Superpave Asphalt Binder Specification

Similar documents
- New Superpave Performance Graded Specification. Asphalt Cements

SUPERPAVE BINDER SPECIFICATIONS & SELECTIONS. Superpave Binder Specs & Selections 1

Background. Asphalt Soluble in petroleum products. Tar Resistant to petroleum products Generally by-product of coke (from coal) production

Superpave Asphalt Binders

Caltrans Implementation of PG Specs. Caltrans. Presentation Overview. HMA in California. Why, When & How? How will if affect YOU?

Multiple Stress Creep Recovery (MSCR): New Binder Grade Testing and Terminology

Heritage Research Group 940 N. Wynn Rd - Oregon, OH Phone (419) Fax (317)

Use of New High Performance Thin Overlays (HPTO)

Louisiana s Experience

New Tools from EN Standards for high performances mixes

SECTION 916 (Pages ) is deleted and the following substituted: SECTION 916 BITUMINOUS MATERIALS

What s going on with European Specifications?

TRB Workshop Implementation of the 2002 Mechanistic Pavement Design Guide in Arizona

CHARACTERISTICS OF REJUVANATED BITUMEN WITH USED LUBRICATING OIL AS REJUVENETING AGENT

NCHRP Project Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

AC Binder Characterization Containing Crumb Tire Rubber

Basics of test: Sand cylinder of mix is 10 Hz either in stress or strain a target temperature until specimen fails Test uses a

EFFECT OF SUPERPAVE DEFINED RESTRICTED ZONE ON HOT MIX ASPHALT PERFORMANCE

Improved Aging Characteristics of Crosslinked Polymer Modified Asphalt Binders

FHWA Pavements program What s s Happening. John D AngeloD Office of Pavement Technology

Fuel Resistant. Punishing Conditions. Supreme Production.

Products for Asphalt Testing

Warm Mix Technology. Sasobit. Sasobit. Available WMA Technologies SEAUPG 2005 CONFERENCE - NASHVILLE, TN CONCERNS: Frankfurt Airport

Impact of Environment-Friendly Tires on Pavement Damage

Performance Tests of Asphalt Mixtures

Implementation and Thickness Optimization of Perpetual Pavements in Ohio

Thomas Bennert, Ph.D. Rutgers University Center for Advanced Infrastructure and Transportation (CAIT)

Darwin-ME Status and Implementation Efforts_IAC09

Update NCHRP Project 9-61 Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

Industry/PennDOT Initiative On Performance Testing. AN UPDATE January 22, 2019

NCAT/MnROAD Cracking Group Update. March 29, 2018

SULFUR EXTENDED ASPHALT INVESTIGATION - LABORATORY AND FIELD TRIAL

Structural Considerations in Moving Mega Loads on Idaho Highways

Developing Affordable GTR Asphalt Mixes for Local Roadways

Developing Affordable GTR Asphalt Mixes for Local Roadways

EME2 Pavement and mix design. Laszlo Petho, Pavements Manager Fulton Hogan.

ACC Technology Showcase November 10, 2015 Newport Beach, CA. Ronald Corun Axeon Specialty Products LLC Director - Asphalt Technical Services

IEffectof TruckWeight

Oregon Department of Transportation Standard Specifications For Asphalt Materials 2004

NEAT ASPHALTS 40-50, 60-70, , , , & Complies to ASTM D 946 & AASHTO M20, BS 3670 DIN 1995

Demand for soft grades of Binder

WARM MIX ASPHALT TECHNOLOGY

Barry Paye, P.E. Wisconsin DOT Materials Lab

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

DYNAMIC TESTING MACHINES. Testing with System

Do I have a problem?

