Dr. Jozsef Rohacs - Dr. Daniel Rohacs Rea-Tech Ltd. Hungary

Similar documents
MAGLEV TRAINS. Under the guidance of Dr. U.K.Singh. Submittted by Saurabh Singhal

HOW MAGLEV TRAINS OPERATE

General Atomics Urban Maglev: Moving Towards Demonstration

MAGNETIC LEVITATION TRAIN TECHNOLOGY II

GA Electromagnetic Projects. Maglev and Linear Motors for Goods Movement. California-Nevada. FTA Urban Maglev. High-Speed Maglev

MAGNETIC LEVITATION TRAIN TECHNOLOGY II

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. FCH Aircraft

.INTRODUCTION FIGURE[1] BASIC PRINCIPLE OF MAGLEV TRAIN

FTA Low Speed Magnetic Levitation Program

Maglev in China Experience and Development

System Level Applications and Requirements

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject

Maglev and Linear Motors for Southern California Transportation

Electric Drive - Magnetic Suspension Rotorcraft Technologies

Review and update on MAGLEV

VoltAir All-electric Transport Concept Platform

Contents. Figure. Page. Figure No. 10. The Principle of Linear Motors... 75

Seventh Framework Programme THEME: AAT Breakthrough and emerging technologies Call: FP7-AAT-2012-RTD-L0 AGEN

MagneMotion Maglev Demonstration on ODU Guideway

blended wing body aircraft for the

Eurailspeed Parallel Session E.1

MAGNETIC LEVITATION TRAINS THE UNFULFILLED PROMISE

Redesign of Rotary Inductrack for Magnetic Train Levitation

Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect

Maglev. Initial Project Description and Block Diagram. Julio Arias Sean Mawn William Schiller Leo Sell

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

Train traffic control system on the Yamanashi Maglev test line

Propulsion on Standard Railway/Roadway Infrastructure

Technology Comparison: High Speed Ground Transportation. Transrapid Superspeed Maglev and Bombardier JetTrain

Evaluation of the Fatigue Life of Aluminum Bogie Structures for the Urban Maglev

AIRCRAFT AND TECHNOLOGY CONCEPTS FOR AN N+3 SUBSONIC TRANSPORT. Elena de la Rosa Blanco May 27, 2010

1 CEAS 2015 Paper number: 44

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor)

Study on the Servo Drive of PM-LSM to Be Used in Parallel Synchronous Drive

Ken NAGASHIMA Maglev Systems Technology Division

F.P.7 Knowledge for Growth The Concept and Structure of Aeronautics and Air Transport

UNCLASSIFIED FY 2017 OCO. FY 2017 Base

Innovation Takes Off

The Research Framework Programmes of Europe

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

EFFICIENT URBAN LIGHT VEHICLES.

NASA centers team up to tackle sonic boom 18 March 2014, by Frank Jennings, Jr.

Water Train. A better way to transport water JESSE POWELL WATER TRAIN GROUP

Annual Report Summary Green Regional Aircraft (GRA) The Green Regional Aircraft ITD

Overview Presentation. Copyright of Vectus Ltd May 2013 Page 1

a Challenge for Lift-Based, Rigid Wing AWE Systems

An introduction... Copyright of Vectus Ltd 2012 Page 1

Transient Analysis of Offset Stator Double Sided Short Rotor Linear Induction Motor Accelerator

JAXA's electric propulsion systems

REsearch on a CRuiser Enabled Air Transport Environment (RECREATE)

TAKE OFF Informationsveranstaltung zu Ausschreibungen nationaler und europäischer Luftfahrtforschungsprogramme Clean Sky

ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells (ENFICA-FC).

