Electrical Machines I Week 1: Overview, Construction and EMF equation

Similar documents
DC MOTOR. Prashant Ambadekar

Operation Construction Classification Applications. DC Motors

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

Historical Development

PHY 152 (ELECTRICITY AND MAGNETISM)

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

Comprehensive Technical Training

DESIGN OF DC MACHINE

2014 ELECTRICAL TECHNOLOGY

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material.

Principles of Electrical Engineering

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

INTRODUCTION Principle

Chapter 4 DC Machines

Renewable Energy Systems 13

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Mechatronics Chapter 10 Actuators 10-3

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.


SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II. Handout: AC Commutator Motors

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A

Lecture 19 Chapter 30 Faraday s Law Course website:

EE6401 ELECTRICAL MACHINES I UNIT I: MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART: A 1. Define EMF and MMF. 2. Name the main magnetic quantities

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III UNIT - IV CHAPTER - 1 : PRINCIPLES OF ELECTRO-MECHANICAL ENERGY CONVERSION CHAPTER - 2 :

2 Principles of d.c. machines

ELEN 236 DC Motors 1 DC Motors

VALLIAMMAI ENGINEERING COLLEGE

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

FARADAY S LAW ELECTROMAGNETIC INDUCTION

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

14 Single- Phase A.C. Motors I

2006 MINI Cooper S GENINFO Starting - Overview - MINI

CURRENT ELECTRICITY - II

ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors. Lecture 5-1 Electric Motors

Lecture 20: Stator Control - Stator Voltage and Frequency Control


DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION

DC CIRCUITS ELECTROMAGNETISM

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

Short Term Course On Hydropower Development Engineering (Electrical) for Teachers of Polytechnics in Uttarakhand L33-2

Synchronous Generators I. Spring 2013

Part- A Objective Questions (10X1=10 Marks)

Electrical Machines -II

Direct Current Motors

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF

1. This question is about electrical energy and associated phenomena.

Contents. Review of Electric Circuitd. Preface ;

Synchronous Generators I. EE 340 Spring 2011

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

Electromagnetic Induction, Faraday s Experiment

ST.ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY ANGUCHETTYPALAYAM, PANRUTI

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

SPH3U UNIVERSITY PHYSICS

ECEg439:-Electrical Machine II

Faraday s Law of Induction III

Basic Motor Theory. Introduction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

Electrical Machines-I (EE-241) For S.E (EE)

Single Phase Induction Motors

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq

ELECTRIC MACHINES OPENLAB 0.2 kw

INDUCED ELECTROMOTIVE FORCE (1)

Introduction: Electromagnetism:

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c.

Electrical Machines and Energy Systems: Overview SYED A RIZVI

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0.

Review: Magnetic Flux, EMF


Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

ECE 325 Electric Energy System Components 6 Three Phase Induction Motors. Instructor: Kai Sun Fall 2016

Note 8. Electric Actuators

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1001 SPECIAL ELECTRICAL MACHINES

BELT-DRIVEN ALTERNATORS

QUESTION BANK SPECIAL ELECTRICAL MACHINES

Fachpraktikum Elektrische Maschinen. Theory of Induction Machines

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Chapter 22. Electromagnetic Induction

Regulation: R16 Course & Branch: B.Tech EEE

CHAPTER 3 BRUSHLESS DC MOTOR

(d) None of the above.

INDUCTION MOTOR. There is no physical electrical connection to the secondary winding, its current is induced

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor.

