Orientalmotor. Development of K II Series Hypoid Geared Motor

Similar documents
Gearheads H-51. Gearheads for AC Motors H-51

Copyright Notice. Small Motor, Gearmotor and Control Handbook Copyright Bodine Electric Company. All rights reserved.

Stopping Accuracy of Brushless

GatesFacts Technical Information Library Gates Compass Power Transmission CD-ROM version 1.2 The Gates Rubber Company Denver, Colorado USA

ME6601 DESIGN OF TRANSMISSION SYSTEMS

NSK Linear Guides. Roller Guide RA Series. Extended series

UNIT -I. Ans: They are specified by the no. of strands & the no. of wires in each strand.

Therefore, it is the general practice to test the tooth contact and backlash with a tester. Figure 19-5 shows the ideal contact for a worm gear mesh.

Highest Performance: Dyna Series

Highest Precision: Dyna Series

PRODUCT OVERVIEW HIGHEST PRECISION

EJP SERIES Right-angle Worm

11/23/2013. Chapter 13. Gear Trains. Dr. Mohammad Suliman Abuhiba, PE

11. GEAR TRANSMISSIONS

Highest Precision: Dyna Series

Trends Regarding Rolling Bearings for Steering Systems

SEALING SOLUTIONS FOR YOUR DRIVES

Standard AC Motors. Single-Phase Induction Motors K Series. Three-Phase High-Efficiency Induction Motors. K S Series

Standard AC Motors C-9

Stepper Motors ver ver.5

K Series. Next-Generation Right-Angle Shaft Geared Motors. Compact Standard AC Motors

1.7 Backlash. Summary of the backlash is play or clearance between one pair of gear. Fig. 17 Backlash

Chapter 8 Kinematics of Gears

Marine Engineering Exam Resource Review of Couplings

F-39. Technical Reference

Highest Performance: Dyna Series

GEAR CONTENTS POWER TRANSMISSION GEAR TYPES OF GEARS NOMENCLATURE APPLICATIONS OF GEARS VELOCITY RATIO GEAR TRAINS EXAMPLE PROBLEMS AND QUESTIONS

In-house development Own manufacturing Sole distributor in Germany Working with distributors worldwide

5-Phase Stepper Motor

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

(POWER TRANSMISSION Methods)

DESIGN CONSIDERATIONS FOR ROTATING UNIONS SEALING TECHNOLOGIES

114 NOSE SEIKO CO.,LTD NOSE SEIKO CO.,LTD

Speed Correction Drives

Automation for a Changing World. Delta Planetary Gearbox PS High Precision Series.

CLOSED LOOP STEPPING MOTOR SINGLE-AXIS ROBOTS

Extremely High Load Capacity Tapered Roller Bearings

Part VII: Gear Systems: Analysis

Spur Gears. Helical Gears. Bevel Gears. Worm Gears

Graphical representation of a gear

Power Jacks have taken time, engineering excellence and the best people to produce the ultra compact Neeter Drive gearbox.

Oil/Air Lubrication Systems for Steel Production Facilities

Ernie Reiter and Irving Laskin

Installation. Standard AC Motors A-305. Standard AC Motors Introduction. Installation. Induction Motors. Reversible Motors.

Direction of Helix (R) No. of Teeth (20) Module (1) Others (Ground Gear) Type (Helical Gear) Material (SCM440)

Advantages and characteristics of the new radial piston pump RKP-II compared to the previous RKP design

RACK JACK. Synchronous Lifting Systems

bearing to conform to the same elliptical shape as the wave generator plug.

PE Planetary Gearheads

FUNCTION OF A BEARING

HG + HG + New hollow shaft precision. The successor to our versatile hypoid gearhead with hollow shaft on one/both sides Version HG +

MAIN SHAFT SUPPORT FOR WIND TURBINE WITH A FIXED AND FLOATING BEARING CONFIGURATION

Intelligent Drivesystems NORD GRIPMAXX. Keyless Bushing System DRIVESYSTEMS F5210

Installation. Standard AC Motors. Standard AC Motors C-277. Installation. Introduction. Induction Motors. Reversible Motors

DIAMOND ROLLER CHAIN. For Agricultural and Construction Equipment

AK-G/AK-GB/AK-R/AK-RB Series

Technical Trends of Automotive Wheel Bearings

Conveyor chain catalogue

NTN Module Technology Contributes to Energy Efficiency and CO2 Reduction in Automobiles

