reciprocating Crushers Machines, Reversing or Impact Loads Step II Service Classification Table I Generators Line Shafts, Even Load Machines, Even Load, Non-reversing Pumps, Centrifugal Laundry - Washers and Tumblers Line Shafts, Uneven Load Machines, Pulsating Load, Non-reversing Pumps, Reciprocating, Triplex Screens, Rotary, Even Load Woodworking Machinery Mills, Hammer, Rolling or Drawing Presses Pumps, Reciprocating, Simplex or Duplex Service Factor Table II TYPE OF INPUT POWER Internal Electric Internal SERVICE Combustion Motor Combustion CLASSIFICATION Engine with or Engine with Hydraulic Turbine Mechanical Drive Drive Uniform Load.0.0.2 Moderate Shock Load.2..4 Heavy Shock Load.4..7 Unfavorable Operating Conditions which may be present should be compensated for by adding.2 to the Service Factor for each unfavorable condition. Some of these conditions are listed below:. Multiple Shafts add.2 for each additional shaft. 2. Excessive speed ratios exceeding 7 to.. Heavy starting loads with frequent starts and stops. 4. Conditions of high temperatures, unusually abrasive conditions, or circumstances decreasing lubrication effectiveness or not allowing the use of recommended lubrication procedures. Step IV Step V Determination of Design Horsepower Determine the design horsepower of the required drive using the following procedure.. Determine Service Classification Table I. Unlisted equipment may be classified by its similarity to a listed type. 2. Using Service Classification and Frequency of Service, select the Service Factor Table II. Increase the Service Factor by adding compensation for unfavorable operating conditions.. Multiply the normal operating horsepower of the drive by the Compensated Service Factor to obtain Service Horsepower. Drive Selection Using Design Horsepower computed above, use Trial Selection Chart (Horsepower Tables) on page E84-E8, or enter tables of Horsepower Ratings shown on pages E86 thru E92. Select the smallest pitch chain which has the required horsepower rating for a pinion sprocket turning at the specified RPM. Check to be certain the selected sprocket has a listed maximum bore large enough to accom modate the specified shaft. The tables on pages E-8 thru E-9 gives maximum bores for the usual range of driving sprockets. If the Design Horsepower at the required RPM is greater than the horsepower rating of the largest pitch chain which can operate at that speed, a multiple chain drive should be considered for the application. Selection of drives to operate at speeds somewhat below the maximum rating will increase the life of the drive and quietness of operation. Driving Sprocket In selecting the driving sprocket 7 teeth are recommended as a minimum although teeth are quite often used, and as low as 7 teeth can be cut. When the maximum bore of the 7 tooth sprocket will not accomodate the driving shaft, it is necessary to go to a sprocket with a greater number of teeth. Hardened teeth are recommended for sprockets with 2 teeth or less. E-62

