Rural electrification using overhead HVDC transmission lines

Similar documents
Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC

SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM

POWER TRANSMISSION OF LOW FREQUENCY WIND FIRMS

Evaluation of the Performance of Back-to-Back HVDC Converter and Variable Frequency Transformer for Power Flow Control in a Weak Interconnection

ELG4125: Flexible AC Transmission Systems (FACTS)

Full-Scale Medium-Voltage Converters for Wind Power Generators up to 7 MVA

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications

Benefits of HVDC and FACTS Devices Applied in Power Systems

High Voltage Direct Current and Alternating Current Transmission Systems Conference. August Nari Hingorani

POWER DISTRIBUTION SYSTEM ANALYSIS OF URBAN ELECTRIFIED RAILWAYS

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC

EPRI HVDC Research. Gary Sibilant, EPRI. August 30, 2011

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

Behaviour of battery energy storage system with PV

Stanley-Adamson: The First Industrial Size Variable Speed Compact Hydro Project Worldwide

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line

The Application of Power Electronics to the Alberta Grid

Inverter with MPPT and Suppressed Leakage Current

Low-Frequency AC Transmission for Offshore Wind Power

Power Electronics Projects

FUZZY LOGIC FOR SWITCHING FAULT DETECTION OF INDUCTION MOTOR DRIVE SYSTEM

COMPARISON OF DIFFERENT METHODS FOR EXCITATION OF SYNCHRONOUS MACHINES

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System

A PARALLEL SNUBBER CAPACITOR BASED HIGH STEP UP ISOLATED BIDIRECTIONAL FULL BRIDGE DC TO DC CONVERTER

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online:

A Review on Reactive Power Compensation Technologies

Power System Stability Analysis on System Connected to Wind Power Generation with Solid State Fault Current Limiter

Review paper on Fault analysis and its Limiting Techniques.

Computer Aided Transient Stability Analysis

CHAPTER 1 INTRODUCTION

Soft Start for 3-Phase-Induction Motor

DYNAMIC BEHAVIOUR OF SINGLE-PHASE INDUCTION GENERATORS DURING DISCONNECTION AND RECONNECTION TO THE GRID

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

Performance Analysis of Transient Stability on a Power System Network

Power Quality Improvement Using Statcom in Ieee 30 Bus System

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

Soft Switching of Two Quadrant Forward Boost and Reverse Buck DC- DC Converters Sarath Chandran P C 1

HVDC POWER FROM SHORE. B. WESTMAN* K. ERIKSSON* G. PERSSON* A. MÆLAND** ABB Sweden*, Norway**

The Smart Way. HVDC PLUS One Step Ahead. Answers for energy.

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Control Application of PV Solar Farm as PV- STATCOM for Reactive Power Compensation during Day and Night in a Transmission Network

Transmission Grid Reinforcement with Embedded VSC-HVDC. Jonatan Danielsson, Sugam Patel, Jiuping Pan, Reynaldo Nuqui

Journal of American Science 2015;11(11) Integration of wind Power Plant on Electrical grid based on PSS/E

Dr.-Ing. Ervin Spahi, Wadden Sea Forum, Bremerhaven Electric grid on and off-shore: current status, obstacles and new developments

A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

QCF level: 4 Credit value: 15

Wind Power Plants with VSC Based STATCOM in PSCAD/EMTDC Environment

Innovative Power Supply System for Regenerative Trains

Implementation of FC-TCR for Reactive Power Control

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

Reactive power support of smart distribution grids using optimal management of charging parking of PHEV

IJREE - International Journal of Research in Electrical Engineering ISSN:

Electric Power Research Institute, USA 2 ABB, USA

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC)

DC Arc-Free Circuit Breaker for Utility-Grid Battery Storage System

Enhancement of Transient Stability Using Fault Current Limiter and Thyristor Controlled Braking Resistor

Performance analysis of low harmonics and high efficient BLDC motor drive system for automotive application

Electrical Test of STATCOM Valves

VARIABLE FREQUENCY DRIVE AND ITS INDUSTRIAL APPLICATIONS

Using MATLAB/ Simulink in the designing of Undergraduate Electric Machinery Courses

