PS2 Solutions. Adiabatic reversible Q L V 3 V 1 = V 4 V

Similar documents
16.682: Technology in Transportation - Pset #2 Issued: Wednesday, February 16th, 2011 Due: Thursday, February 24th, 2011

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2013/2014 ME110. Aircraft and Automotive Systems

density ratio of 1.5.

Technology in Transportation Exam 1 SOLUTIONS

Assignment-1 Air Standard Cycles

Technology in Transportation Exam 1

Internal Combustion Engine

2.61 Internal Combustion Engines

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

2.007 Design and Manufacturing I

2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each.

AT AUTOMOTIVE ENGINES QUESTION BANK

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters

Operating Characteristics

The Internal combustion engine (Otto Cycle)

Chapter 6. Supercharging

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16]

iracing.com Williams-Toyota FW31 Quick Car Setup Guide

Prepared by: Dr. Assim Adaraje

2013 THERMAL ENGINEERING-I

Assignment-1 Introduction

Internal Combustion Engines

Air Cooled Engine Technology. Roth 9 th Ch 6 Engine Performance Pages

Everything You Need to Know About. Aerodynamics. By Julien Versailles

Unit 8 ~ Learning Guide Name:

Development of Low-Exergy-Loss, High-Efficiency Chemical Engines

2.61 Internal Combustion Engines Design Project Solution. Table 1 below summarizes the main parameters of the base engine. Table 1 Base Engine Summary

8.21 The Physics of Energy Fall 2009

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters

distance travelled circumference of the circle period constant speed = average speed =

MEB THERMAL ENGINEERING - I QUESTION BANK UNIT-I PART-A

Heat Engines Lab 12 SAFETY

Roehrig Engineering, Inc.

Single-phase Coolant Flow and Heat Transfer

Physics12 Unit 8/9 Electromagnetism

Hovercraft

Using Data to Improve You and Your Cars Performance. Roger Caddell Chris Brown

2.007 Design and Manufacturing I

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME110. Aircraft and Automotive Systems

Combustion engines. Combustion

Thermodynamic Cycles. Alicia Ma. Esponda Cascajares

Analysis. Techniques for. Racecar Data. Acquisition, Second Edition. By Jorge Segers INTERNATIONAL, Warrendale, Pennsylvania, USA

Thermodynamics Third Law Heat Engines

Velocity vs Time. Velocity vs Time

A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines

The Effect of Weight Distribution on a Quarter Midget. Joey Dille

OWNER S MANUAL SUPPLEMENT for Performance Computer with VFD display. New Features. Metric Operation. Metric/US config

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction

Noble Group of Institutions, Junagadh. Faculty of Engineering Department of Mechanical Engineering

Tech Tip: Trackside Tire Data

Modern Automotive Technology Chapter 16. Engine Size and Performance Measurements

THE NEW MULTI-BILLION DOLLAR ENGINE: WHY THE EXPERTS

Lab #3 - Slider-Crank Lab

SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM

CHAPTER I GAS POWER CYCLES

Transportation Energy Use in Cars 3: Rolling Resistance

Lab 3 : Electric Potentials

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

Aircraft Engine Development from Fundamental Considerations: Thermodynamic and Mechanical

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V.

Vehicle Types and Dynamics Milos N. Mladenovic Assistant Professor Department of Built Environment

Answer Key. Do Not Distribute

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Chapter 8 Production of Power from Heat

Gas exchange Processes. Typical valve timing diagram

NOTE: "D" is for diameter, and "T" is for thread.

Rotational Kinematics and Dynamics Review

Unit WorkBook 4 Level 4 ENG U13 Fundamentals of Thermodynamics and Heat Engines UniCourse Ltd. All Rights Reserved. Sample

A HIGH PERFORMANCE AUXILIARY POWER UNIT FOR A SERIES HYBRID ELECTRIC VEHICLE

2.007 Design and Manufacturing I

UNIT IV INTERNAL COMBUSTION ENGINES

L34: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Introduction to Gas Cycles Definitions

Application Information

RL Circuits Challenge Problems

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

Stopping distance = thinking distance + braking distance.