Application Data and Selection Procedure Sprocket Selection Step VI Step VII Step VIII Driven Sprocket (Ratio) The number of teeth selected for the driven sprocket depends upon the driving sprocket chosen and the desired speed of the driven shaft. When space limitations are a factor, the diameter of the driven sprocket sometimes determines the final selection of drive. The recommended maximum speed ratio is 7 to, although higher ratios are occasionally used. It is usually better design, however, for large reductions to use a double reduction drive. Select the driven sprocket size from the Speed Ratio Table on page E-70 using the required speed ratio and size of driver sprocket. Shaft Centers May be calculated from the formula on page E-68 where the sprocket diameters and chain length are known. On many applications the motor base is adjustable, allowing for slight changes in shaft centers. On long centers some form of chain adjuster or take-up is recommended. Chain Length On page E-68 is shown a simple method of computing the length of chain necessary for a drive with given sprocket dimensions and center to center distance of shafts. (See chart on page E-69 for length in ft.) Chain Drive Design Example To select a roller chain drive from a 0 HP electric motor ( 8'' shaft) 200 RPM (0 under load) to a wood working machine shaft at 00 RPM on 0'' centers. Drive conditions moderate pulsating load, good lubrication, 0 hour day operation.. Service class moderate shock load (Table I). 2. Service factor. (Table II).. Design HP. x 0 = DHP. 4. Selection The Horsepower Ratings on page E-84 show that either of the following combinations may be used. No. D40-9 Tooth Smoothest in operation No. 0-8 Tooth Lower drive cost For our purpose we select No. 0 chain and checking the bore find that the 8" shaft can be accommodated with a stock bored to size sprocket. The driven sprocket is found as follows: No. Teeth Driven Sprocket = 8 x 0 (Ratio) = 68.99 or 69 Teeth 00 Since 69 teeth is not a stock size we select 70 teeth. The chain length is calculated as shown on page E-69 and is 42 pitches. Overhung Load When a Sprocket is mounted on a reducer shaft, a calculation should be made to determine the overhung load in pounds using formula on page i-2 in general engineering section. E-6

Sprocket Engineering Engineering Data & Design Horsepower equals,000 foot pounds per minute, or 0 foot pounds per second. In terms of chain load and speed. HP = or HP = Working Load x Ft. Per Min.,000 Working Load x T x P x R.P.M. 96,000 Where T = number of sprocket teeth P = chain pitch Chain Working Load when the horsepower input is known and the chain working load is desired, this can be calculated as follows: Working Load = or = HP x,000 Ft. Per Min. HP x 96,000 T x P x R.P.M. Chain Speed can be determined from the following formula: Chain Speed = T x R.P.M. (Ft. Per Min.) K where T = number of sprocket teeth Constant K (Pitches of Chain Per Foot) PITCH 8" 2" 8" 4" " 4" 2" 4" 2" 2 2" " K 2 24 9.2 6 2 9.6 8 6.8 6 4.8 4 Approx. Wt./Ft. of Standard Roller Chain Number Single Double Triple Quadruple 2.08.8.27..2.46.69.92 4.28 40.4.82.2.64 0.69.8 2.07 2.76 60.04 2.08.2 4.6 80.77.4. 7.08 00 2.9.8 7.77 0.6 20 4.0 8.0 2. 6.20 40.0 0.20.0 20.40 60 6.8.70 20. 27.40 80 9.0 8.20 27.20 6.0 200 0.20 2.00.0 42.00 240 6.90.40 0.00 66.0 Factor of Safety is determined as follows: F.S. = Chain Ultimate Strength Chain Working Load Shaft Torque Ordinarily is greater for the driven shaft than for the driving shaft due to the difference in sprocket sizes and R.P.M. Torque is usually expressed in inch pounds. Torque (Driving Shaft) Torque (Driven Shaft) = HP x 6,000 R.P.M = Working Load R Where a crank arm is used the load transmitted by the arm can be determined as follows: Crank arm Load = Driven Shaft Torque r or = ChainiWorking Load x R r Catenary Tension imposed by reason of the weight of chain can be approximated as follows: W x L Catenary Tension = 2 8 x S + (W x S) where W = weight of chain (lbs. per ft.) S = chain sag (feet) = 2% to % of shaft centers approx. L = Shaft centers in feet. E-64