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

CHAPTER 3 DESIGN OF THE LIMITED ANGLE BRUSHLESS TORQUE MOTOR

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction and Faraday s Law

MYcsvtu Notes

1. Which device creates a current based on the principle of electromagnetic induction?

Pretest Module 21 Unit 4 Single-Phase Motors

Lecture PowerPoints. Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli

Transcription:

Electrical Machines I Week 1: Overview, Construction and EMF equation

Course Contents Definition of the magnetic terms, magnetic materials and the B-H curve. Magnetic circuits principles. Electromechanical Energy Conversion Principles. Force and torque equations in magnetic circuits. Construction of a DC machine. EMF and torque equations in dc machines. Armature windings and commutator design. Armature reaction and compensation techniques. Self excitation of dc generators. Read Ask Study Electrical Machines I Understand Lab work External characteristics of dc generators. Kinds of losses and efficiency of dc machines. Torque and speed characteristics of dc motors. Speed control of dc motors. Starting of dc motors. DC Motor electrical braking techniques. Examples Reports

Course Work: Course work: Lab reports: Quizes: Final 1- Every week assignment (solve questions related to the lecture): to behanded in every week for points 2- points are transformed to marks if you are consistent in delivering your reports 3- NO late submission are allowed 1- Contribute to almost 10 marks related to your physical presence in lab 1-7 th, 12 th,.etc. Its not about marks in tests.. Its about continuously working hard all semester!

Introduction Electrical Machines DC machines AC Machines Special Machines Motor Generator Transformers Induction motor Synchronous generator Faraday's Law Machines are called AC machines (generators or motors) if the electrical system is AC. DC machines (generators or motors) if the electrical system is DC.

Direct Current (DC) Machines Fundamentals Lets formulate this in a more scientific way Generator action: An emf (voltage) is induced in a conductor if it moves through a magnetic field. Motor action: A force is induced in a conductor that has a current going through it and placed in a magnetic field. Any DC machine can act either as a generator or as a motor. Not all machines have this feature except for the DC machine

Applications of DC Motors: 1. D.C Shunt Motors: It is a constant speed motor. Where the speed is required to remain almost constant from no-load to full load. Where the load has to be driven at a number of speeds and any one of which is nearly constant. Lathes Drills Boring mills Shapers Spinning and Weaving machines. 2. D.C Series motor: It is a variable speed motor. The speed is low at high torque. At light or no load,the motor speed attains dangerously high speed. Electric traction Cranes Elevators Air compressor Vacuum cleaner Hair drier Sewing machine

LETS BRAIN STORM!!!! WHAT DO YOU THINK IS INSIDE THE MACHINE????

Construction of DC machine Two electrical circuits present in the dc machine: 1- Field circuit 2- Armature circuit Rotor: rotating part of the machine Stator: Stationary part of the machine

1- Stator: Air gap Air gap Air gap Frame: provides physical support Inter Poles: located between poles and used to overcome armature reaction Poles: projects inwards and provides a path for the magnetic flux THE STATOR COULD BE LAMINATED OR MADE OF SINGLE CAST PIECE OF METAL Poles: the end of the poles that are close to rotor spread out over the rotor surface to distribute flux evenly over the rotor surface. We call the end as pole shoe. Due to their spread out they are often called Salient Poles. Field windings: windings responsible for magnetic flux production Stator

2- Rotor: Rotating part of machine Rotor of dc machine is often called armature as it holds the armature windings Armature winding: carries current crossing the field, thus creating shaft torque in a rotating machine or force in a linear machine as well as generate an electromotive force (EMF). Some call it The power-producing component of an alternator, generator, dynamo or motor. Commutator: built on the shaft of the rotor at one end of ). ورنیش) the core. Made of copper bars insulated by mica Mica is very hard and is harder than the commutator material itself for good sticking. Serves as a mechanical rectifier. Brushes: made of carbon, graphite or a mixture of both. They have high CONDUCTIVITY and low friction coefficient to reduce the wear but they are softer than commutator to avoid commutator wear. It is very much affected by the current flowing in them and how they are adjusted. Armature THE ROTOR IS COMPOSED OF MANY LAMINATIONS STAMPED FROM A STEEL PLATE.