NASA Welcome 2nd NASA-FAA On-Demand Mobility and Emerging Aviation Technologies Roadmapping Workshop

The European Lunar Lander Mission

THE WORKINGS OF MAGLEV: A NEW WAY TO TRAVEL. Scott Dona. Amarjit Singh. Research Report UHM/CE/

Clean Sky Programme. JTI Workshop, Vienna 3 rd of February, Helmut Schwarze, Project Officer CSJU Andrzej Podsadowski, Project Officer CSJU

MAGLIFTER TRADEOFF STUDY AND SUBSCALE SYSTEM DEMONSTRATIONS

65 Buckingham Gate London SW1E 6AT. United Kingdom. EADS EADS Innovation Works UK Filton, Bristol BS99 7AR. United Kingdom

UNCLASSIFIED UNCLASSIFIED

ALS (Active Lateral Suspension) By Bernard GAUTIER SNCF

INTERNATIONAL JOURNAL OF ENHANCED RESEARCH IN SCIENCE TECHNOLOGY & ENGINEERING VOL. 1, ISSUE 1, OCT ISSN NO:

Electric Flight Potential and Limitations

INFORMATION Turin The first European Commission funded Aircraft powered by a Hydrogen Fuel Cell took its first flight.

eurofot - European Large-Scale Field Operational Test on In-Vehicle Systems

Corso di Motori Aeronautici

The Transrapid Guideway Switch Test and Verifikation

CHAPTER 1. Introduction and Literature Review

-Mobility Solutions. Electric Taxis

Designing evtol for the Mission NDARC NASA Design and Analysis of Rotorcraft. Wayne Johnson From VTOL to evtol Workshop May 24, 2018

Modeling and Optimization of a Linear Electromagnetic Piston Pump

Thompson Consulting, Inc. Overview

Inductive Power Supply (IPS ) for the Transrapid

UNC-Charlotte's Power Engineering Teaching lab

Modeling and Optimization of a Linear Electromagnetic Piston Pump

Propeller Blade Bearings for Aircraft Open Rotor Engine

2016 ADVISORY PANEL SUPERCONDUCTING & OTHER ROTATING MACHINES. Jon Hahne Center for Electromechanics The University of Texas at Austin 5/10/2016

CRAHVI. CRashworthiness of Aircraft for High Velocity Impact. Tim Brown (Airbus UK) Aeronautics Days 19th - 21st June, 2006

Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket

Clement A. Skalski, Ph.D., P.E.

Ensuring the safety of automated vehicles

Maglifter: A Ground-Based Next Generation Reusable Launch Assist for a Low-Cost and Highly Reliable Space Access

Compatibility of STPA with GM System Safety Engineering Process. Padma Sundaram Dave Hartfelder

A study on the vibration analysis of a maglev vehicle A theoretical investigation of the effect of magnetic damping on a vibration control system

Our Commitment to Commercialization of Fuel Cell Vehicles and Hydrogen Infrastructure

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. FCH Airport ground handling equip.

Deployment and Drop Test for Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

Environmentally Focused Aircraft: Regional Aircraft Study

Machine Design Optimization Based on Finite Element Analysis using

VEDECOM. Institute for Energy Transition. Prénom - Nom - Titre. version

Insight. Hyperloop transportation of the future

Appenidix E: Freewing MAE UAV analysis

HEIDENHAIN Measuring Technology for the Elevators of the Future TECHNOLOGY REPORT. Traveling Vertically and Horizontally Without a Cable

Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments

Review Paper on Magnetic Levitation Train

Integrated Architectures Management, Behavior models, Controls and Software

Tyre/ground interaction testing

Qatar International Cables Company (QICC) - a Nexans Company is. Nexans has transferred the state of the art cables technology.

Propulsion Controls and Diagnostics Research at NASA GRC Status Report

w w w. o n e r a. f r

Creating a zero-emissions shipping world

Transcription:

AirTN Forum Enabling and promising technologies for achieving the goals of Europe's Vision Flightpath 2050 Cranfield, 26-27 Sept., 2013 GABRIEL - Integrated Ground and on-board system for Support of the Aircraft Safe Take-off and Landing Dr. Jozsef Rohacs - Dr. Daniel Rohacs Rea-Tech Ltd. Hungary Introduction 1. Actuality 2. Possible solutions 3. The GABRIEL concept 4. Some results of GABRIEL concept theoretical investigations 5. Planned practical investigations Summary

Introduction air transport at the starting the third S curve of development traditional challenges: performance, safety, cost, energy new challenges: time (door-to-door speed), environmenal impact, accesability demand, security new problems as airport capacity and environmental impact

Introduction cont d. possible solution using the MagLev technology to assisting the aircraft take-off and landing this is a disruptive technology investigating by NASA, US NAVY, TsAGI MiG, etc. GABRIEL project evaluates the feasibility of this method applying to the civil air transport