Sprocket Engineering Engineering Data & Design Conveyor Chains Chains used in the design of conveyors should be selected on the basis of the chain pull imposed by the application and the permissible or maximum working load of the chain. In some instances a larger pitch chain than is necessary may be selected due to the desired attachment spacing, and the effect in this case would be to increase the life of the conveyor. HORIZONTAL CONVEYORS Chain Pull The force or pull required to move a conveyor includes the pull necessary to move the weight of chain and material and the frictional resistance of the chain parts on the runways. The following formulas may be used in calculating the total chain pull. The same formula applies in the case of single or parallel strand chain conveyors, but in the case of parallel strand conveyors, the pull per chain is one-half of the figure calculated from the formula. INCLINED CONVEYORS Total pull of chains = f H (W + P) NOTE: When lower strand of conveyor drags on runway above formula becomes f H (W + 2P). VERTICAL CONVEYORS Total pull of chains = V (W + P) H (feet) = Horizontal projection of conveyor length. V (feet) = Vertical projection of conveyor length. W (pounds) = Weight of material handled per foot of conveyor length. P (pounds) = Weight per foot of all moving conveyor parts (single or two strand). f = Coefficient of friction of chain on runway. Total pull of chains = f H (W + P) + V (W + P) NOTE: When lower strand of conveyor drags on runway the factor P (f H V) should be added to above formula unless V is greater than f H. Value of Coefficient F Sliding steel on iron or steel...2% Rolling friction...% (If material or other than the usual chain parts are in contact with the runway, the coefficient should be increased to compensate for the added resistance.) E-6

Sprocket Engineering Chain Drive Selection Step : Prime Driver: Driven Comp: Type & Description Rated - H.P. R.P.M. Type & Description R.P.M. Hours/Day Center Distance: " " " Maximum Minimum Nominal Step 2: Service Classification (Step I Page E-62) Step : Service Factor (Include additions to basic factor) (Step II Page E-62) Step 4: Determine Design H.P. 00000000000000000000000 00000000000000000000000 = 00000000000000000000 H.P. Service Factor H.P. Design Step : Speed Ratio 0000000000000000000000000 000000000000000000000000000 = 00000000000000000000 RPM Faster Shaft RPM Slower Shaft Ratio (E-72) Step 6: From selector chart, select proper chain pitch & driver sprocket. (check Martin Catalog page E-84) A. 00000000000000000000 B. 00000000000000000000 00000000000000000000 Chain Pitch Driver Sprocket Maximum Bore (Pages E-6 thru E-2) Step 7: From ratio chart, select proper driven sprocket. C. 00000000000000000000 00000000000000000000 Driven Sprocket Maximum Bore Step 8: Check manufacturer s catalog for maximum bore recommended & final stock selection. (Pages