United States Patent to

Similar documents
(12) United States Patent (10) Patent No.: US 7,592,736 B2

United States Patent (19) Belter

United States Patent (19) Koitabashi

(12) United States Patent (10) Patent No.: US 6,429,647 B1

United States Patent [19] [11] Patent Number: 4,542,882 Choe [45] Date of Patent: Sep. 24, 1985

United States Patent (19)

51) Int. Cl.'... F01D 502 E. E. composite it's E. of lugs

United States Patent (19) Reid

Patent Application Publication Nov. 27, 2014 Sheet 1 of 7 US 2014/ A1

United States Patent (19) Miller, Sr.

(12) United States Patent (10) Patent No.: US 8,147,943 B1

United States Patent (19) Kim et al.

United States Patent (19)

USOO5963O14A United States Patent (19) 11 Patent Number: 5,963,014 Chen (45) Date of Patent: Oct. 5, 1999

NSN. 2%h, WD. United States Patent (19) Vranken 4,829,401. May 9, Patent Number: 45) Date of Patent: 54) ROTATING TRANSFORMER WITH FOIL

(12) United States Patent (10) Patent No.: US 6,695,581 B2

(12) United States Patent (10) Patent No.: US 6,641,228 B2

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) United States Patent

(12) United States Patent (10) Patent No.: US 6,435,993 B1. Tada (45) Date of Patent: Aug. 20, 2002

(12) United States Patent (10) Patent No.: US 9,475,637 B2

(12) United States Patent (10) Patent No.: US 6,603,232 B2. Van Dine et al. (45) Date of Patent: Aug. 5, 2003

(12) United States Patent

United States Patent (19) Woodburn

United States Patent (19) Maloof

HHRH. United States Patent (19) Lissaman et al. (11) Patent Number: 5,082,079 (45) Date of Patent: Jan. 21, 1992 (51) (54) (75) (73)

United States Patent (19) Priede

(12) United States Patent (10) Patent No.: US 6,791,205 B2

United States Patent (19)

(12) United States Patent

(12) United States Patent

(12) United States Patent (10) Patent No.: US 6,805,593 B2

(12) United States Patent

(12) United States Patent

United States Patent (19)

NES. sis. & ASN. 27, 2 to 2 E. // United States Patent (19) Kress 4,250,658. Feb. 17, ered by a conventional model piston engine.

(12) United States Patent

United States Patent (19)

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) United States Patent (10) Patent No.: US 8, B2

3 23S Sé. -Né 33% (12) United States Patent US 6,742,409 B2. Jun. 1, (45) Date of Patent: (10) Patent No.: 6B M 2 O. (51) Int. Cl...

(12) United States Patent (10) Patent No.: US 6,484,362 B1

(12) United States Patent

United States Patent (19) Ochi et al.

(21) Appl.No.: 14/288,967

(12) United States Patent (10) Patent No.: US 8,215,503 B2. Appel et al. (45) Date of Patent: Jul. 10, 2012

United States Patent (19)

(12) United States Patent (10) Patent No.: US 6,220,819 B1

(12) United States Patent (10) Patent No.: US 6,196,085 B1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(51) Int. Cl."... B62B 7700

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1. Durand (43) Pub. Date: Oct. 30, 2014 PUMP CPC... F04D 13/022 (2013.

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

IIIHIIII 5,509,863. United States Patent (19) Månsson et al. Apr. 23, Patent Number: 45) Date of Patent:

and Crew LLP Mar. 4, 1999 (DE) Int. Cl."... GO2N 11/06

(12) United States Patent (10) Patent No.: US 8,899,031 B2

(12) United States Patent

12) United States Patent 10) Patent No.: US 8,182,030 B1

310/227, 228 Attorney, Agent, or Firm-Head, Johnson & Kachigian

(12) United States Patent (10) Patent No.: US 8,840,124 B2

(12) United States Patent

(12) United States Patent

United States Patent (19) 11 Patent Number: 5,780,736 Russell 45) Date of Patent: Jul. 14, 1998

(12) United States Patent (10) Patent No.: US 6,255,755 B1

Earl Sch yang y Lee, 5,457,342 10/1995 Herbst, II /712

United States Patent (19) 11 Patent Number: 4,465,446. Nemit, Jr. et al. (45) Date of Patent: Aug. 14, 1984

USOO582O2OOA United States Patent (19) 11 Patent Number: 5,820,200 Zubillaga et al. (45) Date of Patent: Oct. 13, 1998

(12) United States Patent (10) Patent No.:

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

United States Patent (19) Dasa

United States Patent (19) Miller

% Y 2. (12) Patent Application Publication (10) Pub. No.: US 2012/ A1. (19) United States. (43) Pub. Date: Aug. 30, Tanaka et al.