Introduction GABRIEL - Integrated Ground and on-board system for Support of the Aircraft Safe Take-off and Landing Type of funding scheme: Collaborative Projects - Small or medium-scale focused research project Work programme topics addressed: FP7- AERONAUTICS and AIR TRANSPORT (AAT) - 2011- RTD-1 Activity 7.1.6 Pioneering the air transport of the future Area 7.1.6.3 Promising Pioneering Ideas in Air Transport AAT.2011.6.3-2 Take-off and Landing with Ground-based Power Here are the first results of investigations

2. The project 2.1. The team

1. Actuality Airports problem associated with aircraft TOL take-off weight, speed, energy efficiency grow contiously

Percent of Population 1. Actuality cont d. environmental effect is contiously reducing, but further considerable Population changes are within required particular radius of aerodrome Distances to Airports in Europe 100 90 80 70 60 50 40 30 In the most densely populated regions, the nearest airport lies within a distance of less than 40 km for more than 95 % of population (within less than 20 km for 60 % of population) 20 10 0 0 20 40 60 80 100 120 140 160 180 200 Distance to Airport [km] HUBs Main Towered Airports GA Towered Airports GA Airports

2. Possible solutions 2.1. Principles innovative sustainable technologies radically new, disruptive solutions thinking out of the box

2. Possible solutions 2.2. Innovative solutions Effects of thrust increasing, weight decreasing for 10 % on flight performances New (unconventional) flight procedures

Possible solutions: Takeoff with limited fuel and fuelling at the high altitude Lifting up - down the aircraft by aerostatic ships Airport in the sky high altitude airport Cruiser - feeder concept Airport above the city. 2Possible solutions. 2.3Set of new solutions

2. Possible solutions 2.3. Set of new solutions cont d. Underground airport Ground assisted lift generation Ground based energy supply microwave energy supply Electric engine accelerators Electromagnetic aircraft launch system (EMALS)

2. Possible solutions 2.4. Further possibilities Further considerations vision on operational concept

3. The GABRIEL concept 3.1. The solution GABRIEL (Integrated Ground and on-board system for Support of the Aircraft Safe Take-off and Landing) is an EU supported L1 level project. (12 partners from 6 countries). Its solution MagLev track and cart sledge system

3. The GABRIEL concept 3.2. Technology evaluation Review of existing maglev technologies (electrodynamic, eletromagnetic, indutrack) Lessons learned: It can improve safety: levitation, control and operation is fully automated, no room for human error It can improve efficiency: no rolling friction It can decrease the impact on the environment: no fossil fuel is burned, trains are virtually silent at 200km/h (no friction, engine) Acceleration and supported weight is relevant Permits a climb gradient up to 10 degrees Magnetic effects: only at EDS and could be shielded

. 3The GABRIEL conception. 3.3Preliminary analysis Preliminary analysis of major meglev technologies Lessons learned: use of sledge: no need to mount anything on the a/c (e.g. mangnets) EMS could significantly cut the required thrust, and levitate even at zero speed EDS requires magnets with significant weight (>950kg), generates magnetic field and requires wheels Indutrack requires a small magnetic surface, can keep constant airgap

3. The GABRIEL concept 3.4. Techn. definition Candidates: EDS-SCM: Electrodynamic suspension with superconducting, liquid Helium cooled magnets ( Chuo-Express, Japanese Railway Central) EDS-PM: Electrodynamic suspension with permanent magnets in Halbach Arrays ( Inductrack, Lawrence Livermore National Labaratory, General Atomics, USA) EMS-LSM: Electromagnetic suspension with linear synchronous long stator motor (Transrapid International, Germany) ESM-LIM: Electromagnetic suspension with linear induction short stator motor (Linimo-System, Japan; Rotem Train, South Korea)

3. Technology evaluation 3.4. Techn. definition cont d. Electrodynamic Suspension with Permanent Magnets Passive, stable, uncomplicated suspension Not disturbed by lifting force Levitation only above 5 to 10 km/h Only component tests up to now

3. Solution operational concept 3.5. The operational concept Operational concept description of operation of system from user (stakeholders) point of view. The GABRIEL concept has no major influence on the passengers or cargo handling processes, however will introduce a series of changes in aircraft structural solutions, take-off, climb and landing procedures, airport operation, ground handling and will have a significantly positive effect on the environmental load of airports regions.