E-6 thru E-2) Step 9: Review Horsepower table for type of lubrication required. TYPE: A B C (Pages E-6 and E-86 thru E-92) OR TYPE: 2 (Pages E-9 and E-92) Step 0: 0000000000000000000000000 0000000000000000000000000 0000000000000000000000000 Center Dist. (inches) Chain Pitch Center Dist. (pitches) Step : Formula for chain length = 2C + N+n + A 2 C Where: E-66 C = Center Dist. in pitches N = Number of teeth in Driven Sprocket n = Number of teeth in Driver Sprocket A = Value from table tabulated for N - n values

Sprocket Hardening Brinell, Rockwell and Scleroscope Hardness Numbers with Corresponding Tensile Strength Brinell Rockwell C Scleroscope Tensile Strength 0 MM Ball 20 Cone Shore 000 Lb.,000 Kg. 0 Kg. Model C Per Sq. In. 74 68 00 68 72 66 9 2 682 64 9 7 6 62 87 24 627 60 84 60 8 8 298 78 7 78 287 7 276 4 72 266 4 2 70 26 49 0 67 247 477 49 6 28 46 47 6 229 444 46 6 220 429 4 9 22 4 44 7 204 40 42 96 88 4 4 89 7 40 2 82 62 8 76 7 49 70 4 6 48 6 46 60 2 4 4 44 0 02 2 4 46 29 42 42 28 0 40 8 277 29 9 4 269 28 8 262 26 7 28 2 2 7 2 248 24 6 22 24 2 9 2 22 4 6 229 2 22 20 2 0 Rockwell B 6" Ball 00 Kg. 27 97 07 22 96 04 207 9 0 0 202 94 0 99 97 9 29 97 92 92 28 9 87 9 28 9 8 90 27 9 79 89 27 89 74 88 26 87 Material All Martin stock sprockets are made of quality steel poured to our specifications. Bar size sprockets normally include sizes up to 7" or 7 2" in diameter type B, BS, QD, TB single, double & triple width. And can easily be electrical induction or flame hardened to Rockwell C 40 to 0. Plate sprockets normally include sizes 7 2" in diameter and larger type B, BS, C, QD, TB single, double, & triple width fabricated and type A all diameters. This material would have to 40 points of carbon and can be induction or flame hardened to Rockwell C 0 to 4. Degree of hardness obtainable and method depends on size of sprocket. Special quality steel can be used for large quantities or madeto-order sprockets if specified. Hardening Recommendations Hardened teeth substantially increases sprocket life and is recommended under conditions listed below:. Pinion or driver where the reduction is 4: or greater. 2. Slow speed drives (00 FPM or less).. Where safety factor is less than standard. 4. Unusual abrasive conditions. Degree of hardness this is governed by conditions prevailing each application for stock sprockets these general suggestions may be used as guide lines:. Rockwell C to 0 pinion or driver. 2. Rockwell C 2 to 40 larger diameter or driver sprockets. Induction or flame hardening will be used as best suited to the individual application. The diameter and pitch of the sprocket govern the method used. Caution should be used to avoid file hardness (Rockwell C 62 and above) as it is not recommended for sprockets due to brittleness. Depth of hardening should be limited so as to provide case only on the wear surfaces with a tough resilient core to absorb shock (see illustration tooth section). Note: Hardening cannot be accurately checked with a file stationary or portable hardness testers should be used for conclusive results. Hardened Zone Working Face 60 Max No Special Hardness Required Hardened Tooth Section Depth of Hardness Required E-67

