Marine Recreational Vehicle Batteries Made Simple

Similar documents
Technical Note. Management of Sealed Lead Acid Batteries in Reliable Small DC Standby Power Supply Systems

Chapter 3. Direct Current Power. MElec-Ch3-1

Gary Mackey National Sales Manager Associated Equipment Corporation

batteries powering your lifestyle...

12 VDC Power Sources For Your RV

TECHNICAL BULLETIN Fig #1 - VRLA Battery Components. Intercell Welded Connection Strap joining neg. plates in parallel.

AINO MICRO RANGE VRLA. Compact energy for increased security BATTERY SOLUTIONS. EverExceed power your applications

Genset Starting Education Module #3: Solutions to Leading Causes of Battery Failure in Gensets

Applications. EMC tested

Known Worldwide as the Highest Quality AGM Batteries for Marine, RV and Industrial Applications

Power to keep you on the move

Haze Battery Company Ltd

MAINTENANCE-FREE BATTERY CONSTRUCTION

Proper Torque Values for Connection Hardware. 90 to 100 in-lbs

Haze Battery Company Ltd. Sealed Lead Acid 2 Volt Bloc. Gelled Electrolyte Range

Product Guide. An Invensys company

Haze Battery Company Ltd

Chapter 6. Batteries. Types and Characteristics Functions and Features Specifications and Ratings Jim Dunlop Solar

FlexCharger Battery Chargers

Haze Battery Company Ltd. Sealed Lead Acid 6 & 12 Volt. Gelled Electrolyte Range. Monobloc

Batteries and more. Powered by (CE, UL & ISO9001 APPROVAL)

Haze Battery Company Ltd. Sealed Lead Acid 6 & 12 Volt. AGM Range. Monobloc

Automatic Battery Charger Switching mode with Micro-controlled Input: Vac / Output: 12Volt DC

EUROBAT EUROBAT GUIDE FOR MOTIVE POWER VRLA BATTERIES

NorthStar Battery Company DCN: SES DCR: 1548-S09 Date:

Automatic Battery Charger Switching mode with Micro-controlled Input: Vac / Output: 12Volt DC

Haze Battery Company Ltd. Sealed Lead Acid 6 & 12 Volt. AGM Range. Monobloc

Open-circuit voltages (OCV) of various type cells:

Automatic Battery Charger Switching mode with Micro-controlled Input: Vac / Output: 12Volt DC

Service Department. Other Service Items. Battery Basics. How Do Lead Acid Batteries Work? Battery Construction. Service Address

Typically there are a number of different styles of batteries including: STARTING / CRANKING (TRADITIONAL AUTOMOTIVE TYPE BATTERIES)

Deep Cycle Battery Safety. First. Battery Handling, Maintenance & Test Procedures

EverExceed Spiral AGM Batteries

AGM / GEL BATTERY RANGE

Models: SP3, SPSS3 Automatic Battery Charger

BATTERIES BATTERIES VRLA / SLA / GEL 2V/6V/12V. DP Electronics e.k (Deutsche Power Co., Limited)

Battery. Charger Model: Save Important Safety Instructions

Leisure Battery Solutions

PRODUCT GUIDE Publication No: EN-SBS-PG-001 February 2003

Battery. Student booklet

SP6. Automatic Battery Charger. Model

Emergency Power. Are you prepared? Rev 2.0

OSP Battery Training. Craig Paoli Director Strategic Platforms July 13 th Copyright 2010 The Alpha Group. All Rights Reserved.

Part Number: DBDC10 / DBDC20 DC to DC Dual Battery Charger Manual

User s Manual. Automatic Switch-Mode Battery Charger

INTELLIGENT BATTERY CHARGER/MAINTAINER

CONGRATULATIONS ON YOUR PURCHASE OF YOUR THUNDER BATTERY CHARGER! For your personal safety read, understand and follow the information provided in

TECHNICAL SERVICES. ResMed Ltd 1 Elizabeth Macarthur Drive Bella Vista NSW 2153 Australia Tel: Fax: ABN

Matching Your Load With Your PV System

Understanding the Battery

Electrical Systems. Introduction

Modular Max Range BATTERY SOLUTIONS. NEBS qualified. Reliable capacities. EverExceed power your applications

IMPORTANT SAFETY INSTRUCTIONS

Modular Max AGM Range VRLA

MODEL 6010A 6 12 VOLT BATTERY CHARGER ASSOCIATE

Batteries generally classifies into two main groups: primary and secondary battery types. Primary batteries are

24 VOLT AUTOMATIC BATTERY CHARGER PART NO

SBC / 2140 / Stage Battery Charger User Manual

Major Battery Types. Lifespan of Batteries.

