Grounding systems for power supply facilities

Similar documents
Methods of reducing power losses in distribution systems

SLOVAK UNIVERSITY OF TECHNOLOGY Faculty of Material Science and Technology in Trnava ELECTRICAL ENGINEERING AND ELECTRONICS.

Effective discrimination of protective devices

A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

COMPARISON OF ENERGY EFFICIENCY DETERMINATION METHODS FOR THE INDUCTION MOTORS

Technical information No. 01. IT systems. The basis for reliable power supply

Circumstances affecting the protection against electrode potential rise (EPR)

/12/$ IEEE. M. Bashir M.Sc student, Student Member, IEEE Ferdowsi University of Mashhad Mashhad, Iran

SNZ TR 6120:2014. New Zealand Technical Report. Low voltage supply earthing systems SNZ TR 6120:2014

2000 Cooper Bussmann, Inc. Page 1 of 9 10/04/00

SYSTEM EARTHING & PROTECTIVE EARTHING

Safe, fast HV circuit breaker testing with DualGround technology

Thermal analysis of IRT-T reactor fuel elements

CONTENTS About the company 1. Low-voltage arresters LVA type 2. Metal-oxide surge arresters for distribution systems. 3.

The influence of thermal regime on gasoline direct injection engine performance and emissions

Characteristics of LV circuit breakers Releases, tripping curves, and limitation

DEVELOPMENT OF AUTO RE-CLOSER EARTH LEAKAGE CIRCUIT BREAKER (AR-ELCB) AHMAD KHAIRUL AZWAN BIN JANTAN ANUA JAH

Grounding Of Standby & Emergency Power Systems

Working Principle of Earth Leakage Circuit Breaker (ELCB) and Residual Current Device (RCD)

Mode 2 Charging Testing and Certification for International Market Access

Range 16A to 63A. Sensitivity 30mA, 100mA, 300mA, 500mA. Execution Double Pole, Four Pole. Specification IEC / IS : 2000

Fab Efficiency. A new Power Quality and Energy Monitoring Technology for Fabs and Tools

ECET 211 Electric Machines & Controls Lecture 1-3 (Part 2) Electrical Safety in the Workplace Electrical Safety in the Workplace

RESIDUAL CURRENT CIRCUIT BREAKER

INTRODUCTION. I.1 - Historical review.

Cost Benefit Analysis of Faster Transmission System Protection Systems

Major changes within the New 18 th Edition Wiring Regulations announced by The IET

Earthing Principles. Symmetra PX 250/500 kw

NEXT STEP B) SAFETY :

A Cost Benefit Analysis of Faster Transmission System Protection Schemes and Ground Grid Design

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, ELECTRIC VEHICLE CHARGING CHARACTERISTICS

LVDC RULES TECHNICAL SPECIFICATIONS FOR PUBLIC LVDC DISTRIBUTION NETWORK

Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC

EARTHING YOUR QUESTIONS ANSWERED

Electrical Installation Lecture No.14 Dr.Mohammed Tawfeeq Alzuhairi

Mode 2 Charging Testing and Certification for International Market Access

Modular Standardized Electrical and Control Solutions for Fast Track Projects

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN)

The University of New South Wales. School of Electrical Engineering and Telecommunications. Industrial and Commercial Power Systems Topic 2

Level 3 Award in the Requirements for Electrical Installations BS 7671:2018 ( )

MeteorCalc SL. MeteorCalc SL is a CAD plugin for designing street lighting networks.

Electric Power Delivery To Big Cities

Power System Stability Analysis on System Connected to Wind Power Generation with Solid State Fault Current Limiter

Analyses of the grid resistance measurement of an operating transformer station

The gelsluice, an innovative idea for the present sluice structures

Review paper on Fault analysis and its Limiting Techniques.

THE CONTROLLED ELECTRIC DRIVE OF THE AUTOMATIC COOLING SYSTEM OF THE ENGINE ROOM ON A VESSEL

E.V.READY Specification for Installer Training Content

Ensuring the Safety Of Medical Electronics

9/16/2010. Chapter , The McGraw-Hill Companies, Inc. TRANSMISSION SYSTEMS. 2010, The McGraw-Hill Companies, Inc.