Chain Drive Engineering Chain Length Calculation The following equation may be used to determine the chain length required for any two-sprocket drive. L = 2C + N + n +.0 (N n)02 or substituting A for.0 (N n)0 2, L = 2C + N + n + A 2 4C 4 2 C where: C = Shaft Center Distance in pitches, L = Length of chain in pitches, N = Number of teeth in larger sprocket, n = Number of teeth in smaller sprocket, π =.46, A = Value from table below tabulated for values of N-n, P = Pitch of chain. CENTER DISTANCE NOTE: The method described with above table of constants is sufficiently accurate for practically all commercial chain drives. When, however, a high degree of precision is necessary, especially if the drive is vertical, the following formula is useful in determining the exact centers for chain length already determined. Calculation of shaft centers The following formula is useful in determining the approximate centers in inches for chain lengths in pitches already determined. C = P { 2L N n + (2L N n) 2 0.80 (N n) 2} 8 Values of A For Chain Length Calculation N-n A N-n A N-n A N-n A N-n A N-n A.0 2 2.94 6 00.4 94 22.82 2 9.79 6 66.44 2.0 27.8 64 0.7 9 228.6 26 402.4 7 624.7.2 4 29.28 6 07.02 96 2.44 27 408. 8 62. 4.4.0 66 0.4 97 28. 28 4.0 9 640.8.6 6 2.8 67.7 98 24.27 29 42.2 60 648.46 6.9 7 4.68 68 7. 99 248.26 0 428.08 6 66.9 7.24 8 6.8 69 20.60 00 2.0 44.69 62 664.77 8.62 9 8. 70 24.2 0 28.9 2 44.6 6 67.00 9 2.0 40 40. 7 27.69 02 26.4 448.07 64 68.28 0 2. 4 42.8 72. 0 268.7 4 44.8 6 689.62.06 42 44.68 7 4.99 04 27.97 46.64 66 698.00 2.6 4 46.84 74 8.7 0 279.27 6 468. 67 706.44 4.28 44 49.04 7 42.48 06 284.67 7 47.42 68 74.92 4 4.96 4.29 76 46. 07 290.0 8 482.9 69 72.46.70 46.60 77 0.8 08 29.4 9 489.4 70 72.0 6 6.48 47.9 78 4. 09 00.9 40 496.47 7 740.68 7 7.2 48 8.6 79 8.09 0 06.0 4 0.9 72 749.7 8 8.2 49 60.82 80 62. 2.09 42 0.76 7 78. 9 9.4 0 6. 8 66.9 2 7.74 4 7.98 74 766.90 20 0. 6.88 82 70.2 2.44 44 2.2 7 77.74 2.7 2 68.49 8 74.0 4 29.9 4 2.7 76 784.6 22 2.26 7. 84 78.7 4.99 46 9.94 77 79.7 2.40 4 7.86 8 8.0 6 40.84 47 47.6 78 802.7 24 4.9 76.62 86 87.4 7 46.7 48 4.8 79 8.6 2.8 6 79.44 87 9.7 8 2.70 49 62.6 80 820.70 26 7.2 7 82.0 88 96.6 9 8.70 0 69.9 8 829.8 27 8.47 8 8.2 89 200.64 20 64.76 77.6 82 89.04 28 9.86 9 88.7 90 20.8 2 70.86 2 8.2 8 848.29 29 2.0 60 9.9 9 209.76 22 77.02 92.96 84 87.8 0 22.80 6 94.2 92 24.40 2 8.22 4 600.7 8 866.9 24.4 62 97.7 9 29.08 24 89.48 608.6 E-68

Chain Drive Engineering Roller Chain Lengths No. Of Pitches 8 2 8 CHAIN PITCH INCHES 4 4 2 4 2 2 2 CHAIN LENGTHS FEET 0.0 0.047 0.02 0.062 0.08 0.042 0.20 0.48 0.667 0.208 0.200 2.062.08.042.20.667.208.200.297..467.000.098.20.6.87.200.2.70.47.000.620.700 4.20.667.208.200..467.000.8.6667.8.0000.6.208.2604.2.467.208.620.7292.8.047.200 6.87.200.2.70.000.620.700.870.0000.200.000 7.288.297.646.47.8.7292.870.0208.667.48.700 8.200..467.000.6667.8.0000.667..6667 2.0000 9.28.70.4688.62.700.97.20.2.000.870 2.200 0.2.467.208.620.8.047.200.48.6667 2.08 2.000.48.484.729.687.967.49.70.604.8 2.927 2.700 2.70.000.620.700.0000.200.000.700 2.000 2.000.0000.406.47.677.82.08.42.620.898 2.667 2.708.200 4.47.8.7292.870.667.48.700 2.047 2. 2.967.000.4688.620.78.97.200.62.870 2.87 2.000.20.700 6.000.6667.8.0000..6667 2.0000 2. 2.6667. 4.0000 7..7084.884.062.467.7709 2.20 2.479 2.8.47 4.200 8.62.700.97.20.000.870 2.200 2.620.0000.700 4.000 9.98.797.9896.87.8.9792 2.70 2.7708.667.98 4.700 20.620.8.047.200.6667 2.08 2.000 2.967. 