-10 III. United States Patent to. 39a. 39b. 21 Claims, 3 Drawing Sheets. Appl. No.: 643,492 Fied: May 6, 1996 Int. Cla.m.

21 Appl. No.: 934,807 Abattery dispenser system with detachable dispensing units

United States Patent (19) 11 Patent Number: 5,295,304

US 7, B2. Loughrin et al. Jan. 1, (45) Date of Patent: (10) Patent No.: and/or the driven component. (12) United States Patent (54) (75)

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) United States Patent

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) United States Patent

United States Patent (19) Hensler

(12) (10) Patent No.: US 6,915,721 B2. Hsu et al. (45) Date of Patent: Jul. 12, 2005

(12) United States Patent

US A United States Patent Patent Number: 6, Lewis 45 Date of Patent: Feb. 15, 2000

(12) United States Patent (10) Patent No.: US 6,469,466 B1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

United States Patent (19) Muranishi

Sept. 20, 1971 L, A, CHESHER 3,606,112 RETRACTABLE BEVERAGE HOLDER FOR MOTOR WEHICLES. "Ne ) h \ 23. es/fs-s. Fig. 2 E3 2 (2S, Si. N.

(12) United States Patent

(12) United States Patent

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

Kikuiri et al. (45) Date of Patent: Jun. 3, (54) CAPACITIVE PRESSURE SENSOR 5, A 12, 1996 Ko /53

(12) United States Patent

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) United States Patent

US A United States Patent (19) 11 Patent Number: 6,044,130 InaZura et al. (45) Date of Patent: Mar. 28, 2000

United States Patent (19)

(12) United States Patent (10) Patent No.: US 6,543,270 B2

III. United States Patent (19) Hsu et al. 11 Patent Number: 5,330, Date of Patent: Jul. 19, electric power in addition to human force.

Transcription:

United States Patent to Shumaker 54 METHOD OF MAKING A COMPOSITE VEHICLE WHEEL 76 Inventor: Gerald C. Shumaker, 2685 Cevennes Terrace, Xenia, Ohio 45385 22 Filed: Mar. 10, 1975 (21) Appl. No.: 557,000 (52 U.S.C.... 156/189; 156/192; 301/6 A; 301/6 W; 301/6 WB; 301/63 DS; 301/63 PW (51 Int. Cl.'... B60B 5/02 58 Field of Search... 301/5 R, 5.3, 5.7, 7, 301/8, 63 R, 63 C, 63 PW, 65, 6 A, 9 DH, 9 CN, 9 SC, 9 S, l l R, 18, 17, 35 BJ, 6 W, 6 WB, 63 DS; 264/277,257, 258; 156/190, 184, 189, 192 (56) References Cited UNITED STATES PATENTS 262,990 8/1882 Smith... 301/7 1813,431 7793 l Shoemaker... 301/9 CN 3,369,843 9/1975 Prew...... 301/63 PW 3,829, 162 8/1974 Stimson... 301/6 A 11 4,017,348 45 Apr. 12, 1977 3,871,709 3/1975 Eaton... 301/11 R Primary Examiner-Robert B. Reeves Assistant Examiner-Charles A. Marmor Attorney, Agent, or Firm-Joseph E. Rusz, Richard J. Killoren 57) ABSTRACT A composite wheel, for a heavy duty vehicle, having a barrel member with an inner layer of laminated tape structure wound on an out of round shaped mandrel. The barrel member has a plurality of formed sections of chopped fibers in an epoxy resin. The inner surface of each section conforms to the out of round tape struc ture and the outer surface forms the tire bead retainers and drop center portion of the wheel. An outer layer of laminated tape structure surrounds the formed sec tions. A wheel web member, made of chopped fibers in an epoxy resin has its outer surface conforming to the out of round configuration of the barrel member. The web member is made of two sections which are secured to the barrel member. 2 Claims, 14 Drawing Figures