Types of Motor Starters There are several types of motor starters. However, the two most basic types of these electrical devices are:

The Insulation is what counts

GT/TDINT100 Issue: 1 Date: SEP 1993 Page 1 of 11

Small wonder. Station service voltage transformers for small power requirements

Reliable, economical and safe siemens.com/rail-electrification

Technology of Estimating Short Circuit Current and Ground Fault for Direct Current Distribution Systems

Interruption Technology of Breakers for High-voltage Direct Current

Sources, Effect, and melioration. Power Quality Problems. Asnil Elektro FT UNP

SWITCHBOARDS (LV and MV)

Electrical Test of STATCOM Valves

Microgrid solutions Delivering resilient power anywhere at any time

Comparative study on the lateral run-out of friction surfaces measurement of brake discs using a brake roller tester and a dial gauge

TRANSMISSION SYSTEMS

Summary of Revision, IEEE C , Guide for Breaker Failure Protection of Power Circuit Breakers

Element C8.3 Installation, Use and Inspection of Electrical Systems

Excitation systems for high power synchronous generators with redundant configurations

KEWTECH. KT56 digital multi function tester. Instruction manual

HIGH VOLTAGE MODULE TEST SYSTEM

ELECTRICIAN S THEORY EXAMINATION 19 June 2010 QUESTION AND ANSWER BOOKLET

NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA. Code for Earthing Design of AC Electrical Installations

Electrical Awareness and Considerations

ELECTRICIAN S THEORY EXAMINATION 11 September 2010 QUESTION AND ANSWER BOOKLET

3 o/c 2 An area or temporary structure used for display, marketing or sales is defined as a a booth b a stand c an exhibition d a show.

Power Quality Solutions POWER QUALITY SOLUTIONS: ACTIVE HARMONIC FILTERS

Renewable sources of electricity a brief overview

Retrofit for gas-insulated high voltage switchgear (GIS) - 8D1 and 8D2

On_Disc. 2 o/c1 BS 7671 applies to a lift installations b highway equipment c equipment on board ships d electrical equipment of machines.

Michal Kabrhel. Electric current

Glossary/Technical appendix

Key elements of the AS3000 Wiring standards and some of the recent changes.

(by authors Jouko Niiranen, Slavomir Seman, Jari-Pekka Matsinen, Reijo Virtanen, and Antti Vilhunen)

34 th Hands-On Relay School

Electrical. Earthing & Bonding. Installation Techniques. Learning Notes MODULE 2.2 UNIT PHASE:2

Power Voltage Transformers for Air Insulated Substations

TECHNICAL SPECIFICATION

INTRODUCTION. The plug-in connection on the cables and lightning arrestors, allows for easy installation and replacement.

Design Standards NEMA

ETAP Implementation of Mersen s Medium Voltage Controllable Fuse to Mitigate Arc Flash Incident Energy

ECET 211 Electric Machines & Controls Lecture 3-1 (Part 1 of 2) Motors, Transformers and Distribution Systems

Tooth contact analysis of spur gears. Part 2- Analysis of modified gears

GAS INSULATED VOLTAGE TRANSFORMERS.

TX³ RCCBs 2P up to 100 A

Protection of Power Electronic Multi Converter Systems in AC and DC Applications

National comparison on verification of fuel dispensers

Overview Overvoltage protection

WIRING MATTERS SEPTEMBER 2018

Raising the bar. UHV switchgear and components

GUIDE TO BACK UP POWER

Adapted from presentation developed by Scott Fausneaucht

The gelsluice, an innovative idea for the present sluice structures

Transcription:

MATEC Web of Conferences 141, 01052 (2017) Grounding systems for power supply facilities Vladimir Konusarov 1,*, and Ekaterina Tarasova 2 1 National Research Tomsk Polytechnic University, 634050 Tomsk, Russia Abstract This study aims to define some recommendations for choice of grounding system type for power supply facility. Operating modes of 0.4 kv networks approved by International Electrotechnical Commission (IEC) were considered and their advantages and disadvantages were identified. The comparison criteria were based on the conditions of human safety from electric shock in the breakdown of insulation on the body of electrical equipment, possibilities of expanding the network and uninterruptible power supply. The real application of the neutral modes and the possibility of installing protective devices were also taken into account. All the recommendations made is planned to apply for the modernization of the urban networks and the calculation of the earthing arrangement by using special software. 1 Introduction Grounding is one of the most important technological methods used to protect against an electrical shock. Reliable protection of power supply objects from various types of overvoltage requires the creation of an effective system for grounding electrical installations and equalizing the potentials on them. This study work is devoted to systems of grounding of elements of city distributive networks. In these networks, recently there have been increasing trends to the separation of protective and zero conductors, this transition makes it possible to protect against impulse over voltages, as well as it is more reliable in terms of electrical safety. [1] In addition to the grounding and equalizing the potentials, a significant influence is given to protective devices whose switching circuits depend on the mode of operation of the neutrals. We consider in more detail the earthing methods of urban distribution networks of 0.4 kv and supply substation 10/0.4 kv. 2.1 Neutral operation modes in 0.4 kv networks Technical features of electrical installations and their power supply networks cause the application of various types of grounding systems. In this case type of grounding system is a position relative to the ground of a substation s neutral and electrical installations neutral. IEC provides application of three neutrals and a conductive parts work modes. * Corresponding author: Konusarov@mail.ru The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 141, 01052 MATEC (2017) Web of Conferences Table 1. Modes of neutral s work. Type of grounding system TN ТТ IT Description Substation s neutral is solidly grounded. Electrical installations cases are connected to neutral conductor. Substation s neutral and Electrical installations cases neutrals are solidly grounded and unconnected. Substation s neutral is isolated. Electrical installations cases neutrals are dead grounded. The neutral grounding mode TN is divided into 3 types, table 2. Type of grounding system TN-С TN-S TN-C-S Table 2. Types of grounding modes of TN neutrals. Description Zero protective and neutral conductors are united in one conductor throughout it s all length Zero protective and neutral conductors are separated Zero protective and neutral conductors are united at the head, and then separated The method of grounding the neutral largely determines: Conditions of safety in electrical networks, protection from the risk of electric shock; Method of limiting overvoltage; Electromagnetic compatibility in normal and emergency modes; Fire safety; Currents with single-phase faults, damageability, selection of electrical equipment; Continuity of power supply; Network design and operation. It will be noted the advantages and disadvantages of the existing neutral operation modes in 0.4 kv networks, having chosen the criteria listed above as comparison criteria. 2.1.1 TN C grid Networks with this neutral mode of operation are most common in Russia. The network diagram is shown in Fig. 1. Fig. 1 Diagram of an electrical network with TN-C neutral grounding system. Electrical safety with indirect contact in this case is provided by switching off the fuse or circuit breaker. If the fault is remote from the source, its elimination time increases in this case the danger of electric shock to persons increases. To ensure electrical safety, shortcircuit protection must be switched off within a time less than 0,2 s, which is provided with fuses and circuit breakers only in case 2

MATEC Web of Conferences 141, 01052 (2017) Smart grids 2017 I fault = (5-6) I nom (1) Thus, with an indirect contact in remote faults, the TN-C neutral is not safe. It should be noted that designing this type of networks demands to measure or calculate the resistances of all connections and phase-zero loops for their protection settings, and when the network parameters are changing, it is necessary to do a recalculation to ensure the reliability of the protections. The biggest disadvantage of the TN-C network is the inability of the residual current devices (RCD) to function [2]. The fire safety of this network is low. This is due to the significant currents of single-phase fault and as mentioned above with the weak sensitivity of the protection for remote damage. For TN-C networks, the appearance of electromagnetic disturbances is typical, even in normal mode a voltage drop occurs in the zero wire [2]. This grounding system was used in the Soviet Union and now it can be found in houses belonging to the old buildings. Today it is also used in the networks of street lighting, where the degree of risk is minimal. 2.1.2 TN S grid Fig. 2 Diagram of an electrical network with TN-S neutral grounding system. Separation of the working and protective zero conductors do not provide electrical safety with an indirect contact similar to the TN-C network. The advantage of this network is the ability to use an RCD, it enhances the electrical network. Fire safety of TN-S network, due to the action of RCD is significantly higher in comparison with the TN-C networks. With regard to the continuity of the electricity supply network are similar. In terms of designing, configuring and maintaining protection, TN-S networks do not have significant advantages over TN-C networks, besides they are significantly more expensive due to the installation of an RCD and the presence of a fifth wire. This grounding TN-S first appeared in Europe and is still used there. In Russia TN-S networks are used in the construction of multi-storey buildings. 2.1.3 TN C S grid The TN-C-S network is a combination of TN-C and TN-S networks. The TN-C-S network is characterized by all the advantages and disadvantages noted above of the two previous networks. The TN-C-S grounding system is used in urban buildings; the conductors are separated in the basement of the building and running separately in the rises. 3