4.667.0000 2.66.870.098.2.700 2.87 2.620.062.000 4.70.200 22.687.967.48.70.8 2.297 2.700.208.6667 4.8.000 2.788.984.979.47.966 2.99 2.870.4.8 4.797.700 24.700.0000.200.000 2.0000 2.000.0000.000 4.0000.0000 6.0000 2.78.047.02.62 2.08 2.6042.20.648 4.667.208 6.200 26.82.08.4.620 2.667 2.708.200.797 4..67 6.000 27.848.20.4062.687 2.200 2.82.70.97 4.000.620 6.700 28.870.667.48.700 2. 2.967.000 4.08 4.6667.8 7.0000 29.906.2084.04.82 2.467.0209.620 4.229 4.8 6.047 7.200 0.97.200.62.870 2.000.20.700 4.70.0000 6.200 7.000.9688.297.646.97 2.8.2292.870 4.208.667 6.48 7.700 2.0000..6667 2.0000 2.6667. 4.0000 4.6667. 6.6667 8.0000.0.70.788 2.062 2.700.47 4.20 4.82.000 6.870 8.200 4.062.467.7708 2.20 2.8.47 4.200 4.98.6667 7.08 8.000.098.484.8229 2.87 2.967.649 4.70.04.8 7.297 8.700 6.20.000.870 2.200.0000.700 4.000.200 6.0000 7.000 9.0000 7.6.47.927 2.2.08.842 4.620.98 6.667 7.708 9.200 8.87.8.979 2.70.667.98 4.700.47 6. 7.967 9.000 9.288.620 2.02 2.47.200 4.062 4.870.087 6.000 8.20 9.700 40.200.6667 2.08 2.000. 4.667.0000.8 6.6667 8. 0.0000 4.28.7084 2.4 2.62.467 4.2709.20.979 6.8 8.47 0.200 42.2.700 2.87 2.620.000 4.70.200 6.20 7.0000 8.700 0.000 4.48.797 2.296 2.687.8 4.4792.70 6.2708 7.667 8.98 0.700 44.70.8 2.296 2.700.6667 4.8.000 6.467 7. 9.667.0000 4.406.870 2.47 2.82.700 4.687.620 6.62 7.000 9.70.200 46.47.967 2.98 2.870.8 4.797.700 6.708 7.6667 9.8.000 47.4688.984 2.4479 2.97.967 4.899.870 6.84 7.8 9.797.700 48.000 2.0000 2.000.0000 4.0000.0000 6.0000 7.0000 8.0000 0.0000 2.0000 49. 2.047 2.2.062 4.08.042 6.20 7.48 8.667 0.028 2.200 0.62 2.08 2.6042.20 4.667.208 6.200 7.297 8. 0.467 2.000.98 2.20 2.66.87 4.200.2 6.70 7.47 8.000 0.620 2.700 2.620 2.667 2.708.200 4..467 6.000 7.8 8.6667 0.8.0000.66 2.2084 2.7604.2 4.467.209 6.620 7.729 8.8.047.200 4.687 2.200 2.82.70 4.000.620 6.700 7.870 9.0000.200.000.788 2.297 2.8647.47 4.8.7292 6.870 8.0208 9.667.48.700 6.700 2. 2.967.000 4.6667.8 7.0000 8.667 9..6667 4.0000 7.78 2.70 2.9688.62 4.700.97 7.20 8.2 9.000.870 4.200 8.82 2.467.0208.620 4.8 6.047 7.200 8.48 9.6667 2.08 4.000 9.848 2.484.0729.687 4.967 6.49 7.70 8.604 9.8 2.297 4.700 60.870 2.000.20.700.0000 6.200 7.000 8.700 0.0000 2.000.0000 6.906 2.47.77.82.08 6.42 7.620 8.898 0.667 2.708.200 62.97 2.8.2292.870.667 6.48 7.700 9.047 0. 2.967.000 6.9688 2.620.28.97.200 6.62 7.870 9.87 0.000.20.700 64 2.0000 2.6667. 4.0000. 6.6667 8.0000 9. 0.6667. 6.0000 6 2.0 2.7084.84 4.062.467 6.7709 8.20 9.479 0.8.47 6.200 66 2.062 2.700.47 4.20.000 6.870 8.200 9.620.0000.700 6.000 67 2.098 2.797.4897 4.87.8 6.9792 8.70 9.7708.667.98 6.700 68 2.20 2.8.47 4.200.6667 7.088 8.000 9.967. 4.667 7.0000 69 2.6 2.870.98 4.2.700 7.87 8.620 0.062.000 4.70 7.200 70 2.87 2.967.648 4.70.8 7.297 8.700 0.208.6667 4.8 7.000 7 2.288 2.984.6979 4.47.967 7.99 8.870 0.4.8 4.797 7.700 72 2.200.0000.700 4.000 6.0000 7.000 9.0000 0.000 2.0000.0000 8.0000 7 2.28.047.802 4.62 6.08 7.6042 9.20 0.648 2.667.208 8.200 74 2.2.08.84 4.620 6.667 7.708 9.200 0.797 2..467 8.000 7 2.48.20.9062 4.687 6.200 7.82 9.70 0.97 2.000.620 8.700 80 2.000. 4.667.0000 6.6667 8. 0.0000.6667. 6.6667 20.0000 8 2.66.47 4.427.2 7.08 8.842 0.620 2.98 4.667 7.708 2.200 90 2.82.700 4.687.620 7.000 9.70.200.20.0000 8.700 22.000 9 2.9688.984 4.9479.97 7.967 9.899.870.84.8 9.797 2.700 00.20 4.667.208 6.200 8. 0.467 2.000 4.8 6.6667 20.8 2.0000 E-69