[Charge] [Lead dioxide] [Lead] [Sulfuric acid] [Lead sulfate] [Lead sulfate] [Water]

Battery Storage Systems

Nominal Voltage. Capacity (C20)

Deep Cycle AGM Range VRLA

12V/25A BATTERY CHARGER MAINTAINER / JUMPSTARTER

OPERATOR'S MANUAL IMPORTANT SAFETY INSTRUCTIONS

Pure Lead-Tin Technology

MARINE BATTERY TRAINING GUIDE. How to Select, Install and Maintain a Marine Battery

Tips & Technology For Bosch business partners

SPA AGM VRLA batteries

2/10/50 AMP 12 VOLT BATTERY CHARGER/ ENGINE STARTER

Guardian Battery Charger Series. Installation and Operations Manual Section 75

FUM-24xxCBP Series 3 Stage Battery Charger User Manual

Part Number: DCDC10S / DCDC20S DC to DC Dual Battery Charger Manual

The Discussion of this exercise covers the following points:

Electric Trolling Motor

Pallet Pro On-Board Power System and 6 Volt Group 27 Deep Cycle Bloc Batteries GB A Division of Exide Technologies

IMPORTANT SAFETY INSTRUCTIONS

A battery is like a piggy bank. If you keep taking out and putting nothing back you soon will have nothing.

Vented fibre structure Nickel Cadmium batteries for stationary systems

8 Step Fully Automatic Intelligent BATTERY CHARGER 12V 5A USER S MANUAL. Charges & Maintains. Flooded (WET), MF, VRLA, AGM, GEL & Calcium batteries

Adding Batteries To Your RV A Discussion of Series / parallel battery arrangements

Installation and Operating Instructions (for chargers shown below)

Best Practices for Warehouse Optimization

Pb battery. Chemical equation: Pb+2 H 2 SO 4. + PbO 2 <charge. 2 PbSO 4 +2 H 2. discharge>

Super PWRgate PG40S Spring City Drive Waukesha, WI

Automatic taper of charge rate for superior battery life through good equalization of cells and low water use rate.

OWNER S MANUAL. Model YUA2AMPCH 2 AMP Dual-Bank Automatic Battery Charger & Maintainer READ ENTIRE MANUAL BEFORE USING THIS PRODUCT

WORLD SOURCE ONE Battery Construction Features & Benefits:

6 & 12 Volt Monobloc. Haze Battery Company Ltd

Art. No. EC-315. Art. No. EC-330. Art. No. EC-340 SWITCH-MODE BATTTERY CHARGER CONTENTS IMPORTANT SAFETY PRECAUTIONS... 2

BATTERY & STARTER ANALYSER (BSA-12) User Manual

801 BUSINESS CENTER DRIVE MOUNT PROSPECT, ILLINOIS Ext. 322

installation and operating instructions for the following xtreme Battery chargers:

PV System Components. EE 495/695 Spring 2011

777P-PT Battery Charging/Starting System Analyzer with Printer

Instructions for use Attention

F R O N T T E R M I N A L PRODUCT GUIDE Publication No: EN-VFT-PG-001 February 2003

Stationary Batteries: Why they fail and what can be done to prolong battery life

12V 1 AMP (1000 ma) Automatic Battery Charger & Maintainer

12V Manual Battery Charger

Transcription:

Marine Recreational Vehicle Batteries Made Simple Introduction Batteries for marine use, whether engine start or house batteries, can make the difference between happy and contented cruising or an exercise in crisis management. The object of these few pages is to assist boat or R.V. owners to understand what is happening to the batteries, what makes the various types different and what effects the life and performance. Commonly the starting battery provides very high current for a short discharge period resulting in only around 1% of the capacity being discharged. This is easily recovered by the charging system. Conventional Automotive type charging systems provide an adequate environment for Engine Start Batteries. Basic Principles- Flooded Lead Acid Batteries This section deals with the basic principles of the battery and the figures quoted generally apply to conventional wet batteries which are the most commonly used in a marine environment. Different types of batteries are explored in a later section. Most of the problems are experienced with House Batteries as these are the ones doing a lot of work. In electrical systems volts is the electrical pressure and the electrical flow is the amps. The amount of flow is dependent upon the restrictions in the electrical circuit called resistance. The battery simply stores power. If the battery is not charged at the right pressure or does not receive adequate charge because of the amount of current flow or the duration of charge, then it will not be able to deliver if required. It is worth noting that small variations in charging voltages have significant effects. A half charged battery has a terminal voltage of 12.2 volts. If we look at the difference between a charging system supplying 13.8 volts or 14.5 volts to the battery, the difference in electrical pressure which is pushing the charge current into the battery is in the first instance 1.6 volts and in the second instance is 2.3 volts. Whilst the actual difference is only 0.7 volts this represents a 43% higher charging voltage which roughly represents the increase in charge current or capacity gained by the battery in a given charging period. Batteries and electrical systems can be likened to water tanks and water flow. The battery is the storage tank. It has a positive pressure outlet and a negative pressure return and the electrical system operates on a closed piping system. The alternator is simply an electrical pump which is used to refill the tank. Charging the Battery The alternator or battery charger is simply an electricity producing pump which generally has a voltage (pressure) restricting device on it called a regulator. To force electrical current back into the battery the voltage of the alternator needs to be higher than the voltage of the battery. If the voltage is too low (at the battery) then not enough storage capacity will be achieved. If the voltage is too high then the battery will be damaged. As with water tanks, the more full (or charged) the battery is the higher the back pressure. So with a fixed inward voltage and a growing back pressure the current flow into the tank steadily tapers downwards.

Some Special Characteristics of Batteries Ventilation When the battery nears a full charge condition bubbles of hydrogen and oxygen gas are produced which leak out of the battery by way of the vent plugs. This condition is normal but does require that all batteries are placed in a ventilated space. Some types of batteries do not produce any gas in normal working conditions but if overcharged even these batteries will produce gas which can be dangerous meaning that ventilation is required for all battery types. Safety When a battery is being recharged dangerous gases (hydrogen and oxygen) are given off by the battery. More gas is produced at higher charge voltages. If ignited by a mere spark, this mixture will explode and can cause serious injury. Most at risk are the eyes so when working around or on the batteries, particularly during or after charging, always wear safety glasses. Float Charge Once the battery is charged, a longer battery life will be achieved if the charging voltage being applied by the alternator is reduced. A continued application of the normal recharge voltage results in deterioration of the internals of the battery preventing it from holding or delivering as much capacity. The reduction of the charging voltage, once the battery is charged, is called putting it on float. However, even a float charge can cause corrosion of the positive plates. Some superior chargers totally turn off, monitor the battery state of charge and turn back on when required. Continuous float charging of engine starting batteries is not recommended as a reduction in life is inevitable. Sulphation If the battery is left flat or partially charged it develops a condition called sulphation which inhibits the current flow into the battery during recharge. This condition could be likened to a build up of sludge in a water tank which effectively increases the back pressure which results in less inward flow. Severe Sulphation can render the battery useless. Maintenance The action of charging also causes the loss of water in most batteries which has to be replaced by topping up with clean water. In the case of sealed batteries, if over charged, the loss of this water will still take place and permanently damage the battery as it cannot be replaced. Obviously terminals should be kept clean and dry. Maintaining Capacity The action of charging and discharging the battery causes a change in the consistency of the electrolyte. When the battery is charged acid is produced which is more dense or heavy than the electrolyte. When the battery is discharged water is produced which is lighter than electrolyte. As a result the water floats on the top of the heavier acid. This is called Acid Stratification. When the battery is recharged to near full charge the resulting higher voltage causes production of the bubbles of hydrogen and oxygen which gradually move up through the electrolyte and out through the vent plugs in the top of each cell. The movement of these bubbles up through the electrolyte has the effect of mixing the acid. This mixing process is vital to achieve long battery life as Acid Stratification increases