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

16.682: Technology in Transportation - Pset #1 Solutions

Improvement of Vehicle Dynamics by Right-and-Left Torque Vectoring System in Various Drivetrains x

8. Other system and brake theories

Physics 12 Circular Motion 4/16/2015

Automobiles. Introductory Question. 6 Questions about Automobiles. Observations about Automobiles. Question 1. Heat Engines

2007 WORLD CHALLENGE SEASON

The Effect of Efi to the Carbureted Single Cylinder Four Stroke Engine

R10 Set No: 1 ''' ' '' '' '' Code No: R31033

Internal Combustion Engines TUTORIAL

R (a) Define (i) Mean spherical Candlepower (ii) Waste light factor

Engine Turbo/Super Charging. Super and Turbo-charging. Why super/ turbo-charging? Fuel burned per cycle in an IC engine is air limited

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application

WEEK 4 Dynamics of Machinery

Air Cooled Engine Technology. Roth 9 th Ch 5 2 & 4 Cycle Engines Pages 81 94

Vol-3 Issue India 2 Assistant Professor, Mechanical Engineering Dept., Hansaba College of Engineering & Technology, Gujarat, India

NEW V FORCE REED CAGES FOR POLARIS ENGINES

TUTORIAL QUESTIONS FOR THE INDUSTRIAL HYDRAULICS COURSE TEP 4205

Engine Cycles. T Alrayyes

SI engine combustion

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) QUESTION BANK UNIT I I.C ENGINES

Simple Finite Heat Release Model (SI Engine)

a) Calculate the overall aerodynamic coefficient for the same temperature at altitude of 1000 m.

Transcription:

S2 Solutions 1: Engine Tuning As shown in class, the ideal Otto cycle is depicted in this diagram: 3 Q H Adiabatic reversible 2 4 0 5 1 Q L V 2 = V 3 V 1 = V 4 V The actual 4-stroke Otto cycle (if you were to put a pressure sensor in the cylinder) looks more like this: A B 0 C Label the actions that are occurring in the engine at points A) Compression B) ower stroke C) Exhaust valves close / intake valves open V The amount of energy that an engine outputs is proportional to the area of this box in the ideal engine cycle. Given what you know about engine cycles, draw the modified V diagrams (sketch which way each part of the graph would move) for how each of these features impact the cycle: 1

1. Supercharging (forced induction) 0 ressure in the cylinder will always be above ambient o during periods of boost - increases amount of air available for combustion V 2. Optimal valve timing, intake and free-flow exhaust (reducing engine breathing ) 0 Reduces the amount of energy wasted during "breathing" at the bottom of the cycle curve - brings the cycle closer to the ideal otto curve shape. V 3. Boring out an engine (increasing its displacement) 0 Expands the curve laterally; the power taken out of this heat engine is the area in the top 'loop' -by making this larger we get more power. V 2

16.682 S2 Ans. roblem 2 S.A = R(1) 2 =3.14m 2 250 lb. to kg = 113.4kg 9.8 = 1111.32 N = 353.923 a A) mass of contained N 2 : nitrogen gas is modeled as an ideal gas in this problem. initial temperature: 298K press: 101,679 a volume = 1.57m 3 V = nrt (101, 697)(1.57) m= =1.8kg (297)(298) individual gas constant for N 2 = 297 J/(kg K) 1.04ks B) Constant-pressure heat capacity: C p =M g C p =1.8kg = 1.87 kj/k kg k C) New volume: 3.14m 2 4.5m = 14.14m 3 ressure remains constant: 1 V 1 2 V 2 V 1 V 2 = m = = m = RT 1 RT 2 T 1 T 2 1.57m 3 14.14 m 3 = 298K T 2 T 2 =2, 682K (Tungston melts at 3,680K) D) Temperature Change: 2,682-298 = 2,384K. 2,384 1.87 = 4.458 kj E = mgh (113.4)(9.8)(4) = 4, 445.28J Energies are off by 3 orders of magnitude E) 1 Watt = 1 J/s 1500W = 1500J/s = 1.5 kj/s 4,458 kj 1s/1.5kJ = 2,972 sec = 49.5min F) Anything that sounds like no. 3