Faraday Laws 1- If a flux passes through a turn of coil of a wire, a voltage will be induced in the turn of wire that is directly proportional to the rate of change in flux with respect to time. + e - I Opposing flux ф HOW CAN MAGNETIC FIELD AFFECT THE SURROUNDING e = FLU CREATED BY EMF FLU ALREADY PRESENT Φ N t e= average emf (V) N= number of turns ф = flux passing through the turn t= time -ve sign is an expression of Lenz s law: The direction of the voltage buildup in a coil is such that if the coil end were short cct, it would produce current that would cause a flux opposing the original flux change If a flux is increasing in strength, then the voltage built up in the coil will tend to establish a flux that will oppose the increase في حاله وجود ملف في مجال مغناطیسي سیلاحظ وجود فرق جھد حثي علي اطراف الملف و ھذا الجھد سیو دي لتولید مجال اخر عكس اتجاه المجال الاساسي

Faraday Laws HOW CAN MAGNETIC FIELD AFFECT THE SURROUNDING 2- Magnetic field induces a force on a current carrying wire within the field. Field into the page L i B= magnetic flux density (wb/m 2 ) i= current (A) F= force induced (N) L= length of conductor (m) B) بالعربي كده: تیار + مجال = قوة لتحريك الملف MOTOR ACTION B sin Θ Θ = angle between the wire and the flux density vector Force direction is given by the lefthand rule The induction of a force in a wire by a current in the presence of a magnetic field is the basis of the motor action.

Faraday Laws HOW CAN MAGNETIC FIELD AFFECT THE SURROUNDING 3- If a wire moves through magnetic field, a voltage is induced in it GENERATOR ACTION L + + + - - - + - e = velocity of wire B= magnetic flux density (wb/m 2 ) L= length of conductor (m) e= voltage induced Force direction is given by the right-hand rule B). L بالعربي كده: حركة + مجال = EMF A potential difference is maintained across the conductor as long as there is motion through the field If motion is reversed, polarity of potential difference is also reversed Force direction is given by the righthand rule The induction of voltages in a wire moving in a magnetic field is the fundamental aspect of operation of all types of generators. That s why it is called generator action

The EMF equation : Let, Assume one coil only now ф= flux per pole in weber Z = Total number of conductor One coil = 2 conductor P = Number of poles a = Number of parallel paths: This describes the way the machine's armature conductors are connected relative to each other and to the number of poles. The two basic ways of connecting these conductors are called 'lap' and 'wave', but it gets more complicated. n =armature speed in rpm a=p (lap) a=2 (wave) e = emf generated in any on of the parallel path

The EMF equation : EMF is induced in the conductor according to Faraday's law. The average value of e.m.f. induced in each armature conductor is, ф Consider one revolution of conductor. In one revolution, conductor will cut total (كل المجال اللي طالع من كل الا قطاب ( P. flux produced by all the poles i.e. ф * The time required to complete one revolution is 60/n seconds as speed is n r.p.m. Hint: rpm (revolutions per minute) n (rev) 1 min * 60 (sec) 1 rev????? (sec)

EMF produced by one conductor ф = 1 * change of flux / time ф = ф P Now the conductors in one parallel path are always in series. There are total Z conductor with a parallel paths, hence Z/a number of conductors are always in series and e.m.f. remains same across all the parallel paths. Numerator= denomenator= Total EMF produced by armature conductors MOST IMPORTANT EQUATION IN DC GENERATORS ф P x k ф n P, Z, a: design parameters N, ф: control parameters EMF is proportional to the field and speed of rotation

Types of dc motor and generator: MOTOR Separately excited dc motor Shunt dc motor Permanent magnet dc motor Series dc motor Compound dc motor GENERATOR Separately excited dc generator Shunt dc generator Series dc generator Compound dc generator 1. Separately Excited: Field and armature windings are either connected separate. 2. Shunt: Field and armature windings are either connected in parallel. 3. Series: Field and armature windings are connected in series. 4. Compound: Has both shunt and series field so it combines features of series and shunt motors.

Questions Explain and describe using drawings the construction of dc machine What is the function of the following in dc machines: a- armature winding b- field winding Explain how dc machines can work as generator and motor State some applications and types of connections of dc machines (generator and motor) Derive the EMF equation for dc machines