3. Solution operational concept 3.6. Design Aircraft design flight operation. safety at least as safe as conventional air transportation changes in thrust, fuselage lower part, missing the under carriage systems, etc. cart for aircraft classes, take-off and landing with use of cart sledge system cart is moving

3. Solution operational concept 3.7. Airport site design Impacts on all the elements of the air transport system Airport site.

4. Theoretical investigations 4.1. Simplified impact model

4. Theoretical investigations 4.2. Future possible improvements GABRIEL Ground Based System, Cross Section First solution: two classically coupled levitation frames Inductrack Levitation Starting / Landing Wheels Propulsion / additional Levitation / Guidance

Maximum Apparent Power (MVA) 4. Theoretical investigations 4.2. Future possible improvements cont d. Cross section with vertical arrangement of propulsion components Levitation Starting / Landing Wheels Propulsion Comparison "Maximum Inverter Apparent Power Requirement" 180 160 140 120 100 80 60 40 20 0 Propulsion Inductrack New Propulsion Concept Conventional IConventional II Accelerated Unconventional

4. Theoretical investigations 4.3. Investigated scenarios Scenarios: Aircraft weight (kg) Scenario Take-off speed (m/s) Acceleration (m/s 2 ) Use of aircraft engine power (%) 73500 Reference 75 Not predefined 100 70124 (aircraft without landing gear) Conventional I 75 2 0 Conventional II 75 3 Varying Accelerated 75 4 0 Unconventional 110 5 100 Methods: choosing a metrics using the performance standard calculation methods use of simulation methods

4. Theoretical investigations 4.4. Changes in take-off performance Scenario Balanced field length (m) Normal take-off distance +15% (m) Decision speed (m/s) Optimal rotation speed V r (m/s) Required MAGLEV track length (m) Required runway length (m) Reference Conventional I Conventional II Accelerated Unconventional 1532 1335 60 64 N/A 1532 1454 1414 50 57 1871 1454 1321 1260 55 62 1637 1321 1098 965 50 59 1260 1098 1098 2161 50 59 / 99 2990 2161

4. Theoretical investigations 4.5. Important results (take-off) Scenario Noise Emission Runway length Awakenings * due to a single take-off [persons] Fuel [kg] Balanced field length (m) Required runway length (m) Required MAGLEV track length [m] Reference 9155 138 1532 1532 N/A Conventional I 8081 (-12%) 60 (-57%) 1454 1454 1871 Conventional II 8016 (-12%) 72 (-48%) 1321 1321 1637 Accelerated 7895 (-14%) 42 (-69%) 1098 1098 1260 Unconventional 6970 (-24%) 154 (+12%) 1098 2161 2990 * Awakings - number of awaking persons due to single take-off to existing trajectory of the Spijkerboor departure at Amsterdam Schiphol Airport calculated by empirical formula

4. Theoretical investigations 4.6. Aircraft resizing Overview of the step-by-step approach to identify the various effects A320 baseline GABRIEL A/C 18 % A320 E-Taxi 2.9 % 5.2 % 1.5 % 2 % G-A320 No belly-fairing G-A320 Fixing system G-A320 New engine http://commons.wikimedia.org/wiki/file:f-wwiq_airbus_a320_sharklet_ila_2012_03.jpg http://www.snecma.com http://www.flightglobal.com/news/articles/video-l-3-and-lufthansa-get-moving-with-e-taxi-demonstrator-365815/ http://www.desktop.aero/appliedaero/wingdesign/wingdesign.html 27

4. Theoretical investigations 4.7. Onboard system Monitoring and decision support system Control system Ground system control Aircraft and engine control system 28

5. Planned practical investigations Using the UAVs inpractical measurments MAVerix Tiltwing V(S)TOL UAV for test by using an experimental MagLev test track, Twinstar II. for testing the randevouze system

5. Planned practical investigations A simulation model of the GABRIEL concept

Summary Gabriel L1 pioneering project in which 12 partners from 7 countries works on utilization of the magnetic levitation as ground based system assisting the aircraft take-off and landing. Gabriel will investigate if such a system is feasible and cost effective. The project deals with concept exploration and analysis; concept development; concept validation; impact assessment. The first results show that, the maglev technology may use for assisting the aircraft takeoff and landing