U.S. Patent April 12, 1977 Sheet 1 of 3 4,017,348

U.S. Patent April 12, 1977 Sheet 2 of 3 4,017,348 - ld 11

U.S. Patent April 12, 1977 Sheet 3 of 3 4,017,348

METHOD OF MAKING ACOMPOSITE VEHICLE WHEEL RIGHTS OF THE GOVERNMENT The invention described herein may be manufac tured and used by or for the Government of the United States for all governmental purposes without the pay ment of any royalty. BACKGROUND OF THE INVENTION This invention relates to a composite heavy duty wheel, such as used on certain ground vehicles and aircraft. Composite wheels have certain advantages over me tallic wheels in the area of weight reduction, fatigue life and operational life. Composite wheels also provide greater safety by reducing the accident rate due to wheel failure. Prior art composite wheels have been made with laminated layers of material or by wet winding fila ments on a mandrel. Such wheels are not entirely suit able for high torsion loads in heavy equipment which occur during the braking operation. Also, these wheels are normally limited to use with wheel temperatures below 300 F. There are no known composite wheels that will withstand the high temperatures and high torsional loads developed by the braking mechanism of a large moving vehicle. BRIEF SUMMARY OF THE INVENTION According to this invention, a vehicle wheel is pro vided with an out of round internal barrel member configuration used to transfer the torque from the brake mechanism to the wheel hub and tire. A brake adapter and heat resistant coating is provided to reduce the heat flow from the brake to the composite structure of wheels used on aircraft. IN THE DRAWINGS FIG. 1 is a partially schematic side view of an aircraft wheel assembly wherein the wheel of the invention is used. FIG. 2 is a partially schematic sectional view of the device of FIG. 1 taken along the line 2-2. FIG. 3 is a schematic illustration showing the winding of the inner filament layer, of the wheel of FIGS. 1 and 2. FIG. 4 shows a top view of the mandrel used in illus tration of FG, 3. FIG. S is a sectional view of the mandrel of FIG. 3 taken along the line 5-5. FIG. 6 is a side view of one of the chopped filament reinforced epoxy segments used in the device of FIGS. 1 and 2. FIG. 7 is left end view of the segment of FIG. 6. FIG. 8 is a sectional view of the segment of FIG. 6, taken along the line 8-8. FIG. 9 shows barrel member of the device of FIGS. 1 and 2 with the segments in place before the outer fila ment layer is applied. FIG. 10 is a schematic illustration showing the wind ing of the outer filament layer of the wheel of FIGS. 1 and 2. FIG. 1 is a schematic view of the device of FIGS. 1 and 2 with the outer winding complete and hub assem bly and brake hub in place. 4,017,348 10 15 20 25 30 35 40 45 SO 55 60 65 2 FIG, 12 is a brake end view of the finished wheel with the brake hub and wheel hub in place. FIG. 13 is a side view of a modified wheel which may be used for land vehicles. FIG. 14 is a sectional view of the device of FIG. 13 along the line 14-14. DETAILED DESCRIPTION OF THE INVENTION Reference is now made to FIGS. 1 and 2 of the draw ing which shows an aircraft wheel 10 having a wheel barrel member 12, a hub assembly 14, a brake assem bly 16 and an aircraft tire 18. The barrel member and hub assembly are constructed as shown in FIGS. 2-11. An inner filament layer 20 is wound on a two part mandrel 22 in a conventional manner. The mandrel is rotated by means of a motor on a stand shown schemat ically at 24. The layer 20 consists of 8 to 10 thicknesses of 9 mil filament reinforced epoxy resin tape 23 from a conven tional spool supply system shown schematically at 25. After the complete inner filament layer 20 is wound on the mandrel, the mandrel is enclosed in a vacuum bag and heated to 150 F. for 10 minutes in a precure compaction stage. The mandrel is then removed from the vacuum bag and replaced on stand 24. A plurality of preformed segments 26 are then positioned around the layer 20, as shown in FIG. 9. The segments 26, as shown in FIGS. 6-8, have an inner surface conforming to the flat portions of the inner layer 20, as formed by the mandrel, and their outer surface conforming to the desired tire retaining shape, shown in FIG. 2. The seg ments 26 are made of partially cured epoxy resin rein forced with chopped fibers. The segments may be se cured to the layer 20 with an epoxy adhesive. After the segments 26 are secured to the layer 20, an outer tape layer 28 is wound over the segments, as shown in FIG. 10. Layer 28 may consist of 20 to 30 thicknesses of 9 mil filament reinforced epoxy resin tape 23 from the spool supply system 25. The barrel member is placed in a vacuum bag for a 10 minute precure compaction stage, as described above, after each 10 thicknesses are applied. When the second winding operation is completed, the two ends of the inner and outer layers are trimmed smooth with the ends of the segments 26. Then a first two part form, not shown, is placed within the barrel member and a second two part form, not shown, is placed around the outside of the barrel member to retain the shape of the barrel member during the curing operation. The barrel member is then cured in a con ventional manner in an autoclave. If the mandrel is made of a material, such as aluminum, which still stand the heat of the curing process, it can be used for the inner support during the curing operation. The particular curing operation depends upon the material used in the wheel structure. With the tape layers and wheel segments made of an/addition-type polyamide resin, such as a polyamide resin derived from caprolactam by the addition process, reinforced with carbon fibers, in the tape, and chopped fibers, in the segments, the segments are partially cured for ap proximately 10 minutes at a temperature of about 150 F. and a pressure of about 50 psi. The barrel member, after completion, is then cured for one hour at about 100 psi at a temperature between 235 F. and 260 F., then for three hours at about 100 psi at a temperature between 335 F. and 360 F. The barrel member is then cooled to about 120. After cooling, the barrel member