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

Reactive Power Management Using TSC-TCR

Next Generation of UHVDC System. R. Montaño, D Wu, L. Arevalo, B. Jacobson ABB - HVDC Sweden

Design and Implementation of an 11-Level Inverter with FACTS Capability for Distributed Energy Systems

High-Voltage, High-Current DC- DC Converters Applications and Topologies

POWER ELECTRONICS & DRIVES

NEWFOUNDLAND AND LABRADOR HYDRO GULL ISLAND TO SOLDIERS POND HVDC INTERCONNECTION DC SYSTEM STUDIES VOLUME 1

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT

Research and Reviews: Journal of Engineering and Technology

Towards Realization of a Highly Controllable Transmission System HVDC Light

II. ANALYSIS OF DIFFERENT TOPOLOGIES

Renewable Energy Grid Integration and Distributed Generation Specialization Syllabus

A low loss mechanical HVDC breaker for HVDC Grid applications THOMAS ERIKSSON, MAGNUS BACKMAN, STEFAN HALÉN ABB AB, CORPORATE RESEARCH SWEDEN

Static frequency converter couples US paper mill s 25-Hz and 60-Hz electricity grids

Fuzzy Based Unified Power Flow Controller to Control Reactive Power and Voltage for a Utility System in India

Next-generation SCADA and Control Technologies for Large-scale Use of Photovoltaic Generation on Electric Power Grid

OPF for an HVDC feeder solution for railway power supply systems

IEEE Transactions on Applied Superconductivity, 2012, v. 22 n. 3, p :1-5

Modeling and Simulation of Firing Circuit using Cosine Control System

DISTRIBUTED GENERATION FROM SMALL HYDRO PLANTS. A CASE STUDY OF THE IMPACTS ON THE POWER DISTRIBUTION NETWORK.

A Novel ZVS/ZCS Bidirectional DC DC Converter for DC Uninterruptable Power Supplies

OPF for an HVDC Feeder Solution for Railway Power Supply Systems

Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio

Induction Generator: Excitation & Voltage Regulation

Increasing Wanzhou Power Transfer Capability by 550kV Fixed Series Capacitor FSC Fengjie

The 1,400-MW Kii-Channel HVDC System

WESTERN INTERCONNECTION TRANSMISSION TECHNOLGOY FORUM

APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM

Fuzzy based STATCOM Controller for Grid connected wind Farms with Fixed Speed Induction Generators

Examples of Electric Drive Solutions and Applied Technologies

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR

Design and Modelling of Induction Generator Wind power Systems by using MATLAB/SIMULINK

Course Name: POWER ELECTRONICS Course Code: EE603 Credit: 4

Paper ID: EE19 SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE

Grid Integration Costs: Impact of The IRP Capacity Mix on System Operations

Low Speed Control Enhancement for 3-phase AC Induction Machine by Using Voltage/ Frequency Technique

Energy Management for Regenerative Brakes on a DC Feeding System

Power Interchange System for Reuse of Regenerative Electric Power

Features of PSEC Educational Programs

Transcription:

Rural electrification using overhead HVDC transmission lines Leon Chetty Nelson Ijumba HVDC Centre, University of KwaZulu-Natal, South Africa Abstract One of mankind s greatest modern challenges is poverty alleviation. The provision of electricity can greatly assist in this regard. The tapping of small amounts of power from an HVDC transmission line represents a solution to this problem especially in rural areas. This paper analyses the dynamic characteristics of a parallel-cascaded tapping station. The results obtained clearly indicate that the parallel-cascaded tapping station proves to be a viable solution to tapping small amounts of power from an HVDC transmission line. Keywords: rural electrification, HVDC transmission lines, voltage source inverter 1. Introduction The provision of electricity greatly enhances the quality of life in developing countries in Southern Africa. It helps promote people s expectations and motivations, thus assisting in education. Most importantly, it helps in retarding the migration of people from rural areas to cities and increases the opportunities for income generation and employment in those countries. Electricity also assists in environmental preservation of forests and trees, which are currently being, cut down, for fuel, to compensate for the lack of electricity and other energy sources in rural areas (Khatib, 1998). Provision of electricity supplies is essential for developing countries in their effort to overcome poverty, which is the main challenge to mankind in this century. Orthodox methods for the provision of electricity supplies, such as a central power station with a transmission and distribution network, which is ideal in industrial countries and urban areas, may not be the most economical means of providing electricity supplies in developing countries, particularly in rural areas where the demand per customer is only a small fraction of a kilowatt (Khatib, 1998). Mobilizing of capital and developing of new technologies is necessary in supplying power to these rural areas. In the Southern African context, there are large amounts of hydro power in Central Africa, in countries such as the Democratic Republic of Congo, whereas the major load centres are in the Southern African region. Therefore, high voltage direct current (HVDC) transmission is likely to be the most economical means to transmit these large quantities of energy to the Southern African region. HVDC transmission does offer technical and economical advantages over HVAC (high voltage alternating current) transmission for long distances. However, HVDC transmission does suffer a significant disadvantage compared to high voltage alternating current (HVAC) transmission, with regard to tapping off power from transmission lines. It has not been proven to be economically and technically feasible to tap off small amounts of power from HVDC transmission lines. This is a substantial drawback considering that most HVDC transmission lines pass over many rural communities that have little or no access to electricity. Although tapping of small amounts of power from HVDC transmission lines has been the focus of many researchers (Aghaebrahimi & Menzies, 1997; Aghaebrahimi & Menzies, 1998; Aredes et. al., 2001; Aredes et. al., 2002; Bahrman, 1995; Ekstrom & Lamell, 1991; Lamm et. al., 1963; Lima et. al., 1991; Turanli et. al., 1989; Zhao & Irvani, 1994), no successful implementation of the concept has been published to date. The main reasons for the non-application of this concept are that: The rural villages, into which the power will be tapped, usually have weak AC systems, which have 56 Journal of Energy in Southern Africa Vol 23 No 2 May 2012

few or no rotating machine loads. Previously only line-commutated inverters, which required an AC source for its operation, were available. Therefore, the use of these devices did not make the small power tapping station feasible, since synchronous condensers were required. With the rapid development of gate-turn off switches, such as Insulated Gate Bipolar Transistors (IGBTs), the voltage source inverter (VSI) received considerable interest because it did not require an AC source to commutate against, and it could easily invert power into a passive load. The issue currently at hand is whether the tapping station should be connected in series or in parallel to the HVDC transmission line. All of the recent publications (Aghaebrahimi & Menzies, 1997; Aghaebrahimi & Menzies, 1998; Aredes et. al., 2001; Aredes et. al., 2002) have considered the series-tapping concept to be more superior based on the qualitative assessment. No formal quantitative investigation has been undertaken to establish which concept, either the series or the parallel concept, is more superior. Although the research by (Aredes et. al., 2001; Aredes et. al., 2002) has shown satisfactory results for one series tap connected at the middle of the HVDC transmission line, this author does not recommend this technique for the African context, since an HVDC transmission line transporting power from Central Africa to Southern Africa will be at least 3 000 km long. Therefore, it is very likely that the HVDC transmission line will pass more than 2 (may be greater than 10) rural communities, spaced along the HVDC transmission line. Hence, it would not be economically feasible to have one series tap at the middle of the HVDC transmission line supplying power to all these communities. Further, a series tap causes a volt drop on the HVDC transmission line, which increases the main rectifier and inverter thyristor valve losses and stresses (Ekstrom & Lamell, 1991). This paper presents the development of a system for multiple power tap offs from HVDC transmission lines for rural applications. 2. Methodology Given the large differences between the HVDC transmission and rural distribution voltage level, the tap off was achieved in two stages. Firstly, a novel DC-to-DC converter was designed for connection in parallel with the HVDC transmission line and step down the high DC voltage to a lower DC voltage. Secondly, a voltage source inverter was used to invert the lower DC voltage into a three-phase voltage. 2.1 Voltage source converter Voltage Source Converters (VSC) represents economical solutions to the most challenging, modern day requirements on the power transmission and distribution systems. The most important feature is feeding power to AC systems with low short circuit ratio or even passive networks with no local power generation. To minimize the fixed cost of the tapping station, a six-pulse VSI as opposed to a twelve-pulse VSI was chosen. This six-pulse VSI circuit configuration is shown in Figure 1. To simplify the analysis, the model of the converter transformer was not included. To compensate for the converter transformer, the load was connected in a delta configuration, which was the same way the winding on the converter side of the transformer was connected. The function of the delta configuration in this application was to eliminate the DC component of the phase voltage. 2.2 Step-down DC-to-DC converter To reduce the voltage stress on the VSI IGBT valves, the concept of a novel DC-to-DC converter was explored to step down the high transmission line DC voltage down to a lower voltage. In this section, the transmission line DC voltage is modelled as a constant DC source. The requirements of the DC-to-DC converter are aligned with the requirements of the main tapping station. These requirements are restated here for clarity. The small power parallel tapping station will Figure 1: Six pulse VSI with Delta connected load Journal of Energy in Southern Africa Vol 23 No 2 May 2012 57