Pavement Performance Prediction Symposium July 17, 2008 University of Wyoming Laramie, Wyoming

PPA WORKSHOP APRIL 7-8, 2009 MINNEAPOLIS, MN

Performance Based Lab Tests to Predict Pavement Fatigue

Effect of Different Axle Configurations on Fatigue Life of Asphalt Concrete Mixture

MATERIAL SPECIFICATION FOR EMULSIFIED ASPHALT

2016 NJDOT Research Showcase 10/26/16

3.5. PMA for Airports in India. When Quality Means Profit

DMS-9202 Asphaltic Concrete Patching Material (Stockpile Storage or Bagged)

SEAUPG 2009 CONFERENCE-HILTON HEAD ISLAND, SOUTH CAROLINA

Development of long life structural asphalt

Implementation Process of Pavement ME Design in Maricopa County 2016 Arizona Pavements/Materials Conference November 17, 2016

Oil Comparison for Weighing Precipitation Gauges as used in Environment Canada

Asphalt Technology Guidance Program (ATGP)

global and domestic operations

Special Provision No. 111S12 July 2017

Tex-614-J, Testing Epoxy Materials

ISO 2909 / ASTM D

EFFECTS OF DUAL VERSUS SUPER SINGLE TRUCK TIRE ON FLEXIBLE PAVEMENT PERFORMANCE; A MECHANISTICAPPROACH

All Regional Engineers. Omer M. Osman, P.E. Special Provision for Hot-Mix Asphalt Mixture Design Composition and Volumetric Requirements July 25, 2014

A Crack is a Crack Mn/DOT s Perspective on Cracking in Asphalt Pavements

SECTION B ASPHALT BITUMEN PAVETEST

Damage Factor Assessment through Measuring Direct Response of Asphalt Pavement due to Heavy Loading

Subject: Dr. Witczak s letter to AASHTO Subcommittee on Materials and AASHTO Joint Technical Committee on Pavements

Long Life Asphalt Performance Testing January 17, 2018

(2111) Digital Test Rolling REVISED 07/22/14 DO NOT REMOVE THIS. IT NEEDS TO STAY IN FOR THE CONTRACTORS. SP

Rutting of Caltrans Asphalt Concrete and Asphalt-Rubber Hot Mix. Under Different Wheels, Tires and Temperatures Accelerated

Simulation, Rheology and Efficiency of Polymer Enhanced Solutions April 5, 2017

SECTION 118 ASPHALT MATERIAL

COMPARING RUTTING PERFORMANCE UNDER A HEAVY VEHICLE SIMULATOR TO RUTTING PERFORMANCE AT THE NCAT PAVEMENT TEST TRACK. Dr. R. Buzz Powell, P.E.

Status of the first experiment at the PaveLab

MUNICIPALITY OF MONROEVILLE

DMS-9202, Asphaltic Concrete Patching Material (Stockpile Storage)

Impact of Overweight Traffic on Pavement Life Using WIM Data and Mechanistic- Empirical Pavement Analysis

Shaft Design. Dr. Mostafa Rostom A. Atia Associate Prof.

Innovative Warm Mix Asphalt Projects: The Contractor s Perspective

Field Investigation of the Effect of Operational Speed and Lateral Wheel Wander on Flexible Pavement Mechanistic Responses

TRB Webinar: Design and Production of High-Reclaimed Asphalt Pavement Mixes. May 7, 2009, 2:00 PM EDT

Tex-614-J, Testing Epoxy Materials

Modeling and Analysis of Tractor Trolley Axle Using Ansys

Developing Affordable GTR Asphalt Mixes for Local Roadways

Influence of Vehicle Speed on Dynamic Loads and Pavement Response

Assessing Pavement Rolling Resistance by FWD Time History Evaluation

Asphalt Pavement Analyzer (APA)

I.D.O.T. Update Version -

High Surface Area Silica. High Performance Tread. STRUKTOL SCA 98 (Tetrasulfide)

Gregory Svechinsky, Ilan Ishai & Jorge Sousa Second International Conference on Warm Mix Asphalt St. Louis Missouri, October 2011

North Eastern States Materials Engineers Association (NESMEA) October 18 th 19 th, 2016 Newark, DE

HRSG Operational Challenges and Siemens Solutions

Equivalent Loading Frequencies to Simulate Asphalt Layer Pavement Responses Under Dynamic Traffic Loading

