- New Superpave Performance Graded Specification. Asphalt Cements

Similar documents
SUPERPAVE BINDER SPECIFICATIONS & SELECTIONS. Superpave Binder Specs & Selections 1

Superpave Asphalt Binder Specification

Superpave Asphalt Binders

Caltrans Implementation of PG Specs. Caltrans. Presentation Overview. HMA in California. Why, When & How? How will if affect YOU?

Background. Asphalt Soluble in petroleum products. Tar Resistant to petroleum products Generally by-product of coke (from coal) production

Multiple Stress Creep Recovery (MSCR): New Binder Grade Testing and Terminology

Louisiana s Experience

What s going on with European Specifications?

Use of New High Performance Thin Overlays (HPTO)

Basics of test: Sand cylinder of mix is 10 Hz either in stress or strain a target temperature until specimen fails Test uses a

TRB Workshop Implementation of the 2002 Mechanistic Pavement Design Guide in Arizona

Warm Mix Technology. Sasobit. Sasobit. Available WMA Technologies SEAUPG 2005 CONFERENCE - NASHVILLE, TN CONCERNS: Frankfurt Airport

CHARACTERISTICS OF REJUVANATED BITUMEN WITH USED LUBRICATING OIL AS REJUVENETING AGENT

NCHRP Project Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

Implementation and Thickness Optimization of Perpetual Pavements in Ohio

AC Binder Characterization Containing Crumb Tire Rubber

SECTION 916 (Pages ) is deleted and the following substituted: SECTION 916 BITUMINOUS MATERIALS

FHWA Pavements program What s s Happening. John D AngeloD Office of Pavement Technology

New Tools from EN Standards for high performances mixes

Performance Tests of Asphalt Mixtures

Improved Aging Characteristics of Crosslinked Polymer Modified Asphalt Binders

EFFECT OF SUPERPAVE DEFINED RESTRICTED ZONE ON HOT MIX ASPHALT PERFORMANCE

Thomas Bennert, Ph.D. Rutgers University Center for Advanced Infrastructure and Transportation (CAIT)

Heritage Research Group 940 N. Wynn Rd - Oregon, OH Phone (419) Fax (317)

Darwin-ME Status and Implementation Efforts_IAC09

Structural Considerations in Moving Mega Loads on Idaho Highways

Industry/PennDOT Initiative On Performance Testing. AN UPDATE January 22, 2019

DYNAMIC TESTING MACHINES. Testing with System

NCAT/MnROAD Cracking Group Update. March 29, 2018

Update NCHRP Project 9-61 Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

DMS-9202, Asphaltic Concrete Patching Material (Stockpile Storage)

Tex-614-J, Testing Epoxy Materials

Products for Asphalt Testing

Impact of Environment-Friendly Tires on Pavement Damage

EME2 Pavement and mix design. Laszlo Petho, Pavements Manager Fulton Hogan.

Fuel Resistant. Punishing Conditions. Supreme Production.

Performance Based Lab Tests to Predict Pavement Fatigue

Innovative Warm Mix Asphalt Projects: The Contractor s Perspective

Pavement Performance Prediction Symposium July 17, 2008 University of Wyoming Laramie, Wyoming

Asphalt Pavement Analyzer (APA)

Rutting of Caltrans Asphalt Concrete and Asphalt-Rubber Hot Mix. Under Different Wheels, Tires and Temperatures Accelerated

WARM MIX ASPHALT TECHNOLOGY

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

SEAUPG 2009 CONFERENCE-HILTON HEAD ISLAND, SOUTH CAROLINA

ACC Technology Showcase November 10, 2015 Newport Beach, CA. Ronald Corun Axeon Specialty Products LLC Director - Asphalt Technical Services

RheoStress 600. The Modular High-Tech Rheometer

Status of the first experiment at the PaveLab

Tex-614-J, Testing Epoxy Materials

Implementation Process of Pavement ME Design in Maricopa County 2016 Arizona Pavements/Materials Conference November 17, 2016

PPA WORKSHOP APRIL 7-8, 2009 MINNEAPOLIS, MN

Assessing Pavement Rolling Resistance by FWD Time History Evaluation

DMS-9202 Asphaltic Concrete Patching Material (Stockpile Storage or Bagged)

ASPHALT PAVEMENT ANALYZER-JUNIOR (APA JR.)