be developed to meet the following requirements: The fixed cost of the tapping station will be strongly constrained. One of the ways of meeting this requirement is to reduce the amount of equipment connected directly to the HVDC transmission line. This should be done not only to due reducing economics, but also to increase reliability. The tapping station must have a negligible impact on the HVDC transmission system. The tapping station control system should not interfere with the main HVDC control system and should be ideally local or else hardware cost will increase. A buck, step-down, converter, shown in Figure 2, produces a lower average output DC voltage than the applied DC input voltage. Figure 2: Buck converter The output voltage fluctuations are diminished by using a low-pass filter, consisting of an inductor and capacitor. The corner frequency f c of the lowpass filter is selected to be much lower than the switching frequency, thus essentially eliminating the switching frequency ripple in the output voltage. The corner frequency is calculated from: (1) For the HVDC transmission line tapping off application, the switch frequency was chosen to minimize switching losses and thus was selected to be 750Hz. The values chosen for L and C were based on equation (1). To evaluate the effectiveness of the Buck converter to step-down the high transmission line DC voltage and tap small amounts of power from HVDC transmission lines, the Buck converter, shown in Figure 2, was simulated in PSCAD/EMTDC. The results of the simulation are shown Figure 3. The switch S 1 is de-blocked at 0.1 seconds. During steady-state operation, the switch S 1 periodically blocked the source voltage (500 kv) to produce a regulated output voltage (20 kv). The Buck converter demonstrated that it had the capability of stepping the HVDC transmission line voltage (500kV) down to a lower DC voltage (20 kv). The Buck converter consisted of few high voltage components and its control system was completely local and did not require any communication with the main HVDC control system. The Buck converter was used as the DC-to-DC converter in the required parallel tapping station. 3. Results The HVDC transmission line model used in this project was based on the CIGRE HVDC benchmark model (Szechtman, et. al., 1991) shown in Figure 4. The DC system is rated at 500 kv (DC), 1000 MW. The AC side systems are fairly weak; with short circuit ratios on the sending and receiving end systems of 2.5 and 2.35 with damping angles of 84 o Figure 3: Simulation results for the Buck converter 58 Journal of Energy in Southern Africa Vol 23 No 2 May 2012

Figure 4: CIGRE HVDC benchmark model and 75 o. A detailed discussion on the model and its implementation in PSCAD/EMTDC can be found in (Szechtman, et. al., 1991). As reference for evaluating the effect of the small power tapping station on an HVDC transmission line, some incidental simulations were conducted. The HVDC system characteristics during startup of the HVDC converter terminals are displayed in Figure 5. The HVDC converter terminals are deblocked at 0.04 seconds. The HVDC system takes approximately 0.2 seconds to stabilize after the start-up of the HVDC converter terminals. The HVDC system characteristics during a three-phase fault that occurs near the AC side of the rectifier terminal are displayed in Figure 6. The fault is solidly grounded. The fault occurs at 0.65 seconds and last for 3 cycles. The HVDC system takes approximately 0.6 seconds to stabilize after the clearance of the fault. As a consequence of the HVDC transmission link, a three-phase fault occurring on the rectifier AC system results in a 0.3% overvoltage in the inverter AC system. Figure 5: HVDC characteristics during start-up Figure 6: HVDC characteristics during rectifier three-phase fault Journal of Energy in Southern Africa Vol 23 No 2 May 2012 59

