Commissioning chilled water TES systems

Similar documents
Variable Primary Systems Add Photo/Graphic

Product Catalog. Precision Control DeltaPValves. guaranteed delta T 10-year warranty made in the USA

ABB life cycle services Uninterruptible power supplies

VAV AIRFLOW CONTROL. Reliable Without Limitations? Ron Simens, Facility Dynamics Engineering. 21 st National Conference on Building Commissioning

Components of Hydronic Systems

Energy Management Through Peak Shaving and Demand Response: New Opportunities for Energy Savings at Manufacturing and Distribution Facilities

APPLICATION GUIDE. ACH580 Managing total cost of ownership of HVAC systems

Understanding the benefits of using a digital valve controller. Mark Buzzell Business Manager, Metso Flow Control

Balancing Basics. Mike Weisman, ASHRAE Treasurer. ASHRAE Golf Outing: May 18 th, 2018! HEATHERWOODE

20th. SOLUTIONS for FLUID MOVEMENT, MEASUREMENT & CONTAINMENT. Do You Need a Booster Pump? Is Repeatability or Accuracy More Important?

L-force. MF three-phase AC motors. Phone: Fax: Web: -

DER Commissioning Guidelines Community Scale PV Generation Interconnected Using Xcel Energy s Minnesota Section 10 Tariff Version 1.

Emergi-Lite EMEX central power supply solutions

Compressed natural gas (CNG) is considered

MANUAL VALVES VS. AUTOMATIC FLOW LIMITING VALVES

NEBBinar: A TAB Professional s Wish List: Equipment Procedures & Issues. March 27, 2014

Demand Based Static Pressure Reset Control for Laboratories

Hydraulics in building systems. siemens.com/buildingtechnologies

Modify Section by adding subsection.02 per the following. Remainder of section is unchanged.

How to: Test & Evaluate Motors in Your Application

Modern Pump Selection for System Efficiency. By: Kyle DelPiano - Business Development Manager, Bell & Gossett

Unitil Energy Demand Response Demonstration Project Proposal October 12, 2016

Compressed Natural Gas Snow Plows

Emergi-Lite Experts in central power supply systems

Exceeding the standards with MNS

Energy Performance Information Request Timeline

Toronto Parking Authority Fleet Vehicle Replacement

INFINITY ZONING QUICK START GUIDE

Chapter 2. The Vehicle-Tank Metering System

Chapter 5 Oxygen Based NOx Control

Genbright LLC. AEE Technical Round Table 11/15/2017

IMPROVED HIGH PERFORMANCE TRAYS

UNCLASSIFIED FY 2017 OCO. FY 2017 Base

A Study of Lead-Acid Battery Efficiency Near Top-of-Charge and the Impact on PV System Design

Installation of High Speed Blowers

Research Brief. Simulation and verification of results from 125mph current collection modelling for two pantographs. T841 - January 2011.

Unit C: Agricultural Power Systems. Lesson 6: Using Multiple Cylinder Engines

Demand Charges to Deal With Net Energy Metering: Key Considerations

Worldwide Pollution Control Association

Air Conditioning Clinic. HVAC System Control One of the Systems Series TRG-TRC017-EN

MOTOR SURVEY. Solutions for Industry

Japanese version of Connect & Manage for expanded introduction of renewable energies

Hydraulics in building systems

The SGT5-8000H proven in commercial operation

Final Report. Hollywood Street Services Yard CNG Fueling Station. City of Los Angeles Department of General Services

Fluid Flow Conditioning

Selective Coordination

Solid Waste Management

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 2900 MIXER TO BE USED BY CNRL FOR BITUMEN VISCOSITY CONTROL Report R0. By Kimbal A.

NEW HAVEN HARTFORD SPRINGFIELD RAIL PROGRAM

Power Quality and Protective Device Coordination: Problems & Solutions Part 1 Undersizing of Utility Main Service Transformers

Earlier this year, Cheng Power

Low and medium voltage service. Power Care Customer Support Agreements

Table of Contents Introduction 3 Chapter 2: Operation 4 Chapter 3: Components 5 Chapter 4: Specifications 8

The oil fields in the NCS are located in the North Sea, Norwegian Sea, and Barents Sea.