(2111) Digital Test Rolling REVISED 07/22/14 DO NOT REMOVE THIS. IT NEEDS TO STAY IN FOR THE CONTRACTORS. SP

For reproducible measurements

Effect of Different Axle Configurations on Fatigue Life of Asphalt Concrete Mixture

Simulation, Rheology and Efficiency of Polymer Enhanced Solutions April 5, 2017

Asphalt Technology Guidance Program (ATGP)

Oregon Department of Transportation Standard Specifications For Asphalt Materials 2004

Power Transmission Elements II: Gears and Bearings. Lecture 3, Week 4

DMS ASPHALTIC CONCRETE PATCHING MATERIAL (STOCKPILE STORAGE)

APPLICATION BRIEF. Model 4730/4731 NTO New Technology Oven. June 2000

STUDY OF THE INFLUENCE OF THE TYPE OF FUEL USED IN INTERNAL COMBUSTION ENGINES OVER THE RHEOLOGICAL PROPERTIES OF LUBRICANTS

Equivalent Loading Frequencies to Simulate Asphalt Layer Pavement Responses Under Dynamic Traffic Loading

COMPARING RUTTING PERFORMANCE UNDER A HEAVY VEHICLE SIMULATOR TO RUTTING PERFORMANCE AT THE NCAT PAVEMENT TEST TRACK. Dr. R. Buzz Powell, P.E.

Subject: Dr. Witczak s letter to AASHTO Subcommittee on Materials and AASHTO Joint Technical Committee on Pavements

2016 NJDOT Research Showcase 10/26/16

BILLING RATES - FY 17/18

BILLING RATES - FY 18/19

DMS-9203, Asphaltic Concrete Patching Material (Containerized)

Non-Destructive Pavement Testing at IDOT. LaDonna R. Rowden, P.E. Pavement Technology Engineer

MUNICIPALITY OF MONROEVILLE

Section 4 DMS-9203, Asphaltic Concrete Patching Material (Containerized)

SULFUR EXTENDED ASPHALT INVESTIGATION - LABORATORY AND FIELD TRIAL

Long Life Asphalt Performance Testing January 17, 2018

Special Provision No. 111S12 July 2017

CHECK AND CALIBRATION PROCEDURES FOR FATIGUE TEST BENCHES OF WHEEL

Developing Affordable GTR Asphalt Mixes for Local Roadways

EXPERIMENTAL STUDY ON EFFECTIVENESS OF SHEAR STRENGTHENING OF RC BEAMS WITH CFRP SHEETS

Developing Affordable GTR Asphalt Mixes for Local Roadways

DESIGN FOR CRASHWORTHINESS

Sizing criteria for cylinders and servocylinders

english Series 1 The versatile rheometer concept

Bandmill Strain System Response

Development of long life structural asphalt

Project 16FT1: Simulation, Rheology and Efficiency of Polymer Enhanced Solutions

EFFECTS OF DUAL VERSUS SUPER SINGLE TRUCK TIRE ON FLEXIBLE PAVEMENT PERFORMANCE; A MECHANISTICAPPROACH

A Crack is a Crack Mn/DOT s Perspective on Cracking in Asphalt Pavements

78th TRB 99 Session 440

Ch# 11. Rolling Contact Bearings 28/06/1438. Rolling Contact Bearings. Bearing specialist consider matters such as

Demand for soft grades of Binder

The INDOT Friction Testing Program: Calibration, Testing, Data Management, and Application

Impact of Overweight Traffic on Pavement Life Using WIM Data and Mechanistic- Empirical Pavement Analysis

Oil Comparison for Weighing Precipitation Gauges as used in Environment Canada

Chapter 7: Thermal Study of Transmission Gearbox

SECTION B ASPHALT BITUMEN PAVETEST

USV Ultra Shear Viscometer

Instruments for the Analysis of Petroleum Products. Oxidation Stability

STIFFNESS CHARACTERISTICS OF MAIN BEARINGS FOUNDATION OF MARINE ENGINE

RHEOCHECK MD - Drive. Moving Die Rheometer controlled by Personal Computer.