4,017,348 3 is given a post cure bake in an oven at about 500 F. For some applications, depending upon the materials used, some variations in the curing operation may be used. After the post cure operation is completed and the 5 barrel member is cooled, the forms are removed from the barrel member and the wheel is cut along the line 30, shown in FIG. 2, to permit mounting of the tire. The hub assembly 14, shown in FIG. 2, has two parts 31 and 32 having their peripheral surfaces conforming 10 to the out of round configuration of the inner surface of the barrel member. The part 31 is secured to one half of the barrel member with an epoxy adhesive and the part 32 is secured to the other half of the barrel mem ber with an epoxy adhesive. An aligning sleeve member 15 33 is secured in one part of the hub assembly. A brake hub 34 is positioned within the barrel mem ber. A heat insulation layer 35, of a material such as asbestos or a ceramic is provided between the brake hub and barrel member. For some applications, the 20 insulation can be a sprayed on silicone or fluorocarbon material. Since the brake hub is coupled to the wheel with an out of round configuration, the insulation layer need withstand only compression loads. The insulation layer and brake hub are secured with an epoxy adhe- 25 SW While the device thus far described relates to an aircraft wheel, similar wheel structure could also be used for other wheels. The device shown in FGS. 13 and 14 relate to an 30 automobile wheel. This wheel is similar to that de scribed above, having an inner wound layer 20', seg ments 26' and an outer wound layer 28' constructed in substantially the same manner as described above, with the hub assembly 14' secured in substantially the same 35 manner. However, since the brake assemblies in auto mobiles are normally separate from the wheel, this portion of the barrel member is not included. Also, the wheel need not be cut in two for mounting of the tire. The hub assembly will be made in two parts, however, 40 to aid in retaining it within the barrel member. While the hub assembly has been shown as made of metal, it could also be made of fiber reinforced epoxy material. Also lateral or bias fibers can be added. Wheels, such as automobile wheels, which do not 45 have to withstand as high temperature loads as aircraft wheels can be made of lower temperature materials, 50 4. such as carbon fiber or fiberglass reinforced novalac epoxy with an anhydride cure. When this wheel con struction is used for other wheel uses, some modifica tion of the structure may be required. Shapes, other than that shown for the out of round configuration, may be used as long as the shape chosen is symmetrical around the axis of the wheel so as not to unbalance the wheel. However, wheel configurations, which require excessive material to provide the round outer wheel surface, are not desirable for use in aircraft wheels, though they might be desirable to provide increased wheel strength for other applications. There is thus provided an improved composite vehi cle wheel which permits the use of such wheels where high torsion loads are present. claim: 1. The method for constructing heavy duty wheels for vehicles, comprising: forming a barrel member by winding an inner layer of predetermined thickness of filament reinforced epoxy resin tape on a mandrel hav ing a symmetrical out of round outer surface; subject ing the inner layer to a precure compaction stage; posi tioning a plurality of partially cured preformed seg ments of chopped fiber reinforced epoxy resin, having their inner surface conforming to the out of round configuration of the inner tape layer and their outer surface conforming to the desired tire receiving config uration of the wheel, around the periphery of the tape layer; winding an outer layer of a predetermined thick ness offilament reinforced epoxy resin tape around the outer surface of said segments; subjecting the outer layer to precure compaction stages after each predeter mined number of thicknesses of tape; curing the barrel member within a form in an autoclave at a predeter mined temperature and pressure; removing the barrel member from the autoclave; allowing the barrel mem ber to cool; securing a two part hub member within the barrel member with an epoxy adhesive. 2. The method as recited in claim 1, adapted for constructing wheels for use on aircraft comprising the additional steps of providing a layer of heat insulation to the out of round inner surface of a portion of the barrel member adapted for use with an aircraft brake; securing a brake hub, having an out of round outer surface conforming to the layer of insulation within the barrel member with an epoxy adhesive. se s 55 60 65