MATEC Web of Conferences 141, 01052 MATEC (2017) Web of Conferences 2.1.4 TT grid The TT network is characterized by the fact that the neutral of the power source and the conductive parts of the electrical receivers are dead-earth grounded, through unconnected conductors, the circuit is shown in Fig. 4. Fig. 4 Diagram of an electrical network with TT neutral grounding system. With regard to the electrical network, the single-phase fault on the conductive body make the voltage on it determined from the ratio of the grounding resistor of supply substation and local grounding. UU ffffffffff = RR ssssssssssssssssssss (2) UU iiiiiiiiiiiiiiiiiiiiii bbbbbbbb RR llllllllll gggggggggggggggggg TT grounding system does not provide safety against indirect contact, so the use of RCD is necessary. Fire safety of networks of this type is higher than in networks TN-C. This is due to the lower values of the single-phase fault current and the use of an RCD. Uninterrupted power supply is not ensured. Electromagnetic disturbances are much lower; the amount of damage in the emergency mode is insignificant. [3] In terms of design, the use of an RCD eliminates the problem of limiting the length of the PE conductor, there is no need to know the impedance of the phase-zero loop, it is possible to expand the network without recalculation of short-circuit currents. TT networks are widespread in rural areas, because of poor quality of power transmission line supports; they are also used in private buildings and in urban conditions to electrify temporary consumers. 2.1.5 IT grid The IT network, in other words, can be called a network with isolated neutral. The scheme of the grounding system of the IT network is shown in Fig. 5. Fig. 5 Diagram of an electrical network with IT neutral grounding system. IT networks are most electrically safe; voltage with indirect contact is practically nonexistent. Fire these networks as compared to the one discussed above is much higher; it is once again connected with small values of the fault current. IT networks are characterized 4

MATEC Web of Conferences 141, 01052 (2017) Smart grids 2017 by uninterrupted operation, single-phase fault to ground or conductive equipment housing does not require immediate shutdown. It should be noted that during the operation of the network, difficulties may occur, related to the location of the fault. Today they are widely used in dangerous industries, where electrical and fire safety is very important. Also, IT networks are often used in the construction of private houses. 3 Recommendations for choosing the type of grid The following recommendations for choosing type of grid can be made: As recommendations for choosing a network, the following conclusions can be drawn: 1. TN-S and TN-C-S networks are characterized by a low level of electrical safety, fire safety and significant electromagnetic disturbances. 2. TN-S networks can be recommended for selection in the case it s not planning to change it. 3. TT networks should be used to supply temporary or variable electrical installations. 4. IT networks are recommended to use, if it s absolutely necessary to ensure uninterruptible power supply. 4 Conclusion Each of the above modes of neutral grounding is not universal. Therefore, designing a network should be based on advantages and disadvantages. It s also should be carried out a technical and economical comparison and make a choice in favor of a certain grounding regime. There are also cases of combined use of networks, for example, when a part of consumers are powered from the TN-S network, and the other part is connected via a separation transformer to the IT network. References 1. A.V. Kabyshev, Lightning protection of electrical installation systems (TPU, Tomsk, 2006) [in Russian] 2. Rules of Electrical Facilities Maintenance (RF Ministry of Energy, 2003) [in Russian] 3. S.V. Petukhov, S.V. Butakov, V.V. Radyushin, Calculation of the grounding device (MSU, Arkhangelsk, 2011) [in Russian] 5