G)Entropy Change: Assume sides. that the piston is adiabatic and that the cylinder is perfectly insulated on all There is no entropy transfer to the outside. However, entropy generation due to shift in equilibrium states (gas). (S 2 S 1 ) system = S transfer + S gen (S 2 S 1 ) N2 = m(c p ln( T 2,g )+ R ln( V 2 )) T 1,g V 1 =1.8(1.87ln( 2,384 ) + 297ln( 14.13 )) 298 1.57 = 1,181 J/K H) A B V oint A: assenger is down oint B: assenger is up Arrow from A to B : Heat is being added Arrow from B to A : Heat is being rejected roblem 3 A) a) 14.7 : 1 b) 14.6 : 1 c) 9:1 All well-known, can do math by hand or find this online. B) a) mixture too lean, not enough fuel: air. b) engine is always on the verge of being starved for fuel. Although the mixture in the red run is slightly rich, C) peak torque. Same for all IC engines. D) 432.5 cc of air burned every revolution. Air = 1.184 kg/m 3 at 25 C. it ensures theres always complete combustion of the air. 432.5 cc = 0.0004325 m 3 mass = 0.000512kg 0.000512 fuel(@ 13.58 A/F ratio): =0.000038kg gasoline. 13.58 At 4,600 RM, this means 0.173 kg of gasoline burned every minute. 1gal. gasoline = 3.78L 6.073 lb/gal (wikipedia/other sources) 2.754 kg/gal. 15.9 min to burn 1 gal. @60mph 15.9 mpg 4

F) 49 ft-lbs of torque for one revolution does: 49.5 ft-bl = 67.112 N-m work = f distance. distance = circumference of 1m radius circle = 2R(1) = 6.28m. one revolution = 67.112N 6.28m = 421.6 J/rev. Gasoline = 44 MJ/kg @ 0.000038 kg/rev: Engine takes 1,672J to make 421J 0.25 efficiency 5

4. Vehicle 2,000 -lateral load in LBS. 1,500 1,000 500 0 500 1,000 1,500 2,000 Weight-vertical load in LBS. Chassis Engineering by Herb Adams In this problem, we will investigate basic vehicle traction principles. The most important vehicle components when it comes to traction are the tires, since they are the only actual interface between the road and the car. The figure above is a tire performance curve, which illustrates the nonlinear relationship between vertical load on a tire and available traction. As the vertical load on this tire increases, it s cornering efficiency decreases. Assume all vehicles in this problem are using tires that can be represented by the above curve. a)we are entering a ¼ mile drag race in our small, home built racecar. Assume our vehicle is 1800 lbs and has a single driver who weighs 200 lbs. The vehicle has an even weight distribution between front and the back, and the driver s presence does not change it. What is the max acceleration our vehicle can attain without losing traction (in terms of g s)? What would this translate to in terms of a ¼ mile time (assume traction is limiting factor, not top speed)? Doing some metric conversions ensures that our calculations carry the right units: Metric Vehicle_weight = 2000 lbs = 907.18 kg Tire_weight = 500 lbs = 226.80 kg Tire_traction_force = 700 lbs = 3,112.5 N Vehicle_traction_force = 12,450 N F_veh = M_veh * A A = M_veh / F_veh = (12450 N)/(907.18 kg) A = 13.72 m/s^2 => 1.4 g Customary Vehicle_weight = 2000 lbs Tire_weight = 500 lbs Tire_traction_force = 700 lbs Vehicle_traction_force = 2800 lbs A_veh = 2800 lbs/2000 lbs = 1.4 g s X_final = ¼ mile = 402.34 m X_final =.5*A*T^2 T = sqrt( 2*402.3m/(13.72 m/s^s) ) 6

T = sqrt( 2*402.34/13.72 ) = 7.66 s V_f = A*T = (13.72)*(7.66) = 105.08 m/s V_f = 235 mph This problem assumed that the vehicle is only limited by available traction, and that the available traction does not change as a function of speed or tire temperature. However, in real life, rolling resistance, aerodynamic drag, engine power limitations, and other system losses would level off the acceleration well before we reached this ridiculous top speed. b)we are now racing a heavier, 3000 lb vehicle around a circular race track. As the car turns (going counterclockwise), there will be a lateral weight transfer from the left to the right side of the vehicle. Use the following simplified formula to determine the weight transfer we would expect with a 1 g cornering force, where Wcar is the weight of the car, a is the cornering acceleration in g s, hcg is the height of the center of gravity in inches (assume 20 inches), g is gravity, and ltrack is the vehicle track width (assume 60 inches). = Determine the traction that each wheel is able to maintain after the weight shift. What cornering force (in g s) does this equate to? How does that compare to the traction available to this vehicle on a straight track? First, determine the lateral weight transfer: W_t = (3000 lb * 1 g * 20 inches) / (1 g * 60 inches) = 1000 lb Now, find the tractive force available on each wheel: ככ כ Wheel Initial Weight Initial Weight Shift Shifted Weight Available Front Left 750 850-500 250 450 Back Left 750 850-500 250 450 Front Right 750 850 +500 1250 1150 Back Right 750 850 +500 1250 1150 Initial Vehicle Capability = 4*850 lbs = 3,400 lbs Max Initial Acceleration = 3,400 lbs / 3,000 lbs = 1.13 g s 1g Cornering Vehicle Capability = 2*1150 lbs + 2*450 lbs = 3,200 lbs Max Acceleration, 1g Cornering Vehicle = 3,200 lbs / 3,000 lbs = 1.07 g s 7