Transcription:

- New Superpave Performance Graded Specification Asphalt Cements 1

PG Specifications Fundamental properties related to pavement performance Environmental factors In-service & construction temperatures Short and long term aging 2

PG Specifications Based on rheological testing Rheology: study of flow and deformation Asphalt cement is a viscoelastic material Behavior depends on: Temperature Time of loading Aging (properties change with time) 3

High Temperature Behavior High in-service temperature Desert climates Summer temperatures Sustained loads Slow moving trucks Intersections Viscous Liquid 4

Pavement Behavior (Warm Temperatures) Permanent deformation (rutting) Mixture is plastic Depends on asphalt source, additives, and aggregate properties 5

Permanent Deformation Courtesy of FHWA Function of warm weather and traffic 6

Low Temperature Behavior Low Temperature Cold climates Winter Rapid Loads Fast moving trucks Elastic Solid Hooke s Law s = t E 7

Pavement Behavior (Low Temperatures) Thermal cracks Stress generated by contraction due to drop in temperature Crack forms when thermal stresses exceed ability of material to relieve stress through deformation Material is brittle Depends on source of asphalt and aggregate properties 8

Thermal Cracking Courtesy of FHWA 9

Aging Asphalt reacts with oxygen oxidative or age hardening Short term Volatilization of specific components During construction process Long term Over life of pavement (in-service) 10

Superpave Asphalt Binder Specification The grading system is based on Climate PG 64-22 Performance Grade Min pavement temperature Average 7-day max pavement temperature 11

Pavement Temperatures are Calculated Calculated by Superpave software High temperature 20 mm below the surface of mixture Low temperature at surface of mixture Pave temp = f (air temp, depth, latitude) 12

Tests Used in PG Specifications Construction RV DSR BBR 13

Concentric Cylinder Rheometers Concentric Cylinder t Rq = M i 2 p R i 2 L g = W R R o - R i 14

Rotational Viscometer (Brookfield) Torque Motor Inner Cylinder Thermosel Environmental Chamber Digital Temperature Controller 15

Original Properties, Rutting, and Fatigue DSR RV BBR 16

Dynamic Shear Rheometer (DSR) Parallel Plate Shear flow varies with gap height and radius Non-homogeneous flow t R = 2 M p R 3 g R = R Q h 17

Oscillating Plate B A C Fixed Plate B A A Time Test operates at 10 rad/sec or 1.59 Hz 360 o = 2 p radians per circle 1 rad = 57.3 o C 1 cycle 18

Elastic Viscous B A A Strain Time C Strain in-phase d = 0 o Strain out-of-phase d = 90 o 19

Complex Modulus, G* Viscous Modulus, G d Storage Modulus, G Complex Modulus is the vector sum of the storage and viscous modulus 20

Computer Control and Data Acquisition DSR Equipment DSR Equipment 21

Motor Parallel Plates with Sample Area for Liquid Bath 22

25 mm Plate with Sample 23

Rutting RV BBR DSR 24

Permanent Deformation Addressed by: G*/sin d on unaged binder > 1.00 kpa G*/sin d on RTFO aged binder > 2.20 kpa For the early part of the service life 25

Rolling Thin Film Oven Short Term Binder Aging Simulates aging from hot mixing and construction 26

Inside of RTFO Fan Rotating Bottle Carriage Air Line 27

Bottles Before and After Testing Opening in Bottle 28

Testing Calculate mass loss after RTFO Mass loss, % = Original mass - Aged mass Original mass x 100 Determine G*/sin d for RTFO aged material at same test temp. used for original asphalt cement 29

Permanent Deformation Question: Why a minimum G*/sin d to address rutting Answer: We want a stiff, elastic binder to contribute to mix rutting resistance How: By increasing G* or decreasing d 30

Fatigue RV BBR DSR 31

Fatigue Cracking Function of repeated traffic loads over time (in wheel paths) 32

Testing Aged binder Since long term performance problem, include: Short term aging Long term aging Determine DSR parameters using 8 mm plate and intermediate test temperature 33

Pressure Aging Vessel (Long Term Aging) Simulates aging of an asphalt binder for 7 to 10 years 50 gram sample is aged for 20 hours Pressure of 2,070 kpa (300 psi) At 90, 100 or 110 C 34

Pressure Aging Vessel Rack of individual pans (50g of asphalt / pan) Bottom of pressure aging vessel Vessel Lid Components 35

Pressure Aging Vessel Courtesy of FHWA 36

Fatigue Cracking G* (sin d) on RTFO and PAV aged binder The parameter addresses the later part of the fatigue life Value must be < 5000 kpa 37

Fatigue Cracking Question: Why a maximum G* sin d to address fatigue? Answer: We want a soft elastic binder (to sustain many loads without cracking) How: By decreasing G* or decreasing d 38

Thermal Cracking RV DSR BBR 39

Bending Beam Rheometer Computer Deflection Transducer Air Bearing Load Cell Fluid Bath 40