Technical information No. 01. IT systems. The basis for reliable power supply

Extended requirements on turbogenerators

Structural Analysis Of Reciprocating Compressor Manifold

A Practical Guide to Free Energy Devices

Offshore Application of the Flywheel Energy Storage. Final report

Written By : Simon Teo B. ENG (HONS)

Long-Term Costs and Savings of Properly Rewound Motors

VAV TERMINAL UNIT KYODO-ALLIED TECHNOLOGY PTE LTD

Project Report Cover Page

SHAFT ALIGNMENT FORWARD

M T E C o r p o r a t i o n. dv/dt Filter. Series A VAC USER MANUAL PART NO. INSTR REL MTE Corporation

Fan Efficiency Grades and System Effect and Their Effects on HVAC Systems

ETA-TP008 Revision 2 Effective March 1, Battery Charging

EXHIBIT A EAST VALLEY WATER DISTRICT SCHEDULE OF WATER AND WASTEWATER RATES AND CHARGES

Project Title: Lowertown Ballpark (CHS Field) Solar Arrays Contract Number: EP4-34 Milestone Number: 1 Report Date: June 21, 2016

In order to discuss powerplants in any depth, it is essential to understand the concepts of POWER and TORQUE.

XSP IP66 Series LED Street Lights

Header. Reasonableness Test RT 007/11 Balhannah & Uraidla 66 / 33 kv Substations. RT Balhannah and Uraidla - Final Draft Page 1 of 8

Demystifying the Use of Frameless Motors in Robotics

Net Metering in Missouri

Thermal Management: Key-Off & Soak

Ene-5 Peak Energy Demand Reduction

Electrical safety and reliability: Selective coordination. Protect with selective coordination

Galapagos San Cristobal Wind Project. VOLT/VAR Optimization Report. Prepared by the General Secretariat

A CO2-fund for the transport industry: The case of Norway

CALIBRATION LEARNING OBJECTIVES

W91/W94 Series TEMPERATURE REGULATORS. Self-Operated Temperature Regulators. Design & Operation W91 Non-Indicating W94 Dial Thermometer

Making Electricity since December Melody Collis Facilities Engineering Assistant Manager Toyota Motor Manufacturing Canada

City of Storm Lake Fire Department Heavy Rescue Specifications

www. ElectricalPartManuals. com

Variable Speed Limit Pilot Project in BC

Advancements in Compressor Anti-surge Control Valve Solutions

SAE Baja - Drivetrain

MOTORS, VOLTAGE, EFFICIENCY AND WIRING. A Deeper Understanding

Grid Impacts of Variable Generation at High Penetration Levels

Motor Protection Fundamentals. Motor Protection - Agenda

ABB Motors and Generators Training. Sharing knowledge and creating value

Guidelines for Modernizing Existing Electrical Switchgear in LV and MV Networks

Funding Scenario Descriptions & Performance

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor

Energy efficiency with certified products

Source-Side Fuse/Load-Side Recloser Coordination

Tips & Technology For Bosch business partners

2019 BQDM Extension Auction Frequently-Asked Questions Updated January 29, 2018

YASKAWA AC Drives. Compressor Applications Application Overview

Transcription:

Commissioning chilled water TES systems Chilled water thermal energy storage systems should be as simple as possible. The success of a project depends on documenting and continually evaluating the owner s project requirements. Key basis-of-design items for a stratified system are the peak day cooling load profile and the shape of the load curve, the TES strategy (full or partial storage) and the chilled water system ΔT. By Lucas B. Hyman, P.E. The goal of the commissioning process is to deliver a project that, at the end of construction, is fully functional and meets the owner s needs. Some of the fundamental objectives of the commissioning process are to: Clearly document the owner s project requirements (OPR) Provide documentation tools (basis of design, commissioning plan, design, and construction checklists) Help with coordination between parties (owner, engineer, and contractor) Accomplish ongoing verification that the engineering and construction achieve the OPR Verify that complete O&M manuals are provided to the owner Verify that maintenance personnel are properly trained Accomplish functional performance tests that document proper operation prior to owner acceptance This article highlights the following: Key OPR for a stratified CHW TES system Successful CHW TES design strategies (basis of design) Caution flags (lessons learned) Guidelines of ASHRAE Standard 150, Method of Testing the Performance of Cool Storage Systems requirements Key CHW TES information to obtain during testing TES basics TES is a method by which energy (cooling or heating) is produced and stored at one time period for use during a different time period. For cooling applications,