Figure 7: HVDC characteristics during inverter three-phase fault The HVDC characteristics during a three-phase fault occurring in the inverter AC system are displayed in Figure 7. The fault is solidly grounded. The fault occurs at 0.65 seconds and last for 3 cycles. The HVDC system takes approximately 0.5 seconds to stabilize after the clearance of the fault as illustrated in Figure 7. As a consequence of the HVDC transmission link, a three-phase fault occurring on the inverter AC system results in a 0.2% overvoltage in the rectifier AC system. The HVDC characteristic during an HVDC transmission line fault that occurs at the middle of the transmission line is displayed in Figure 8. The fault is solidly grounded. The fault occurs at 0.65 seconds and last for 3 cycles. During an HVDC transmission line fault, the rectifier changes its mode of operation and operates as an inverter so as to dissipate any energy stored in the transmission line as quick as possible. The HVDC system takes approximately 0.5 seconds to stabilize after the clearance of the fault as illustrated in Figure 8. As a consequence of the HVDC transmission link, the transmission line fault results in a 0.3% voltage drop in the rectifier AC system and a 0.15% overvoltage in the inverter AC system. 3.1 Effect of the tapping station on the HVDC transmission link The model of the tapping station was connected to the CIGRE HVDC transmission line model as depicted in Figure 9. This was done to quantify the effect that the cascaded parallel tapping station will have on the main HVDC transmission link. Start-up of the tapping station The HVDC transmission system was run up to steady-state and at 0.6 seconds, the Buck converter was connected to the HVDC transmission line. The Figure 8: HVDC characteristics during HVDC transmission line fault 60 Journal of Energy in Southern Africa Vol 23 No 2 May 2012

capacitor Cs was initially uncharged, and therefore was allowed to charge up before the VSI was deblocked. The VSI was de-blocked at 0.65 seconds. The results from the start-up of the tapping station are illustrated in Figure 10 and Figure 11. The tapping station performance during start-up Figure 9: Small power tapping from an HVDC transmission line Figure 10: Tapping station characteristics during start-up Figure 11: HVDC system characteristics during start-up Journal of Energy in Southern Africa Vol 23 No 2 May 2012 61

is acceptable since the power is being fed to a passive load therefore the rural AC system takes a relatively long time (about 0.3 seconds) to stabilize. The start-up of the tapping station had a negligible effect on the main HVDC transmission system, since there was only a slight drop in the HVDC voltages (less than 0.01%) and power transfer (less than 0.2%) and the HVDC system returns to its normal state within 45msec. Rural AC system load change To determine the effect that a load change in the rural AC system will have on the HVDC system, the rural load was doubled at 2 seconds and decreased to its nominal value at 3 seconds. The results are shown Figure 12 and Figure 13. A load change in the rural AC system has an unnoticeable effect on the HVDC system. Rural AC system fault A three-phase solidly earthed fault was applied to the rural AC system near the VSI, to determine the effect that a fault in the rural AC system will have on the main HVDC system. The fault was applied at 1.7 seconds and had duration of 0.04 seconds. The results of this simulation are shown in Figures 12 and 13. A three-phase fault in the rural AC system resulted in approximately 0.2% voltage drop in the HVDC transmission line voltages, and a 0.3% drop in the power transfer. The HVDC system takes 0.1 seconds to stabilize after the fault had cleared. Main rectifier AC system fault A three-phase solidly earthed fault was applied to the rectifier AC system near the rectifier terminal, to determine the effect that a fault in the main rectifier AC system will have on the tapping station and the Figure 12: HVDC characteristics during a rural AC system load change Figure 13: Tapping station characteristics during a rural AC system load change 62 Journal of Energy in Southern Africa Vol 23 No 2 May 2012