Bending Beam Rheometer Sample 41

Bending Beam Rheometer Equipment Fluid Bath Loading Ram Cooling System 42

Bending Beam Rheometer S(t) = P L 3 4 b h 3 d (t) Where: S(t) = creep stiffness (M Pa) at time, t P = applied constant load, N L = distance between beam supports (102 mm) b = beam width, 12.5 mm h = beam thickness, 6.25 mm d(t) = deflection (mm) at time, t 43

Bending Beam Rheometer Evaluates low temperature stiffness properties Creep stiffness Slope of response (called m-value) Log Creep Stiffness, S(t) 8 15 30 60 120 240 Log Loading Time, t (sec) 44

Is Stiffness Enough? No. Need to assess strain needed to break specimen. Thermal cracking occurs when strain is too great Direct tension test Currently (1998) in specification New equipment is now available 45

Direct Tension Test Load Stress = s = P / A D L s f D L e Strain e f 46

Direct Tension Test FHWA Courtesy of FHWA 47

Direct Tension Test Courtesy of FHWA 48

Summary Construction Rutting Fatigue Cracking Low Temp Cracking [DTT] [RV] [DSR] [BBR] No aging RTFO Short Term Aging PAV Long Term Aging 49

Superpave Binder Purchase Specification

Superpave Asphalt Binder Specification The grading system is based on Climate PG 64-22 Performance Grade Min pavement temperature Average 7-day max pavement temperature

Performance Grades CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3 Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa < 5000 kpa S < 300 MPa m > 0.300 Report Value > 1.00 % (Dynamic Shear Rheometer) 46 52 58 64 70 76 (PRESSURE AGING VESSEL) 90 90 100 100 100 (110) 100 (110) 110 (110) (Dynamic Shear Rheometer) 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DSR G*/sin d PAV DSR G* sin d ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

How the PG Spec Works CEC Spec Requirement Remains Constant Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3 Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa (Dynamic Shear Rheometer) DSR G*/sin d 58 64 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa < 5000 kpa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) Test Temperature Changes (Dynamic Shear Rheometer) DSR G* sin d 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 S < 300 MPa m > 0.300 ( Bending Beam Rheometer) BBR S Stiffness & m - value Report Value > 1.00 % -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

Permanent Deformation CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3 Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa > 2.20 kpa Unaged RTFO Aged 20 Hours, 2.07 MPa < 5000 kpa S < 300 MPa m > 0.300 Report Value > 1.00 % (Dynamic Shear Rheometer) 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % (Dynamic Shear Rheometer) 46 52 58 64 70 76 (PRESSURE AGING VESSEL) 90 90 100 100 100 (110) 100 (110) 110 (110) (Dynamic Shear Rheometer) 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DSR G*/sin d DSR G*/sin d PAV DSR G* sin d ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

Permanent Deformation Addressed by high temp stiffness G*/sin d on unaged binder > 1.00 kpa G*/sin d on RTFO aged binder > 2.20 kpa Heavy Trucks > Early part of pavement service life

Fatigue Cracking CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3 Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa PAV Aged S < 300 MPa m > 0.300 Report Value > 1.00 % (Dynamic Shear Rheometer) 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DSR G* sin d ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

Fatigue Cracking Addressed by intermediate temperature stiffness G*sin d on RTFO & PAV aged binder < 5000 kpa > Later part of pavement service life

Low Temperature Cracking CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3 Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa S < 300 MPa m > 0.300 PAV Aged Report Value > 1.00 % (Dynamic Shear Rheometer) 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DSR G* sin d ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

Low Temperature Cracking CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3 Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa S < 300 MPa m > 0.300 PAV Aged Report Value > 1.00 % (Dynamic Shear Rheometer) 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DSR G* sin d ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

Miscellaneous Spec Requirements CEC Avg 7-day Max, o C 1-day Min, o C > 230 o C Flash Point < 3 Pa. s @ 135 o C > 1.00 kpa > 2.20 kpa 20 Hours, 2.07 MPa PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) (Dynamic Shear Rheometer) RV 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % (Dynamic Shear Rheometer) 46 52 58 64 70 76 (PRESSURE AGING VESSEL) ORIGINAL DSR G*/sin d DSR G*/sin d PAV Mass Loss 90 90 100 100 100 (110) 100 (110) 110 (110) < 5000 kpa S < 300 MPa m > 0.300 Report Value > 1.00 % (Dynamic Shear Rheometer) 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DSR G* sin d ( Bending Beam Rheometer) BBR S Stiffness & m - value -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

PG 64-16

PG Binder Selection PG 52-28 > Many agencies have established zones PG 58-22 PG 58-16 PG 64-10