So, the tractive capability of the vehicle that is cornering at 1 g is reduced from 1.13 g s to 1.07 g s. It won t lose traction while cornering at this speed unless it also accelerates forward or backward such that the resultant acceleration vectors is greater than 1.07 g s. c)understeer and oversteer are important concepts to understand, and they can be explained by vehicle weight distribution. Assume we have the same vehicle as in part (b), but this time with a 60-40 weight distribution front to back. Assume the vehicle enters a turn and experiences approximately the same weight transfer as in part (b). How much traction is available for the front and rear wheels now? Will the car understeer or oversteer? Why? Wheel Initial Weight Initial Weight Shift Shifted Weight Available Front Left 900 950-600 300 500 Back Left 600 800-400 200 380 Front Right 900 950 +600 1500 1250 Back Right 600 800 +400 1000 1000 Front Weight Initial = 1800 lbs Front Initial = 1900 lbs Front Max Accelerations = 1900 lbs / 1800 lbs = 1.06 g s Rear Weight Initial = 1200 lbs Rear Initial = 1600 lbs Rear Max Acceleration = 1600 lbs / 1200 lbs = 1.33 g s Front Weight, 1g cornering = 1800 lbs Front, 1g cornering = 1750 lbs Front Max Accel, 1g cornering = 0.97 g s Rear Weight, 1g cornering = 1200 lbs Rear, 1g cornering = 1380 lbs Rear Max Acceleration = 1600 lbs / 1380 lbs = 1.16 g s So, while cornering on a counterclockwise turn, the available traction on the front tires is reduced compared to the available traction on the rear tires. This will result in understeer, as the front wheels want to come out of the turn while the rear wheels maintain traction. Moreover, because the front end of the car can t corer at over 0.97 g s, the vehicle won t be able to corner at over 0.97 g s. d) If you were a racecar driver (circular track) and you had a fixed 60-40 front-rear weight distribution but could add a lateral weight bias of up to 20%, what would you do to maximize the cornering performance of your vehicle? What would your max cornering acceleration be in this case? Since a racecar driver on a circular track only experiences weight transfers in one direction, it would make sense to establish a lateral weight bias on the left side to limit the traction reducing effects of cornering with an understeer. Wheel Initial Weight (no bias) Initial Weight (bias) Initial Weight Shift Shifted Weight Available Front Left 900 1200 1100-600 600 750 Back Left 600 900 950-400 500 700 8

Front Right 900 600 800 +600 1200 1100 Back Right 600 300 500 +400 700 820 Front Weight Initial (bias) = 1800 lbs Front Initial = 1900 lbs Front Max Accelerations = 1900 lbs / 1800 lbs = 1.06 g s Rear Weight Initial = 1200 lbs Rear Initial = 1450 lbs Rear Max Acceleration = 1450 lbs / 1200 lbs = 1.21 g s Front Weight, 1g cornering = 1800 lbs Front, 1g cornering = 1850 lbs Front Max Accel, 1g cornering = 1.03 g s Rear Weight, 1g cornering = 1200 lbs Rear, 1g cornering = 1320 lbs Rear Max Acceleration = 1320 lbs / 1200 lbs = 1.1 g s So, the problem of understeer in part c is overcome by adding a lateral weight bias to the left around the circular racetrack. Max acceration on the front wheels is now up to 1.03 g s from.97 g s, and on the rear wheels it is down from 1.16 g s to 1.1 g s. By sacrificing some of the traction available to us on the rear wheels, then, we have mitigated the understeer issue. 9

MIT OpenCourseWare http://ocw.mit.edu 16.682 Technology in Transportation Spring 2011 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 10