Figure 14: HVDC characteristics during a rural AC system three-phase fault Figure 15: Tapping station characteristics during a rural AC system three-phase fault rural AC system. The fault was applied at 1.7 seconds and had duration of 0.04 seconds. The results of this simulation are shown in Figure 14. The results displayed in Figure 14 should be analyzed by comparing it with the results displayed in Figure 6. It should be noted that the tapping station did not impede the transient response of the HVDC system. Main inverter AC system fault A three-phase solidly earthed fault was applied to the inverter AC system near the inverter terminal, to determine the effect that a fault in the main inverter AC system will have on the tapping station and the rural AC system. The fault was applied at 1.7 seconds and had duration of 0.04 seconds. The results of this simulation are shown Figure 15. The results displayed in Figure 15 were analyzed by comparing it with the results displayed in Figure 7. It should be noted that the tapping station did not impede the transient response of the HVDC system. HVDC transmission line fault A solidly earthed fault was applied to the middle of the HVDC transmission line, to determine the effect that a HVDC transmission line fault will have on the tapping station and the rural AC system. The fault was applied at 1.7 seconds and had duration of 0.04 seconds. The results of this simulation are shown in Figure 16. The results displayed in Figure 16 should be analyzed by comparing it with the results displayed in Figure 8. It should be noted that the tapping station did not impede the transient response of the HVDC system. 4. Conclusions The parallel-cascaded tapping station demonstrated that it has a negligible effect on the dynamic performance of the main HVDC link. The results obtained clearly indicate that the parallel-cascaded tapping station proves to be a viable solution to tapping small amounts of power from an HVDC trans- Journal of Energy in Southern Africa Vol 23 No 2 May 2012 63

Figure 16: HVDC characteristics during a rectifier AC system three-phase fault mission line. Therefore, HVDC transmission need not suffer a significant disadvantage compared to high voltage alternating current (HVAC) transmission, since power can now be tapped off from HVDC transmission lines. This paper has proved that it is theoretically feasible to tap off small amounts of power from HVDC transmission lines. This is a significant progress in HVDC technology. Especially considering that most HVDC transmission lines pass over many rural communities that have little or no access to electricity. Now, however, it may be possible to provide electricity to these communities from HVDC transmission lines. References Aghaebrahimi, M.R, & Menzies, R.W (1997). Small power tapping from HVDC transmission systems: A novel approach. IEEE Trans. on Power Delivery 12(4):1698-1703. Aghaebrahimi, M.R, & Menzies, R.W (1998). A customized air-core transformer for a small power tapping station. IEEE Trans. on Power Delivery 13(14):1265-1270. Aredes, M, et. al. (2001). HVDC tapping using softswitching techniques. Electrical Engineering Research Journal Archiv fur Electrotechnik 83(½):33-40. Aredes, M., et. al. (2002). A 500 kv Soft-Switching HVDC Tap. CIGRE 14-115. Bahrman, M, et. al. (1995). Integration of small power taps into (existing) HVDC links. IEEE Trans. On Power Delivery 10(3):1699-1706. Chetty, L., Ijumba N.M. & Britten A.C. (2004). Parallel- Cascaded tapping station. Proc. of IEEE Int. Conf. Power System Technology. 1674-1878. Ekstrom, A, & Lamell, P. (1991). HVDC tapping station: Power tapping from a DC transmission line to a local AC network. Proc. of IEE 5 th International Conf. on AC and DC Power Transmission September: 126-131. Jovcic, D. (2009). Bidirectional High Power DC Transformer. IEEE Trans. on Power Delivery 24(4):2276-2283. Khatib, H. (1998). Electrical power in developing countries. IEE Power Engineering Journal: 239-247. Lamm, U, et. al., (1963). Some aspects of tapping HVDC systems. Direct Current 8(5). Lima, A.G.G, et al., (1991). HVMDC: A new concept to feed small loads. Proc. of IEE 5 th International Conf. on AC and DC Power Transmission September: 120-125. Szechtman, M. et al., 1991. First Benchmark Model for HVDC Control Studies. Electra 135. Turanli, H.M, et. al. (1989). A forced commutated inverter as a small series tap on a DC line. IEEE Trans. on Power Electronics 4(2):187-193. Zhao, Z, & Irvani, M.R. (1994). Application of GTO voltage source inverter for tapping HVDC power Proc. of IEE Conf. Gen, Trans, Distri.141(1):19-26. Rahman, H., & Khan, B.H. (2008). Possibility of Power Tapping from Composite AC-DC Power Transmission Lines. IEEE Trans. on Power Delivery 23(3):1464-1471. Received 27 September 2010; revised 19 September 2011 64 Journal of Energy in Southern Africa Vol 23 No 2 May 2012