Chain Drive Engineering Speed Ratios For Sprocket Combinations Driver Sprocket Teeth 9 0 2 4 6 7 8 9 20 2 22 2 24 2 26 DRIVEN SPROCKET TEETH 9.00 0..00.22.0.00 2..20.09.00.44.0.8.08.00 4.6.40.27.7.08.00.67.0.6.2..07.00 6.78.60.4..2.4.07.00 7.89.70..42..2..06.00 8 2.00.80.64.0.8.29.20..06.00 9 2..90.7.8.46.6.27.9.2.06.00 20 2.22 2.00.82.67.4.4..2.8..0.00 2 2. 2.0.9.7.6.0.40..2.7.0.0.00 22 2.44 2.20 2.00.8.69.7.47.8.29.22.6.0.0.00 2 2.6 2.0 2.09.92.77.64..44..28.2..09.04.00 24 2.67 2.40 2.8 2.00.8.7.60.0.4..26.20.4.09.04.00 2 2.78 2.0 2.27 2.08.92.79.67.6.47.9.2.2.9.4.09.04.00 26 2.89 2.60 2.6 2.7 2.00.86.7.6..4.7.0.24.8..08.04.00 27.00 2.70 2.4 2.2 2.08.9.80.69.9.0.42..29.2.7.2.08.04 28. 2.80 2.4 2. 2. 2.00.87.7.6.6.47.40..27.22.7.2.08 29.22 2.90 2.64 2.42 2.2 2.07.9.8.7.6..4.8.2.26.2.6.2 0..00 2.7 2.0 2. 2.4 2.00.88.76.67.8.0.4.6..2.20..44.0 2.82 2.8 2.8 2.2 2.07.94.82.72.6..48.4..29.24.9 2.6.20 2.9 2.67 2.46 2.28 2. 2.00.88.78.68.60.2.4.9..28.2.67.0.00 2.7 2.4 2.6 2.20 2.06.94.8.74.6.7.0.4.8.2.27 4.78.40.09 2.8 2.62 2.4 2.27 2. 2.00.89.79.70.62..48.42.6..89.0.8 2.92 2.69 2.0 2. 2.9 2.06.9.84.7.67.9.2.46.40.4 6 4.00.60.27.00 2.77 2.7 2.40 2.2 2.2 2.00.89.80.7.6.7.0.44.8 7 4..70.6.08 2.8 2.64 2.47 2. 2.8 2.06.9.8.76.68.6.4.48.42 8 4.22.80.4.7 2.92 2.7 2. 2.8 2.24 2. 2.00.90.8.7.6.8.2.46 9 4..90..2.00 2.79 2.60 2.44 2.29 2.7 2.0.9.86.77.70.6.6.0 40 4.44 4.00.64..08 2.86 2.67 2.0 2. 2.22 2.0 2.00.90.82.74.67.60.4 4 4.6 4.0.7.42. 2.9 2.7 2.6 2.4 2.28 2.6 2.0.9.86.78.7.64.8 42 4.67 4.20.82.0.2.00 2.80 2.6 2.47 2.4 2.2 2.0 2.00.9.8.7.68.6 4 4.78 4.0.9.8..07 2.87 2.69 2. 2.9 2.26 2. 2.0.9.87.79.72.6 44 4.89 4.40 4.00.67.9.4 2.9 2.7 2.9 2.44 2.2 2.20 2.0 2.00.9.8.76.69 4.00 4.0 4.09.7.46.2.00 2.8 2.6 2.0 2.7 2.2 2.4 2.04.96.88.80.7 46. 4.60 4.8.8.4.29.07 2.88 2.7 2.6 2.42 2.0 2.9 2.09 2.00.92.84.77 47.22 4.70 4.27.92.62.6. 2.94 2.76 2.6 2.47 2. 2.24 2.4 2.04.96.88.8 48. 4.80 4.6 4.00.69.4.20.00 2.82 2.67 2.2 2.40 2.28 2.8 2.09 2.00.92.84 49.44 4.90 4.4 4.08.77.0.27.06 2.88 2.72 2.8 2.4 2. 2.2 2. 2.04.96.88 0.6.00 4. 4.7.8.7.. 2.94 2.78 2.6 2.0 2.8 2.27 2.7 2.08 2.00.92.67.0 4.64 4.2.92.64.40.9.00 2.8 2.68 2. 2.4 2.2 2.22 2. 2.04.96 2.78.20 4.7 4. 4.00.7.47.2.06 2.89 2.74 2.60 2.48 2.6 2.26 2.7 2.08 2.00.89.0 4.82 4.42 4.08.79...2 2.94 2.79 2.6 2.2 2.4 2.0 2.2 2.2 2.04 4 6.00.40 4.9 4.0 4..86.60.8.8.00 2.84 2.70 2.7 2.4 2. 2.2 2.6 2.07 6..0.00 4.8 4.2.9.67.44.24.06 2.90 2.7 2.62 2.0 2.9 2.29 2.20 2.2 6 6.22.60.09 4.67 4. 4.00.7.0.29. 2.9 2.80 2.67 2. 2.4 2. 2.24 2. 7 6..70.8 4.7 4.8 4.07.80.6..7.00 2.8 2.7 2.9 2.48 2.8 2.28 2.9 8 6.44.80.27 4.8 4.46 4.4.87.6.4.22.0 2.90 2.76 2.64 2.2 2.42 2.2 2.2 9 6.6.90.6 4.92 4.4 4.2.9.69.47.28. 2.9 2.8 2.68 2.7 2.46 2.6 2.27 60 6.67 6.00.4.00 4.6 4.28 4.00.7..4.6.00 2.86 2.72 2.6 2.0 2.40 2.0 68 7. 6.80 6.8.66.2 4.86 4.4 4.2 4.00.78.8.40.24.09 2.96 2.84 2.72 2.6 70 7.78 7.00 6.6.8.8.00 4.67 4.8 4.2.89.68.0..8.0 2.92 2.80 2.69 72 8.00 7.20 6.4 6.00.4.4 4.80 4.0 4.24 4.00.79.60.4.27..00 2.88 2.77 76 6.9 6..84.4.07 4.7 4.47 4.2 4.00.80.62.4..7.04 2.92 80 7.27 6.66 6..7.4.00 4.70 4.4 4.2 4.00.8.6.48.4.20.07 84 7.00 6.46 6.00.60.2 4.94 4.67 4.42 4.20 4.00.8.6.0.6.2 9 7. 6.78 6..94.9.28.00 4.7 4.2 4.2 4..96.80.6 96 7.8 6.8 6.40 6.00.64.4.0 4.80 4.7 4.6 4.8 4.00.84.69 02 7.28 6.80 6.8 6.00.67.7.0 4.86 4.6 4.44 4.2 4.08.92 2 7.00 6.9 6.2.89.60..08 4.87 4.67 4.48 4.0 Martin stock sprockets in pitches No. 40 through No. 00 are available with 8 to 60 teeth inclusive and in all common larger sizes for all pitches. E-70