MECH 1200 Quiz 2 Review

High Capacity Tapered Roller Bearings

Catalog Q Conversion For those wishing to ease themselves into working with metric gears

Standard AC Motors E-53

Labyrinth seals for INA ball bearings

Gear Measurement. Lecture (7) Mechanical Measurements

Grade 8 Science. Unit 4: Systems in Action

DRIVE AXLE Nissan 240SX DESCRIPTION & OPERATION AXLE RATIO & IDENTIFICATION AXLE SHAFT & BEARING R & I DRIVE SHAFT R & I

Self-Adjusting Clutch (SAC) Technology Special tools / User instructions

1104 Highway 27 W Alexandria, MN

Bevel gearboxes. KSZ and KGZ Advantages. Same mounting height no support plates required. Suitable for standard motor flanges

Tandler. Hypoid. Servo Gearheads

INTRODUCTION: Rotary pumps are positive displacement pumps. The rate of flow (discharge) of rotary pump remains constant irrespective of the

Mechanotechnology N3 Lecturer s Guide

HG + New hollow shaft precision

High-Efficiency AR Series. RK Series /0.72 /Geared. CRK Series. RBK Series. CMK Series. 2-Phase Stepping Motors A-278.

EMC-HD. C 01_2 Subheadline_15pt/7.2mm

Super-low Friction Torque Technology of Tapered Roller Bearings for Reduction of Environmental Burdens

Constant Speed Motors

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS

TABLE 1: COMPARISON OF GREASE AND OIL LUBRICATION. housing structure and sealing method. speed. cooling effect. removal of foreign matter

Introducing Galil's New H-Bot Firmware

Now you can get design flexibility and lasting performance from our complete family of AccuDrive Precision Products.

Introduction. Lubrication Related Failures. Gear Couplings. Failure Analysis All Types (Page 1 of 7)

6-speed manual gearbox 0A5

Instructor Training Manual. Chapter 6 HYDRAULICS & PNEUMATICS

INVOLUTE SPIRAL FACE COUPLINGS AND GEARS: DESIGN APPROACH AND MANUFACTURING TECHNIQUE

Support Units. FA Units

Why bigger isn t always better: the case for thin section bearings

Product Brochure. Quantis gearmotors & reducers

Investigation of Seal Pumping Rate by Using Fluorescent Method

GatesFacts Technical Information Library Gates Compass Power Transmission CD-ROM version 1.2 The Gates Rubber Company Denver, Colorado USA

Advantages of a Magnetically Driven Gear Pump By Steven E. Owen, P.E.

Split plummer block housings SED 30, 31, 32 and 39 series

GEAR GENERATION GEAR FORMING. Vipin K. Sharma

Chapter 11 Rolling Contact Bearings

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Bevel Gears. Catalog Number of KHK Stock Gears. Bevel Gears M BS G R. Gears. Spur. Helical. Gears. Internal. Gears. Racks. CP Racks.

DESIGN OF MACHINE ELEMENTS UNIVERSITY QUESTION BANK WITH ANSWERS. Unit 1 STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS

AS Series. RK Series. UMK Series ASX Series 0.36 /0.72. CRK Series. CMK Series 1.8. RBK Series. PK Series 1.

Maintenance Instructions

Transcription:

Development of K II Series Hypoid Geared Motor The motor industry was looking for a geared motor that would downsize, reduce loss and provide high torque. This led our company to develop the K II series, right angle geared motor, which is composed of a gear reducer using a hypoid gear and an induction motor. This geared motor produces 3.5 times the rated torque of the K II series because it uses case hardening gears, improving the allowable radial and axial load. To prevent grease leaking, the type of oil seal and the design of the case housing was improved. This geared motor can be attached from either direction for the Hypoid geared hollow shaft type, so it saves space as well. This article introduces the structure, features, and the ease of use with the K II series. 1. Introduction Standard AC motors are used in a wide variety of industries as power sources for many types of industrial equipment. Our products have been used as the industry standard by many customers. In recent years, demands for motors and gearheads with downsizing, energy efficiency and less maintenance required, are increasing. In order to meet such demands, the K II Series was developed from the conventional K Series. It is equipped with a high-performance gearhead and its permissible torque is up to 3.5 times more than that of the conventional K Series. Features of the K II Series are introduced in this article. 2.K II Series Figure 1 shows the exterior of the K II Series. The K II Series comes with a parallel shaft type in motor frame sizes 6mm (2.36 in.) to 9mm (3.54 in.), as well as a hypoid geared motor in frame sizes 8mm (3.15 in.) and 9mm (3.54 in.). 2.1. Features of the K II Series The strength of the K II Series gearhead was increased in order to maximize the motor torque. The greatest characteristic of this gearhead is that the permissible torque has been improved by implementing the carburizing heat treatment and by enlarging bearing diameters. Comparing the permissible torque of the K II Series with that of the K Series, it has become 2 times greater with the parallel shaft gearheads and up to 3.5 times greater with the hypoid geared motors. As a leading example of the difference in torque characteristics of the K and K II Series, the comparison of a maximum permissible torque at 9W (1/8 HP)is shown below. Figure 2 shows parallel shaft gearheads and Figure 3 shows hypoid geared motors. Because the permissible radial load and permissible axial load have improved, it is possible to reduce motor size by changing the existing motor to the K II Series motor (excluding certain motors). The permissible radial load and permissible axial load at 25W (1/3 HP) are shown in Table 1 as an example. The permissible radial load indicates its maximum value and it varies depending on the gear ratio and shaft types. (a) Parallel Shaft Type (b) Hypoid Geared Motor Hollow Shaft Type (c) Hypoid Geared Motor Solid Shaft Type Figure 1Exterior of the K II Series (Frame Size 9mm) 1

4 3 2 1 45 4 35 3 25 2 15 1 5GV (K II Series) 5GU (K Series) 5 5 1 15 2 Figure 2Comparison of Max. Permissible Torque of Parallel Shaft Gearhead 9W (1/8 HP) 7 5 4 3 2 6 1 8 7 6 5 4 3 2 1 5IK9- (K II Series) 5GERH (K Series) 5 1 15 2 25 3 Figure 3Comparison of Max. Permissible Torque of Hypoid Geared Motor 9W (1/8 HP) Table 1Permissible Radial Load and Permissible Axial Load of Frame Size 8mm (3.15 in) Permissible Radial Load [N] (lbs) Permissible Axial Load [N] (lbs) Parallel Shaft Gearhead Frame Size 8mm (3.15 in), 25W (1/3 HP) K Series 2 (45) 5 (11) K II Series 45 (11) Hypoid Geared Motor Frame Size 8mm (3.15 in), 25W (1/3 HP) K Series 25 (56) 1 (22) 1 (22) K II Series 12 (27) 3 (67) *The value of the parallel shaft gearhead indicates the position at 1mm (.3in) from the shaft end. The value of hypoid geared motor hollow shaft type indicates the position at 1mm (.3in) measured from the installation surface. 2.2.Parallel Shaft Gearhead By employing the carburizing heat treatment and larger bearing diameters, the K II Series parallel shaft gearhead has achieved a longer service life of 1, hours, which is twice as long as the K Series. The structure of a parallel shaft gearhead is shown in Figure 4. For the K Series, a bearing was held with a bearing retainer plate and housing. In contrast, the K II Series does not have a housing, which was used to be supported by two bearing retainer plates. Instead, its structure was changed so that a bearing is directly held with a gear case and gear flange, enabling the bearing diameters to be enlarged. K Series K II Series Also, the finishing treatment on the tooth surface is applied to some gears. Compared to the K Series, noise has been reduced up to approximately 6dB due to this additional treatment. Figure 5 shows the comparison of noise level at gear ratio 12.5 for 9W (1/8 HP) for the K and K II Series. Figure 4Structural Comparison of Parallel Shaft Gearheads 64 62 6 58 56 54 52 5GU12.5 (K Series) 5GV12.5 (K II Series) 5 CW CCW Figure 5Noise Level Comparison of Parallel Shaft Gearhead 9W (1/8 HP) 3. Hypoid Geared Motor A hypoid geared motor is often used in transportation devices, such as conveyors, and can save space, as opposed to a parallel shaft gearhead, because a motor can be mounted perpendicularly to the drive shaft. 3.1 Features of Hypoid Gear Gears such as a worm gear, bevel gear and hypoid gear are available to configure a gearhead with a right-angle shaft. The worm gear consists of a threaded worm and a worm wheel. It generates low noise. Because the movement between the worm and wheel gear faces is entirely sliding, the worm gear has a disadvantage of low transmission efficiency. Figure 6 shows a worm gear. 2