EXPERIMENTAL STUDY ON EFFECTIVENESS OF SHEAR STRENGTHENING OF RC BEAMS WITH CFRP SHEETS

SPECIAL HAULING PERMITS

Viscosity & Flash Point Standards For Reference, Validation, and Calibration

Bandmill Strain System Response

Table Standardized Naming Convention for ERD Files

Transcription:

Presented by Prof. Hamad I. Al-Abdul Wahhab Civil Engineering Department King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia 1.7.1 Superpave Asphalt Binder Specification The grading system is based on Climate PG 70-10 Performance Grade Min pavement temperature Average 7-day max pavement temperature 1.7.2 1

PG Specifications Based on rheological testing (study of flow and deformation) Asphalt cement is a viscoelastic material Behavior depends on: Temperature Time of loading Aging (properties change with time) 1.7.3 SHRP Asphalt Binder Spec Performance Based -- permanent deformation -- fatigue cracking -- low temperature cracking Physical Properties -- criteria remain the same -- temperature at which criteria achieved varies -- measured on aged binder 1.7.4 2

ASPHALT GRADING SUMMARY SHEET - SHRP BINDER PERFORMANCE SPECIFICATION Asphalt ID: Original RTFOT RTFOT + PAV residue Flash Pt: C (Min: 230 C) Loss: % Time/Temp after PAV: 20 HRS @ 110 C Grade Vis@135: cp (Max: 1.0%) (Max: 3000 cp) Dynamic Shear 10 rad/s (1.6Hz) Dynamic Shear 10 rad/s (1.6Hz) Flexural Creep (at 60 sec) G*/sinδ (kpa) > 1 kpa Dynamic Shear 10 rad/s (1.6Hz) G*/sinδ (kpa) > 2.2 kpa Temp C G*sinδ (MPa) < 5 MPa Temp C 25-6 22-12 PG 58 19-18 16-24 13-30 28-6 25-12 PG 64 22-18 19 x -24 16-30 34 0 31-6 PG 70 28-12 x 25-18 22-24 37 0 PG 76 x x 34-6 31-12 28-18 40 0 PG 82 37-6 34-12 31-18 Stiffness, S < 300 MPa * Required only * if Creep Stiffness (S) is between 300 and 600 Mpa, and m >. 0.30 Asphalt Grade : PG x Slope, m > 0.30 DT * (1mm/min) F. Strain > 1.0% 1.7.5 Miscellaneous Spec Requirements CEC Avg 7-day Max, o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82 1-day Min, o C -34-40 -46-22 -28-22 -28-22 -28-22 -28-16 -22-28 -16-22 -10-16 -34-40 -46-16 -34-40 -10-16 -34-40 -10-16 -34-40 -10-34 -10-28 -34 > 230 o C Flash Point < 3Pa. s @ 135 o C > 1.00 kpa > 2.20 kpa (Flash Point) FP RV (Rotational Viscosity) DSR G*/sin δ (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % (PRESSURE AGING VESSEL) ORIGINAL PAV 20 Hours, 2.07 MPa 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa DSR G*/sin δ Mass Loss DSR G* sin δ 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 28 31 S < 300 MPa m > 0.300 Report Value > 1.00 % ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 1.7.6 3

Miscellaneous Spec Requirements Pumping and Handling -- rotational viscometer -- controlled by unaged binder vis. @ 135 C 3 Pa-s Safety -- flash point COC -- controlled by flash point 230 C Aging During Hot Mixing/Construction -- RTFO -- controlled by mass loss 1.00 % 1.7.7 CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3Pa. s @ 135 o C Performance Grades PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa > 2.20 kpa 20 Hours, 2.07 MPa (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % (PRESSURE AGING VESSEL) DSR G*/sin δ DSR G*/sin δ PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa DSR G* sin δ 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 28 31 S < 300 MPa m > 0.300 Report Value > 1.00 % ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 1.7.8 4