Sprocket Diameters No. 2 4" Pitch No. Pitch Outside Caliper No. Pitch Outside Caliper No. Pitch Outside Caliper Teeth Diameter Diameter Diameter Teeth Diameter Diameter Diameter Teeth Diameter Diameter Diameter 6.00.8.70 7.62.796.2 6 0.82 0.970 0.69 7.76.669.42 72.72.876.602 7 0.90.00 0.772 8.6.74.2 7.8.96.680 8 0.98.0 0.8 9.7.87.9 74.89 6.0.76 9.062.209 0.92 0.809.99.679 7.970 6..89 40.42.289.02.887.002.748 76 6.00 6.9.920 4.22.69.09 2.966.08.86 77 6.29 6.274.998 42.0.448.7.04.67.907 78 6.209 6.4 6.079 4.80.28.20 4.24.246.994 79 6.288 6.4 6.7 44.460.607.0.20.26.066 80 6.68 6. 6.28 4.40.687.409 6.282.407.2 8 6.448 6.9 6.7 46.69.767.489 7.6.487.22 82 6.27 6.672 6.97 47.699.846.68 8.440.68.0 8 6.607 6.72 6.476 48.779.926.649 9.9.648.8 84 6.686 6.82 6.6 49.88 2.00.727 20.98.729.468 8 6.766 6.9 6.6 0.98 2.084.807 2.678.809.4 86 6.84 6.99 6.7 2.07 2.64.886 22.77.889.627 87 6.92 7.070 6.794 2 2.097 2.244.966 2.86.969.702 88 7.004 7.0 6.874 2.76 2.2 2.04 24.9 2.049.78 89 7.084 7.20 6.9 4 2.26 2.40 2.2 2.99 2.29.86 90 7.64 7.09 7.04 2. 2.482 2.204 26 2.074 2.209.944 9 7.24 7.89 7.2 6 2.4 2.62 2.284 27 2.4 2.289 2.020 92 7.2 7.468 7.9 7 2.494 2.64 2.6 28 2.2 2.69 2.0 9 7.402 7.48 7.27 8 2.74 2.72 2.444 29 2.2 2.449 2.79 94 7.482 7.628 7.2 9 2.64 2.80 2.2 0 2.92 2.29 2.262 9 7.6 7.707 7.40 60 2.7 2.88 2.60 2.47 2.609 2.8 96 7.64 7.787 7. 6 2.8 2.960 2.682 2 2. 2.688 2.42 97 7.720 7.866 7.89 62 2.89.09 2.762 2.60 2.768 2.497 98 7.800 7.946 7.670 6 2.972.9 2.84 4 2.70 2.848 2.80 99 7.880 8.026 7.749 64.0.99 2.92 2.789 2.928 2.66 00 7.99 8.0 7.829 6..278.000 6 2.869.008 2.79 0 8.09 8.8 7.908 66.2.7.080 7 2.948.087 2.8 02 8.8 8.264 7.988 67.290.47.9 8.028.67 2.898 0 8.98 8.44 8.067 68.70.7.29 9.07.247 2.97 04 8.277 8.424 8.47 69.40.97.8 40.87.27.07 0 8.7 8.0 8.226 70.29.676.98 4.266.406.4 06 8.47 8.8 8.07 7.608.76.477 42.46.486.26 07 8.6 8.662 8.8 72.688.8.8 4.42.66.29 08 8.96 8.742 8.466 7.768.9.67 44.0.646.7 09 8.67 8.822 8.44 74.847.99.77 4.84.72.42 0 8.7 8.90 8.62 7.927 4.074.796 46.664.80.4 8.84 8.98 8.70 76 4.006 4.4.876 47.74.88.6 2 8.94 9.060 8.784 77 4.086 4.2.9 48.82.964.69 8.994 9.40 8.86 78 4.66 4. 4.0 49.902 4.044.770 4 9.07 9.220 8.94 79 4.24 4.92 4.4 0.982 4.24.82 9. 9.299 9.022 80 4.2 4.472 4.9 4.06 4.20.929 6 9.22 9.79 9.02 8 4.404 4. 4.27 2 4.4 4.28 4.0 7 9.2 9.48 9.8 82 4.484 4.6 4. 4.220 4.6 4.088 8 9.9 9.8 9.26 8 4.64 4.7 4.4 4 4.00 4.442 4.70 9 9.47 9.68 9.40 84 4.64 4.790 4. 4.79 4.22 4.247 20 9.0 9.697 9.420 8 4.722 4.870 4.9 6 4.49 4.602 4.29 2 9.60 9.777 9.499 86 4.80 4.949 4.672 7 4.8 4.68 4.407 22 9.709 9.86 9.79 87 4.882.029 4.7 8 4.68 4.76 4.488 2 9.789 9.96 9.68 88 4.96.09 4.8 9 4.697 4.84 4.66 24 9.869 0.06 9.79 89.04.88 4.90 60 4.777 4.920 4.647 2 9.949 0.09 9.88 90.20.268 4.990 6 4.87.000 4.72 26 0.028 0.7 9.898 9.200.47.069 62 4.96.080 4.806 27 0.08 0.2 9.977 92.279.427.49 6.06.9 4.884 28 0.87 0.4 0.07 9.9.07.228 64.09.29 4.96 29 0.267 0.44 0.6 94.49.86.08 6.7.9.044 0 0.46 0.49 0.26 9.8.666.87 66.24.98.24 0.426 0.7 0.29 96.98.74.467 67.4.478.20 2 0.0 0.62 0.7 97.678.824.47 68.4.8.28 0.8 0.72 0.44 98.77.904.626 69.49.67.62 4 0.664 0.8 0.4 99.87.984.706 70.72.77.442 0.744 0.89 0.6 200.96 6.064.786 Odd tooth bottom diameters equal pitch diameters minus.0". ROLLER CHAIN SPROCKET DIAMETERS E-7