the incidence of Sulphation. When house batteries are subjected to normal charge/discharge use, unless subjected to long engine running times or shore power charging (or similar), the battery is rarely fully charged. The lead sulphate found in the plates (a normal condition) will harden over a period of time and is difficult if not impossible to remove. This results in a loss of capacity. This loss of capacity is progressive and cumulative and will result in reduced performance and life. Depth of Discharge If the battery is repeatedly drained to low levels of capacity the life will be less than if it is only partially discharged. This is called the depth of discharge or DoD. The greater the DoD, the shorter the life. Temperature Compensation When a battery is heated it requires lower charging voltage to receive the correct charging current. Accordingly a lower charge voltage should be applied as the temperature increases. This is called temperature compensation. Battery Environment As a chemical device the activity inside the battery is affected by temperature. A common cause of battery failure is grid corrosion. This is the gradual deterioration of the lead grid/plate which is corroded by the electro-chemical action. The rate of this corrosion increases as the temperature rises when the battery is being recharged. From this it is clear that house batteries in particular will last longer if installed in a cool place as opposed to the engine room which is quite common, even if the temperature compensated charging is applied. The Difference Between Car & Marine Batteries Batteries fitted to cars are required to provide a very high cranking current for a short time to start the engine. After this is achieved the battery simply receives charge from the alternator. Only rarely is the battery required to deliver power for any duration of time. To achieve high cranking current output, the manufacturer uses very thin plates made in such a way that the acid has good access to the active material which is producing the current. If you put this type of battery into a marine environment, particularly to provide long and deep discharges the battery is likely to have a short life. The Difference Between Marine Engine Start & Deep Cycle Batteries Marine batteries fall into two categories. Engine Start and House Batteries. The Engine Start type is of similar construction to the car battery but in a well built battery will be manufactured in such a way to reduce damage caused by shock and vibration. In general terms the marine battery will be of a more robust construction as car batteries tend to be built to a price rather than a standard. When a battery is regularly charged and discharged, this causes deterioration of the positive plate. Deep cycle batteries, in simple terms have a thicker plate and a more dense active material which is able to withstand the pressures of this type of use. Plates/Capacity - A popular misconception As described above, plate thickness varies widely and therefore cannot be used as an indication of capacity. To give an example, a high performance engine starting battery with 22 plates per cell is available in the marketplace and is approximately 65 ampere hours in capacity, whilst another battery

of 350 ampere hours has only 15 plates per cell. When specing a battery it is important that the application is considered. For example when engine start is required then the CCA (cold cranking amps) rating is an indication of the battery s ability to start an engine, whilst for auxiliary loads ampere hour capacity is what needs to be considered. Alternative Lead Acid Battery Types General Marine Batteries are broadly broken into two categories. The most common is the wet or flooded technology. This is the conventional type which is largely unchanged from the original design going back over the last 100 years. However significant gains in efficiency, charge acceptance, maintenance requirements and energy output have been achieved. Without doubt as a percentage of weekly income, batteries have never been cheaper and the warranties never longer. Of more recent times Valve Regulated Lead Acid (VRLA) batteries, often called sealed have been introduced. Some confusion does exist over this type of product as often the battery is a flooded type but maintenance free, not requiring top up of electrolyte. There is also some confusion over Gelled Electrolyte and the alternative VRLA Absorbed Electrolyte or Absorbed Glass Mat (AGM) technologies. The following passages will hopefully reduce some of this confusion. Flooded Batteries Most of the information provided in the previous pages pertains to Flooded batteries. However within this range two types of construction exist. By far the most common is the Flat Plate construction. This is available in maintainable and SMF maintenance free configurations. In simple terms the manufacturer alters the alloys used to manufacture the battery so that only very small amounts of Hydrogen and Oxygen gas are produced during charging. This results in minimal water consumption during the life of the battery. However it should be noted that if tipped over these battery types will sometimes leak. In larger installations where high levels of storage capacity is required, batteries come in the form of 2 volt cells connected in series to make up the required voltage. The reason for this is simply for ease of handling. In the two volt cell form Tubular Positive batteries are available. This involves a different method of construction of the positive plate of the cell, which is very robust and resistant to deterioration caused by deep and regular cycling. This product is generally manufactured in Europe and is usually more expensive, but over the life, dependent upon application, can represent good value. Valve Regulated Batteries A number of years ago it was discovered that by changing the internal construction of the battery and maintaining a positive pressure (3 to 5 psi) inside the battery, it was possible to get any Hydrogen or Oxygen gas that may be produced during charging to recombine internally. This resulted in allowing the battery to be installed without fear of acid spillage, emission of corrosive & explosive gas and almost zero maintenance. In some cases this type of product can be installed on its side and will work whilst submerged without the production of any chlorine gas which is often produced when a flooded battery comes in contact with salt water. As briefly mention above, within the VRLA group two different types of technology exist. The most commonly used in a marine environment is the Gelled Electrolyte. Provided it is well manufactured, this type of product provides good cycling characteristics with all the benefits of a valve regulated product. The electrolyte is in a jelly form so no spillage is possible.