using thermal storage can result in the reduction of electricity costs, chiller equipment size, and maintenance costs. There are two basic concepts in TES and each has different major advantages. The two concepts are partial storage and full storage. Partial-storage systems use smaller chillers, cooling towers, and a TES system to provide a facility s daily total cooling load needs, with a plant running at a constant load about equal in tons to 1/24 of the daily total ton-hours. The partial-storage system has an advantage by allowing for a smaller, less costly chiller plant than a conventional chiller plant. Full-storage systems typically require larger storage systems and larger chiller plants than partial storage systems. Full-storage systems hold the chiller plant off during the period of highest energy charges (the on-peak period) and meet the cooling load solely from thermal storage during that period. Typically, the thermal storage capacity is generated at night or in an off-peak period, when electric rates are lower and building cooling requirements are low. Full-storage system chillers, towers, and buildings are often about the same size as conventional chiller plants but this depends on the storage strategy, cooling load profile, and electrical rate structure. Full-storage TES systems, therefore, gain their major advantage from the difference between on-peak and off-peak electric demand charges and energy rates. Partial storage systems also benefit from these factors to a smaller degree. Since TES allows the shift of electrical demand and energy consumption to offpeak periods, users can achieve large electricity cost savings when the central plant uses electric-drive chillers. Owner TES project requirements An owner, of course, wants a facility that is flexible, expandable, and also one that represents a reasonable capital investment. TES systems are often installed because they represent the lowest life-cycle-cost option. In addition, key OPR of a CHW TES system typically include: Required thermal storage capacity (often measured in ton-hours) Design CHW ΔT Peak cooling day profile The thermal storage strategy to be employed The design CHW ΔT (temperature difference between the CHW supply and return temperatures) is a critical piece of information since with a stratified TES system; the thermal storage capacity is directly proportional to the ΔT (Q = McΔT). Also, as CHW systems operate with relatively small ΔTs, even a few degrees less than the design ΔT can have a dramatic impact. For example, on a 16 ΔT system, a 1 drop in ΔT to 15 represents a 6 percent loss of TES capacity.

The ΔT of the distribution system and/or the chiller system is not necessarily the same as that in the TES tank. The chillers must, however, produce water at least as cold as that stored in the TES tank. The CHW return temperature from the building(s) coils determines how high the CHW return temperature will be. The peak day cooling load profile not only shows the facility s peak cooling load, and the shape and nature of the load, but also provides the day s required tonhours as represented by the area under the cooling load profile curve. Along with the CHW ΔT, the peak day s cooling load in ton hours and the TES strategy to be employed were key information used by the designer to size the TES tank. Successful CHW TES design strategies (basis of design) To help ensure that the OPR are met at the end of the project, our experience indicates that successful CHW TES strategies employ: High ΔT CHW systems Variable flow with two-way valves constant ΔT systems Simple controls TES tank at high point (desirable but not necessary) A single constant dynamic point As noted above, it is extremely important to maintain a constant and a high ΔT for a successfully stratified CHW TES. This cannot be overstated; it is key to the economic success of TES. A CHW system operated or designed for 10 vs. 20 ΔT requires twice the TES tank capacity and flow rate to achieve the same cooling load. In addition, the TES tank costs are substantially higher. Also, pumping energy is roughly proportional to the cube of the flow. Thus, all else being equal, twice the flow rate requires nearly eight times the pumping horsepower and energy. Of course, to help achieve high ΔTs, it is critical to use variable flow with two-way valves to control cooling loads. TES systems can be designed with simple controls or complex controls. It is no surprise that TES systems with simple controls are easier to commission. Figure 1, below, shows a schematic for a simple CHW TES system. With this simple system, if the facility cooling load is less than chiller output, CHW is stored in the TES tank. Conversely, when facility cooling load is greater than chiller output, CHW is discharged from the TES tank. No TES controls are required, no operator decisions are required, and no complicated algorithms comparing temperatures and flows are required.

Figure 1. A schematic for a simple CHW TES system. As a typical CHW TES tank is an open tank (i.e., vented to the atmosphere), it is preferred if the TES tank can be located so that the TES tank water level is higher than any other point in the CHW system. Otherwise pressure-sustaining valves or other pressure control/separation methods are required. Caution flags (lessons learned) Team members should exercise care when dealing with TES systems that have: Building coils higher than the TES tank Multiple TES tanks operating simultaneously Lack of or poor ΔT control High campus CHW system differential pressure Systems with multiple pumps/valve trees with complex controls High CHW system differential pressures can contribute to low ΔT syndrome, as two-way control valves near the central plant can be forced open, thereby resulting in bypass flow. That is, the control valves cannot withstand the high ΔPs causing excessive flows and low ΔT due to the chilled water supply flowing to the chilled water return without any controlled heat gain. While beyond the scope of this article, multiple CHW TES tank design should proceed with care. When adding a second tank, flow cannot be simply doubled in the first TES tank to charge/discharge the first TES tank in half the time. As both