CEC How the PG Spec Works Spec Requirement Remains Constant Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa DSR G*/sin δ 58 64 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa < 5000 kpa S < 300 MPa m > 0.300 (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) Test Temperature Changes DSR G*/sin δ DSR G* sin δ 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 28 31 ( Bending Beam Rheometer) BBR S Stiffness & m - value Report Value > 1.00 % -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 1.7.9 How the Spec Works Spec. Requirement Remains Constant Dynamic Shear, AASHTO TP5-93 G*/sin δ, Min 1.00 kpa Test Temp @ 10 rad/sec 70 76 Test Temperature Changes 1.7.10 5

Permanent Deformation Courtesy of FHWA Function of warm weather and traffic 1.7.11 High Temperature Behavior High in-service temperature Desert climates Summer temperatures Sustained loads Slow moving trucks Intersections Viscous Liquid 1.7.12 6

Pavement Behavior (Warm Temperatures) Permanent deformation (rutting) Mixture is plastic Depends on asphalt source, additives, and aggregate properties 1.7.13 Rutting RV BBR DSR 1.7.14 7

CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3Pa. s @ 135 o C Permanent Deformation PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa Unaged RTFO Aged > 2.20 kpa 20 Hours, 2.07 MPa (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % (PRESSURE AGING VESSEL) DSR G*/sin δ DSR G*/sin δ PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa DSR G* sin δ 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 28 31 S < 300 MPa m > 0.300 Report Value > 1.00 % ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 1.7.15 Spec Requirements To Control Rutting Dynamic Shear, TP5: G*/sin δ, Min 1.00 kpa Test Temp @ 10 rad/sec Dynamic Shear, TP5: G*/sin δ, Min 2.20 kpa Test Temp @ 10 rad/sec 7-6 1.7.16 8

Permanent Deformation Addressed by high temp stiffness G*/sin δ on unaged binder > 1.00 kpa G*/sin δ on RTFO aged binder > 2.20 kpa For the early part of the service life 1.7.17 Permanent Deformation Question: : Why a minimum G*/sin δ to address rutting Answer: We want a stiff, elastic binder to contribute to mix rutting resistance How: : By increasing G* or decreasing δ 1.7.18 9

Material A Viscous Part = 4 δ Elastic Part = 3 G* = 5 Viscous Part 4 Sin δ = = G* 5 G* 5 = = 6.25 Sin δ 4/5 Material B Viscous Part = 3 δ Elastic Part = 4 G* = 5 Viscous Part 3 Sin δ = = G* 5 G* 5 = = 8.33 Sin δ 3/5 Large value means behaves more like elastic solid 1.7.19 Fatigue Cracking Function of repeated traffic loads over time (in wheel paths) 1.7.20 10

Fatigue Cracking Addressed by intermediate temperature stiffness G*sin δ on RTFO + PAV aged binder < 5000 kpa > Later part of pavement service life 1.7.21 Fatigue RV BBR DSR 1.7.22 11

CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3Pa. s @ 135 o C Fatigue Cracking PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa > 2.20 kpa 20 Hours, 2.07 MPa (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % (PRESSURE AGING VESSEL) DSR G*/sin δ DSR G*/sin δ PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 28 31 S < 300 MPa m > 0.300 ( Bending Beam Rheometer) BBR S Stiffness & m - value PAV Aged -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening Report Value > 1.00 % DSR G* sin δ (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 1.7.23 Specification requirement To control fatigue cracking Dynamic Shear, TP5: G*sin δ, Max 5000 kpa Test Temp @ 10 rad/sec, C 1.7.24 12

Fatigue Cracking Question: : Why a maximum G* sin δ to address fatigue? Answer: We want a soft elastic binder (to sustain many loads without cracking) How: By decreasing G* or decreasing δ 1.7.25 Material A Viscous Part = 3 δ Elastic Part = 4 G* = 5 Viscous Part 3 Sin δ = = G* 5 G* sin δ = 5 3/5 = 3 Smaller value means Better at dissipating stress Material B G* = 5 Viscous Part = 3.5 δ Elastic Part = 3.5 Viscous Part 3.5 Sin δ = = G* 5 G* sin δ = 5 3.5/5 = 3.5 1.7.26 13