Figure 6Worm Gear The bevel gear works as the small and large gears intersect, and its mechanism achieves high transmission efficiency. There are different types of bevel gears such as a straight bevel gear, skew bevel gear and spiral bevel gear, and the latter one offers lower noise operations. Because the small and large gears intersect with one another, the structure of each shaft becomes cantilevered, resulting in lower strength for some gears. Figure 7 shows a spiral bevel gear. 3.2. Structure As shown in Figure 9, the K II Series hypoid geared motor employs a hypoid gear at the motor shaft, which enables a larger gear to be used for the output shaft, resulting in an increase in torque. Also, gear stages can be reduced depending on the gear ratio. As mentioned earlier, it is very difficult for hypoid gears to mesh and therefore, it is necessary to finely adjust the backlash and meshing position between the gears. For this reason, its structure is built in a manner that the motor and gearhead cannot be separated once they are assembled. Large Gear in the Final Stage Small Hypoid Gear Large Hypoid Gear Output Shaft (Hollow Shaft) Figure 9Structural Drawing of Hypoid Geared Motor Figure 7Spiral Bevel Gear A hypoid gear is a gear type where the axis of the spiral bevel gear does not intersect with the axis of the meshing gear. It falls into an intermediate category of spiral bevel gears and worm gears. The pitch circle diameter of the small gear is larger than the spiral bevel gear and therefore, the small gear offers more strength and higher meshing ratio. Also, it is possible to increase the gear ratio by reducing the number of teeth on the small gear. The areas where the two gears mesh slide extensively and it is extremely complicated to mesh, as well as to manufacture. However, because it has many advantages as previously indicated, it is used for power transmission on automobiles. Figure 8 shows a hypoid gear. Figure 8Hypoid Gear 3.3. High Strength In order to improve the strength of a geared motor, it is necessary to increase the strength of gears and the bearings that support the gears. The K II Series employs the following methods to achieve this: 3.3.1 Enlarged Gear Size The most effective way to increase the gear strength is to use a larger gear. The K II Series' structure enables an enlarged gear to be used at the final stage by reducing the speed at the first and second stage, and bringing the output shaft at the center of a case. 3.3.2 Revision of Heat Treatment Method for Materials The carburizing heat treatment is applied on gears that require high strength. It is a method to penetrate carbon on the surface of materials. By hardening only near the gear surface, it significantly improves the tooth-bending strength and surface pressure strength. An internal area where carbon concentration is low has less hardness and therefore, the gear becomes strong even with impact loads. 3

3.3.3.Employment of Skew Bevel Gear Skew bevel gears are used at each stage. The meshing ratio was improved with this employment because the load share per gear is reduced, resulting in the gearhead's ability to handle larger loads. Also, by improving the gear accuracy and assembly precision, compared to conventional products, the tooth surface contact area has been increased, achieving higher strength. 3.3.4 Enlargement of Bearing Diameter The largest possible bearings are used for a gear case with high rigidity and the housing of gear flange. 3.4. Sealing Structure The lubricating property of the K II Series hypoid geared motor is a relatively soft mineral grease. As preventive measures for grease leakage, an O ring is installed at the contact surface between the gear case and gear flange, and oil seals are installed at the driving units of output shaft and motor shaft as shown in Figure 1. Oil Seal Oil Seal Gear Case prevent this, oil films are placed between the two surfaces, sealing the gap tightly with the fluid lubrication. Figure 11 shows the sealing condition of an oil seal. Figure 11Oil Seal's Sealing Condition and Oil Film Formation Angles of a sealing lip part differ between the air side and oil side. When the shaft starts to rotate, pressure occurs on the sliding surfaces depending on the angles and therefore, a very small amount of air is sucked in from the air side. This is called the oil seal pumping action. Figure 12 shows the lip part and suction direction. O Ring Gear Flange Oil Seal Figure 1Sealing Structure of Hypoid Geared Motor 3.4.1 Oil Seal There are two major causes of grease leakage from oil seals; one is due to worn lips, caused by frictional dust from the gear; the other is due to performance degradation caused by highly frequent bi-directional operation. In order to prevent the grease from leaking, highly reliable oil seals are installed in 3 areas including the I/O shaft, as shown in Figure 1. 1) Principle of Oil Seal (1) The contact sliding surface of oil seals is required to stop leaking fluids, such as grease, while sliding relative to the the shaft surface. However, sliding surfaces abrade away when in direct contact with one another. In order to < Figure 12Angle of Lip Part and Direction of Air Suction The seal performance under actual conditions is affected by the following conditions: surface roughness of the shaft, sliding speed, environment, temperature, pressure, and types and amounts of sealed fluids. 2) Employment of High Performance Oil Seal Oil seals employed in the K II Series hypoid geared motor are equipped with the following lips; the primary sealing lip, which prevents grease from leaking with tension forces; the foreign object removal lip, which prevents frictional dust inside of the gear from entering; and the auxiliary lip, which prevents external foreign objects from entering. A cross section of an oil seal is shown in Figure 13. 4