Developed from Air Temperatures > 20 years Superpave Weather Database 6500 stations in U.S. and Canada Annual air temperatures hottest seven-day temp (avg and std dev) coldest temp (avg and std dev) Calculated pavement temps used in PG selection

Reliability Percent Probability of Not Exceeding Design Temp > using Normal Distribution frequency of observed temps (Total area under curve = 100 %) Reliability is area under curve to the left of T des T avg T des

Observed Air Temperatures Topeka, KS 50 % reliability average summer very hot summer 98 % reliability 36 40 7-Day Maximum Air Temperatures > this data - standard deviation of 2 C

Observed Air Temperatures Topeka, KS 36 very cold winter 40 average winter -31-23 > standard deviation of 4 C -40-30 -20-10 0 10 20 30 40 50 60

Convert to Pavement Temperature Calculated by Superpave software High Temperature 20 mm below surface of mixture Low Temperature at surface of mixture Pavt Temp = f ( Air Temp, Depth, Latitude )

Calculated Pavement Temperatures Topeka, KS pvt > air 56 60-31 -23 pvt = air -40-30 -20-10 0 10 20 30 40 50 60 70

PG Binder Grades Topeka, KS PG 64-34 (98% minimum reliability) PG 58-28 (50 % minimum reliability) PG grades - six degree increments -40-30 -20-10 0 10 20 30 40 50 60 70

Effect of Rounding to Standard Grades PG 58-28 (50 % minimum reliability) PG -28 provides 90% reliability PG 58 provides 85% reliability -40-30 -20-10 0 10 20 30 40 50 60 70

Effect of Rounding to Standard Grades -16-22 -28 needed grade for 50% reliability selected grade for 50% reliability Rounding depends on actual temps! -28-23 Minimum Pavement Temperatures

Effect of Loading Rate on Binder Selection Dilemma specified DSR loading rate is 10 rad/sec what about longer loading times? Use binder with more stiffness at higher temps slow - - increase one high temp grade stationary - - increase two high temp grades no effect on low temp grade 90 kph

Effect of Loading Rate on Binder Selection Example for toll road PG 64-22 for toll booth PG 70-22 for weigh stations PG 76-22 90 kph Slow Stopping

Effect of Traffic Amount on Binder Selection 80 kn ESALs 10-30 x 10 6 ESAL Consider increasing - - one high temp grade 30 x 10 6 + ESAL Recommend increasing - - one high temp grade > Equivalent Single Axle Loads

ESAL Comparison 80 kn 18,000 lb. 100 kn 22,000 lb. 44 kn 10,000 lb. 1 ESAL 2.2 ESAL.09 ESAL

Little Truck 67 kn 15,000 lb 0.48 ESAL 27 kn + 6,000 lb = 0.01 ESAL 0.49 ESALs BIG TRUCK 151 kn 34,000 lb 1.10 151 kn 54 kn + 34,000 lb + 12,000 lb = 1.10 0.19 2.39 ESALs

How the PG Spec Works CEC Spec Requirement Remains Constant Avg 7-day Max, o C 1-day Min, o C > 230 o C < 3 Pa. s @ 135 o C PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82-34 -40-46 -10-16 -22-28 -34-40 -46-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-40 -10-16 -22-28 -34-10 -16-22 -28-34 (Flash Point) FP (Rotational Viscosity) ORIGINAL RV > 1.00 kpa (Dynamic Shear Rheometer) DSR G*/sin d 58 64 46 52 58 64 70 76 (ROLLING THIN FILM OVEN) RTFO Mass Loss < 1.00 % > 2.20 kpa 20 Hours, 2.07 MPa < 5000 kpa (Dynamic Shear Rheometer) DSR G*/sin d 46 52 58 64 70 76 (PRESSURE AGING VESSEL) PAV 90 90 100 100 100 (110) 100 (110) 110 (110) Test Temperature Changes (Dynamic Shear Rheometer) DSR G* sin d 10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 282 25 40 37 3 8 S < 300 MPa m > 0.300 ( Bending Beam Rheometer) BBR S Stiffness & m - value Report Value > 1.00 % -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24 0-6 -12-18 -24 (Bending Beam Rheometer) BBR Physical Hardening (Direct Tension) DT -24-30 -36 0-6 -12-18 -24-30 -36-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 -24-30 0-6 -12-18 - 24 0-6 -12-18 -24

Summary of How to Use Determine PG Specification 7-day max pavement temperatures 1-day minimum pavement temperature Use specification tables to select test temperatures Determine asphalt cement properties and compare to specification limits

Questions -?

Questions -? 82