Low Temperature Behavior Low Temperature Cold climates Winter Elastic Solid 1.7.27 Pavement Behavior (Low Temperatures) Thermal cracks Stress generated by contraction due to drop in temperature Crack forms when thermal stresses exceed ability of material to relieve stress through deformation Material is brittle Depends on source of asphalt and aggregate properties 1.7.28 14

Thermal Cracking 1.7.29 Low Temperature Cracking CEC Avg 7-day Max, o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82 1-day Min, o C -34-40 -46-22 -28-22 -28-22 -28-22 -28-16 -22-28 -16-22 -10-16 -34-40 -46-16 -34-40 -10-16 -34-40 -10-16 -34-40 -10-34 -10-28 -34 > 230 o C (Flash Point) FP < 3Pa. s @ 135 o C (Rotational Viscosity) ORIGINAL RV > 1.00 kpa DSR G*/sin δ (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa DSR G*/sin δ (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa DSR G* sin δ 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 28 31 S < 300 MPa m > 0.300 PAV Aged Report Value > 1.00 % ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 1.7.30 15

Low Temperature Cracking CEC Avg 7-day Max, o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82 1-day Min, o C -34-40 -46-22 -28-22 -28-22 -28-22 -28-16 -22-28 -16-22 -10-16 -34-40 -46-16 -34-40 -10-16 -34-40 -10-16 -34-40 -10-34 -10-28 -34 > 230 o C (Flash Point) FP < 3Pa. s @ 135 o C (Rotational Viscosity) ORIGINAL RV > 1.00 kpa DSR G*/sin δ (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa DSR G*/sin δ (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa DSR G* sin δ 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 28 31 S < 300 MPa m > 0.300 PAV Aged Report Value > 1.00 % ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 1.7.31 Creep Stiffness, TP1: S, Max, 300 MPa m-value, Min, 0.300 Test Temp @ 60 sec, C Specification requirement To control Low temperature cracking Direct Tension, TP3: Failure Strain, Min 1.0 % Test Temp @ 1.0 mm/min, C 1.7.32 16

Low Temperature Cracking Controlled by -- S on RTFO/PAV aged materials 300 kpa -- m-value on RTFO/PAV aged materials 0.300 Alternate Control -- S on RTFO/PAV aged materials 300 600 MPa -- m-value on RTFO/PAV aged materials 0.300 -- tensile failure strain on RTFO/PAV aged materials 1.0% 1.7.33 Effect of Loading Rate on Binder Selection Dilemma 90 kph specified DSR loading rate is 10 rad/sec (90kph) what about longer loading times? Use binder with more stiffness at higher temps slow - - increase one high temp grade stationary - - increase two high temp grades no effect on low temp grade 1.7.34 17

Effect of Loading Rate on Binder Selection Example for toll road PG 64-22 for toll booth PG 70-22 for weigh stations PG 76-22 90 kph Slow Stopping 1.7.35 Effect of Traffic Amount on Binder Selection 80 kn ESALs 10-30 x 10 6 ESAL Consider increasing - - one high temp grade 30 x 10 6 + ESAL Recommend increasing - - one high temp grade Equivalent Single Axle Loads 1.7.36 18

New Binder Selection Adjustments for Traffic Level and Speed MP2 Adjustment to Binder PG Grade (2) Design ESAL s (1) Traffic Load Rate (Millions) Standing Slow Avg. Speed > 70 km/hr (Avg. Speed < 20 km/hr (Avg. Speed 20 to 70 km/hr < 0.3 - (3) - - 0.3 to < 3 2 1-3 to <10 2 1-10 to < 30 2 1 - (3) > 30 2 1 1 (1) Design ESAL s are anticipated project traffic level expected on the design lane over a 20 years period. Regardless of the actual design life of the roadway, determine the design ESAL s for 20 years and choose appropriate N design level. (2) Increases the high temperature grade by the number of grade equivalents indicate (1 grade equivalent to 6 o C. (3) Consideration should be given to increasing the high temperature grade by 1 grade equivalent. 1.7.37 Summary of How to Use PG Specification Determine 7-day max pavement temperatures 1-day minimum pavement temperature Use specification tables to select test temperatures Determine asphalt cement properties and compare to specification limits 1.7.38 19