Figure 13Cross Section of Oil Seal A screw rib is placed on the employed oil seal in order to help improve the pump capacities. The pump capacity of an oil seal with a screw is shown in Figure 14. In addition to the initial pump capacity (Q1) at the sliding area of the lip end, this screw rib enhances the pump capacity (Q2). For this reason, it is used to improve resistance properties against environmental disturbance at the early stage of its usage. 3.4.3.Blocking Grease Pathway to Oil Seal Because grease has a high fluidity, it is in direct contact with the oil seal when the gear parts rotate (Refer to Figure 16 (a)). When this continues, it becomes a cause for the grease to leak outside of the gearhead. In order to prevent the grease from contacting the oil seal directly, the structure was designed to block the grease pathway by shortening the gap between the shaft and the case in a radial direction (Refer to Figure 16 (b)). This structural change protects against the grease leakage because only the fresh grease for the initial lubrication continues to remain in the oil seal area. Oil Seal Oil Seal Figure 14Pump Capacity of Oil Seal with a Screw The comparison of pump capacities with and without a screw is shown in Figure 15. It indicates that the initial pump capacity of an oil seal is higher with a screw. (a) Before employing countermeasure Figure 16Blocking Structure of Grease Pathway 3.5. Installation As shown in Figure 17, a hypoid geared motor has less side drop from the equipment compared to a parallel shaft gearhead. Also, connecting parts such as a coupling are not required when installing a hollow shaft type to an equipment. Therefore, this type can be used as a shaft-mounted gearhead. (b) After employing countermeasure Figure 15Comparison of Seal Pump Capacity with and without Screw 3.4.2 Countermeasures for Foreign Objects If there is a foreign object inside of a gearhead, the object gets caught with the oil seal lip, which causes the lip to be damaged, resulting in a grease leak. For this reason, thorough cleansing is conducted to remove any foreign objects that may be adhered to parts. Figure 17Installation Comparison of Parallel Shaft and Hollow Shaft 5

As shown in Figure 18, the K II Series hypoid geared motor is installed vertically, symmetrically centered around the output shaft. The measurements of vertical directions for the motor and gearhead are also the same. When installing onto a compact conveyor, as shown in Figure 19, the geared motor does not hang from the equipment because of its compact size. φ89 (φ3.5) 25.4 (1) 26 (1.2) 124 (4.9) 45.5 (1.86) 7 (2.8) 37 (1.46) 8 +.4 28.3 (1.11) 37 (1.46) 37 (1.46) 9 (3.5) 4 φ8.5hole Figure 18Diagram of K II Series Hypoid Geared Motor 4. Summary The K II Series has higher strength compared to the conventional K Series. The parallel shaft gearhead has achieved low noise and longer service life. Redesigning the structure of hypoid geared motors and employing new types of oil seals enabled the K II Series products to have a tight structure against grease leakage compared to the conventional products. Because its installation configuration was also thoroughly reviewed during the redesigning process, it can be installed in a compact manner. Thanks to these changes, the K II Series will significantly contribute to high performance and save space for customers' equipment. Finally, we must thank NOK Corporation for letting us cite their literature in the explanations of "Principle of Oil Seal" in chapter 3. Figure 19Installation Example to a Conveyor The hollow shaft type can be installed on both sides of the output shaft. Even when an installation position is changed, as shown in Figure 2, it is possible to unify the lead wire outlet direction of the geared motor. Because one geared motor can be installed on any side - left, right, front or back side of the conveyor, it greatly expands the possibility of installation options. Also, an end tap has been integrated into the tip of the output shaft for the solid shaft type, and thus it can be used to help prevent the pulley from becoming detached. Figure 2Greater Possibility of Installation Options Reference Literature: (1) NOK Corporation "Easy to Understand Sealing Technology" (1999, pp22-31, Institute of Industrial Research) 6