The second type uses a material like blotting paper made from glass fibre to retain the electrolyte. This method also prevents any loose electrolyte from sloshing around which may spill or leak. Independent tests tend to demonstrate that the Gelled Electrolyte type are better suited to a cycling (charge / Discharge) application such as that called for with marine house batteries than the AGM type. In reality the VRLA battery is not everything to everyone (contrary to claims commonly made by various battery companies) and had significant reliability problems in the past. Some of these problems can be blamed on factors not provided by the battery itself but in truth the VRLA battery is more delicate than the tried and proven flooded battery. This delicacy means that unless the battery is manufactured to perfection and well cared for it could provide a shorter life than a cheaper alternative. To provide an example: If a vessel suffered regulator failure during a voyage and the batteries were over charged, in the case of flooded batteries, the lost water would be topped up and would suffer little damage (provided the regulator was replaced within a reasonable time). In the case of VRLA batteries (depending upon running time) it is possible, if not likely, that the batteries would require replacement along with the regulator. Now, this is not to say that VRLA batteries do not provide a good or even the best option in some instances but these options need to be explored, ideally with someone who knows what he is talking about and can provide all of the options not just one technology. When evaluating the different types, be careful of claims of high cycle life etc. backed up by specific figures. In recent times this type of claim has been made pertaining to an AGM product where the cycle life data was based on a one-hour discharge. Obviously this is not applicable to a normal marine application and the reason that this data was used is because if tests were done over a normal 20 hour discharge the cycle life results would not be as good as equivalent gelled product. It is worth noting that a large American manufacturer of Flooded, Gelled and AGM batteries and therefore with no axe to grind, clearly states that Gelled is better suited than AGM for cycling applications. Who could argue with that? Recombinant Vent Plugs This is an interesting product which provides all of the maintenance and ventilation benefits of a VRLA battery to a flooded battery whilst retaining all of the resilience and integrity of the flooded type. Comprising a palladium catalyst fitted to the vent plug, the hydrogen and oxygen gas is recombined back into water in the vent plug but external to the battery and returned to the cell. Summary 1 A battery stores charge it does not Manufacture it. 2 Insufficient charging voltage will cause poor battery performance. 3 Insufficient charging voltage will cause short battery like. 4 Excessive charging voltage will cause short battery life. 5 Leaving a battery partially charged will reduce life and performance. 6 Periodically batteries need to be fully charged to maximise life and performance. 7 Engine Starting Batteries are required to deliver high current for a short time. If this type of battery is subjected to many cycles of charge/discharge, a short life is likely. 8 Deep Cycle Batteries are designed for a charge/discharge usage but can start engines in emergencies. 9 Battery life is reduced by a warm temperature environment. 10 Not all Valve Regulated Batteries are the same. 11 Valve Regulated Batteries have good features and benefits but are more Delicate than flooded batteries.