TURAIF AL-QURAYYAT ARAR AL-JAWF R. AL-QURAYYAT R. AL-JAWF RAFHA NORTH BORDER R. TABOUK KUWAIT TABOUK R. AL-QAISUMAH HAIL R E D S E A AL-WAJH MADINAH R. YANBU MADINAH PG 70-10 MAKKAH R. JEDDAH MAKKAH TAIF HAIL R. AL-BAHA R. BAHA BURAYDAH AL-QASSIM R. AL-DAWADMI BISHA ASIR R. RIYADH RIYADH REGION PG 64-10 PG 70-10 SULAYYIL KHAMIS MUSHAYT NAJRAN R. ABHA NAJRAN SHARURAH JIZAN R. JIZAN DHAHRAN HAFUF ARABIAN GULF QATAR PG 76-10 EASTERN PROVINCE U A E O M A N GULF OF OMAN Tentative Temperature Zoning for Asphalt Binder Specifications for the Gulf Countries. 1.7.39 ASPHALT GRADING SUMMARY SHEET - SHRP BINDER PERFORMANCE SPECIFICATION Asphalt ID: Original RTFOT RTFOT + PAV residue Flash Pt: C (Min: 230 C) Loss: % Time/Temp after PAV: 20 HRS @ 110 C Grade Vis@135: cp (Max: 1.0%) (Max: 3000 cp) Dynamic Shear 10 rad/s (1.6Hz) Dynamic Shear 10 rad/s (1.6Hz) Flexural Creep (at 60 sec) G*/sinδ (kpa) > 1 kpa Dynamic Shear 10 rad/s (1.6Hz) G*/sinδ (kpa) > 2.2 kpa Temp C G*sinδ (MPa) < 5 MPa Temp C 25-6 22-12 PG 58 2.7 19-18 16-24 13-30 28 3.55-6 25 4.64-12 PG 64 1.6 3.1 22 5.12-18 19-24 16-30 34 0 31-6 PG 70 0.82 28-12 25-18 22-24 37 0 PG 76 34-6 31-12 28-18 40 0 PG 82 37-6 34-12 31-18 Stiffness, S < 300 MPa Required only * if Creep Stiffness (S) is between 300 and 600 Mpa, and m>0.30. Asphalt Grade : PG 64-16 Slope, m > 0.30 193.5 0.308 256.3 0.262 Failed Failed DT * (1mm/min) F. Strain > 1.0% 1.7.40 20

ASPHALT GRADING SUMMARY SHEET - SHRP BINDER PERFORMANCE SPECIFICATION Asphalt ID: Original RTFOT RTFOT + PAV residue Flash Pt: C (Min: 230 C) Loss: % Time/Temp after PAV: 20 HRS @ 110 C Grade Vis@135: cp (Max: 1.0%) (Max: 3000 cp) Dynamic Shear 10 rad/s (1.6Hz) Dynamic Shear 10 rad/s (1.6Hz) Flexural Creep (at 60 sec) G*/sinδ (kpa) > 1 kpa Dynamic Shear 10 rad/s (1.6Hz) G*/sinδ (kpa) > 2.2 kpa Temp C G*sinδ (MPa) < 5 MPa Temp C 25-6 22-12 PG 58 19-18 16-24 13-30 28-6 25-12 PG 64 3.4 22-18 19-24 16-30 34 0 31-6 PG 70 2.3 28-12 25-18 22-24 37 3.62 0 PG 76 1.5 2.4 34 4.18-6 31 5.2-12 28-18 40 0 PG 82 0.9 37-6 34-12 31-18 Stiffness, S < 300 MPa 95.18 170.8 Failed Required only * if Creep Stiffness (S) is between 300 and 600 Mpa, and m>0.30. Asphalt Grade : PG 76-10 Slope, m > 0.30 0.312 0.270 Failed DT * (1mm/min) F. Strain > 1.0% 1.7.41 THANK YOU 1.7.42 21