tanks are open, water levels must be identical. If attempting to charge or discharge both TES tanks simultaneously, hydraulic profiles for each system will need to be identical. Extra care must be paid to points of connection and hydraulic profiles (which are dynamic) to prevent surging. While a complex control system can be made to work, why not keep it simple if possible? We ve helped start up some systems that have multiple dedicated TES pumps, multiple valves for various charging and discharging modes, and multiple temperature sensors for flow control. At one particular site, we were able to show that the TES system worked perfectly without the dedicated TES pumps and valves (a case for getting the commissioning authority involved at the start of design vs. the end of construction). ASHRAE Standard 150 The purpose of ASHRAE Standard 150, Method of Testing the Performance of Cool Storage Systems, is to prescribe a uniform set of testing procedures for determining the cooling capacities and efficiencies of cool storage systems. The Standard 150 test is the functional performance test at the end of the project that evaluates if the project as a whole achieved the OPR. Standard 150 in brief covers the requirements for: Testing Instrumentation Test methods and procedures Data and calculations The test report Important aspects of ASHRAE Standard 150 are that it requires and details initialization requirements (e.g., the TES system shall be operated through at least five cycles before testing), the testing apparatus required (e.g., flow and temperature elements), and points to be measured. Standard 150 also provides instrumentation calibration procedures, and accuracy, precision, and resolution requirements to minimize test uncertainty. For example, temperature difference sensors must have accuracy of at least plus or minus 0.2, and flow meters must be installed with 20 pipe diameters upstream and 10 diameters downstream in order to achieve an uncertainty of plus or minus 10 percent. To meet ASHRAE Standard 150 requirements, the following are completed: Discharge test Charge test Cool storage capacity test The cool storage system efficiency test

The charge and discharge tests may be performed simultaneously. One issue that often arises is that rarely will the facility be experiencing the peak cooling load at the time that functional performance tests are conducted. For example, the TES system may be constructed during the winter period so as to be ready for the summer cooling season. ASHRAE Standard 150 provides some methods of accounting for this common occurrence including operating existing or temporary heat in conditioned spaces to provide a false cooling load. Some of the key CHW TES data to be documented through these tests are: CHW TES tank storage capacity Thermocline thickness Diffuser pressure drop Tank heat gain Load profile achievement The thermocline is the region where the CHW changes temperature between the CHW supply and the CHW return and represents lost capacity in the TES tank. Temperatures sensors located vertically every 2 feet or so measure and provide the TES tank s temperature profile. The diffusers are a critical component of a CHW TES tank and, if properly designed, allow the CHW to be supplied or withdrawn in a laminar (i.e., nonturbulent) manner to prevent mixing in the TES tank between the CHW supply and CHW return. With respect to CHW pump sizing, the design engineer planned for a maximum pressure drop through the diffusers, which should be verified. Figure 2, below, shows typical instrumentation requirements and locations. Temperature sensors are required at the inlet and outlet of the TES tank, as well as at the inlet and outlet of the chiller plant. As noted, chiller plant and TES tank inlet and outlet temperatures may be different due to chiller operation and blending/bypassing. Likewise, temperature measurements of CHW supply and return temperatures may also be desirable at the load itself.

Figure 2. A general cool storage system test schematic showing typical instrumentation requirements and locations. (Copyright ASHRAE; reprinted with permission) Also as noted, for a stratified CHW TES system, temperature elements will also be needed vertically from the bottom to the top of the tank to determine the percentage of tank charge and the thickness of the thermocline. Flow rate into/from the TES tank can either be measured upstream or downstream of the tank. Note that with a CHW TES system, chilled water flows reverse depending on whether the tank is being charged or discharged. During the charging mode, cold CHW supply is pumped into the bottom of the TES tank and warm CHW return is drawn from the top of the tank. Conversely, during the discharge mode, cold CHW supply is drawn from the bottom of the TES tank and warm CHW return is pumped to the top of the tank.

Summary Ideally, the commissioning process starts during the programming phase of a project, with the commissioning authority involved throughout planning, design, construction and operation (first year). Key to the success of the project is documenting and continually evaluating the OPR. Key basis-of-design items for stratified CHW TES system are the peak day cooling load profile and the shape of the load curve (which establishes the required ton-hours); the TES strategy (full or partial storage); and the chilled water system ΔT. The ΔT is a critical factor with stratified TES systems in obtaining the designed thermal storage capacity and predicted economic results. Whenever possible, design and construct simple systems that do not require complicated controls or sequences of operations to operate properly. Installing a single TES tank so that the water level is above the highest coil will simplify the system. About the author Lucas B. Hyman, president of Goss Engineering of Corona, Calif., is a LEEDaccredited mechanical engineer with more than 30 years of experience. His clients have included major universities, government agencies, schools, hospitals, industrial facilities, the military and private firms. He is the author of two books, Sustainable On-site CHP Systems (McGraw-Hill, 2009) and Sustainable Thermal Storage Systems (McGraw-Hill, 2011) and has published a number of papers and articles. Mr. Hyman has won numerous regional and chapter ASHRAE awards and has planned and designed central heating and cooling plants, TES systems, cogeneration plants, steam plant systems, utility distribution systems, laboratory systems, HVAC improvements, energy conservation measures, fuel storage and distribution systems, as well as other mechanical systems. He is chairman of ASHRAE's technical committee on district energy and past chairman of the committee on thermal storage. About this paper A version of Commissioning a chilled water TES system originally appeared in the magazine Engineered Systems (esmagazine.com) in 2004.