micro DC/DC Converter

Similar documents
ROHM s New Breakthrough Automotive Power Supply Circuit Technology

APPLICATION NOTE. Selecting Inductors for DC-DC Converters and Filters in Automotive Applications INTRODUCTION. 9/13 e/ic1338

All inclusive. #MAGICPOWERMODULES

HM8202. The HM8202 is available in the SOP-8L package. Charging Docks Handheld Instruments Portable Computers

EXPERIMENT 5 (a) PRESSURE, PROXIMITY AND MAGNETIC FIELD SENSORS

Automotive EMI Demystified: Part 2 Pursuing an Ideal Power Supply Layout

Introduction of large DIPIPMP conditioner inverter. application on EV bus air. Abstract: 1. Introduction

MLCC(Multilayer Ceramic Capacitors) C0G Guide for Resonance Circuits

ROHM Power Management IC Technology. Nano Pulse Control Nano Energy

Hardware Design of Brushless DC Motor System Based on DSP28335

Switching & Protecting Electronics in Battery-Powered Systems

DC/DC Converter Reference Circuit

Page 1. Design meeting 18/03/2008. By Mohamed KOUJILI

The XA4203 is available in the SOP-8L package. Charging Docks Handheld Instruments Portable Computers

XC6190 Series. FEATURES Input Voltage Range : 1.75V ~ 6.0V Low power Consumption : 0.01μA (Stand-by, TYP.) APPLICATIONS TYPICAL APPLICATION CIRCUIT

Wire Wound Chip Inductor (Ferrite)

DC/DC Converter Application Information

SL Series Application Notes. SL Series - Application Notes. General Application Notes. Wire Gage & Distance to Load

ZSPM401x Application Note - Circuit Layout and Component Selection Contents

ISL80102, ISL80103 High Performance 2A and 3A LDOs Evaluation Board User Guide

2.5A, 3MHz Switching Charger with Dynamic Power Path in 8-pin ESOP SYS 2.2K STAT. 2A Switching Charger with Minimum Component Count

Fixed Input Voltage DC/DC Converters Application Guide G. Electromagnetic Interference and Electromagnetic Compatibility...

ETA A, 3MHz Switching Charger with Dynamic Power Path Management

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching

Wide Input Voltage DC/DC Converters Application Guide G. Electromagnetic Interference and Electromagnetic Compatibility...24

EMI flexible absorber sheets

IDC-136II-KIT 136kHz DC RX Assembly Guide

SUPPRESSING ACOUSTIC NOISE IN PWM FAN SPEED CONTROL SYSTEMS APPLICATION NOTE 58 SUPPRESSING ACOUSTIC NOISE IN PWM FAN SPEED CONTROL SYSTEMS AN-58

UNISONIC TECHNOLOGIES CO., LTD UC5301

PART 1. Power Management

Products design and Application with BD180 Process

3A Switching Charger, 2.4A Boost and Fuel Gauge in One ESOP8 with Single Inductor

output Output Voltage min (ma)

FrelTec GmbH. Wire Wound Ceramic Chip Inductors SMD

Development of Compact Cylinder Linear Servo Motor SANMOTION

CCG Series Instruction Manual

Applications Manual of DPG serises

Wire Wound Chip Inductors Ferrite SMD

Selection of PM Motors

Electrical Engineering Within a Robotic System

+Vin. -Vin PO RC ALM. Fig. 1 Connection Method

DC/DC Converter URF48_QB-75W(F/H)R3 Series

THE SOLAR POWERED ANTI-THEFT BAG

International Journal of Advance Research in Engineering, Science & Technology

3A L.D.O. VOLTAGE REGULATOR (Adjustable & Fixed)

Power Supplies POWER SUPPLIES TRANSIENT VOLTAGE SUPPRESSORS POWER LINE FILTERS. AC to DC Power Supply Units. AC to 24VDC Regulated Primary Switching

Features. Figure 1. EFIL-28 Connection Diagram

TRAC-3 TENSION READOUT AND CONTROL

Instruction Manual. Selectable Microstep 5-ph Stepping Motor Driver RD-053MS RORZE CORPORATION

Magnetic Contactor FJ Series and SK Series Line Expansion

Electromagnetic Induction, Faraday s Experiment

XA4202. The XA4202 is available in the 8-lead SO Package. Charging Docks Handheld Instruments Portable Computers.

Technical Explanation for Inverters

Wind Turbine Emulation Experiment

Application Note AN-1203

Understanding The HA2500's Horiz Driver Test

Battery Charging Options for Portable Products by David Brown Senior Manager of Applications Engineering Advanced Analogic Technologies, Inc.

Hybrid Hydraulic Excavator HB335-3/HB365-3

Power Inductors (IP Series)

This is the H-bridge in it's off position. All four switches are turned off and no power is provided to the motor.

Implications of Digital Control and Management for a High Performance Isolated DC/DC Converter

(typ.) (Range) ±18 330# 89 MPW MPW

DC-DC Converter DATA Sheet

User s Manual Rev 1.3 GME

WEAPONX CIRCUIT COMPRESSION

HX6038 HX

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor

DC/DC Converter URF48_QB-200W(F/H)R3 Series

LM3352 Regulated 200 ma Buck-Boost Switched Capacitor DC/DC Converter

Performance of DC Motor Supplied From Single Phase AC-DC Rectifier

PAF500F24 SERIES Instruction Manual

CHAPTER 2 MODELLING OF SWITCHED RELUCTANCE MOTORS

Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL

For this application note the Ag9400-S will be used as an example of one of our typical PD products.

Development of the SANMOTION R1 100 sq. 1 kw -130 sq. 5 kw AC Servo Motor

A fully integrated 3 phase IGBT switching assembly with a very low loss DC Link Capacitor -- Ed Sawyer, SBE Inc. Scott Leslie, Powerex Inc.

How is lightning similar to getting an electric shock when you reach for a metal door knob?

IL1117-xx. 1.0A Low Dropout Positive Voltage Regulator TECHNICAL DATA. Features. Applications. Absolute Maximum Ratings. Rev. 02

Examples of Electric Drive Solutions and Applied Technologies

Output Voltage Current. Input Current Ripple. Efficiency (typ.) Load VDC VDC ma ma ma(typ.) ma(typ.) ma(typ.) μf % 2.

Tactile Switch (Hinged Type)

Bi-CMOS LSI PC and Server. Fan Motor Driver

MJWI20 SERIES FEATURES PRODUCT OVERVIEW. DC/DC Converter 20W, Highest Power Density MINMAX MJWI20 Series

Output Current Input Current Reflected Ripple. Efficiency (typ.) Load VDC VDC ma ma ma(typ.) ma(typ.) ma (typ.) VDC μf % MKW40-12S033

VLS-E series. Inductors for Power Circuits. Wound Ferrite

For this application note the Ag9700-S will be used as an example of one of our typical PD products.

Chapter 8 Magnetism and Its Uses. Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current

AMS1117 1A Adjustable / Fixed Low Dropout Linear Regulator

Shielded SMD Power Inductor

800mA Lithium Ion Battery Linear Charger

Energy Saving Technologies for Elevators

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

RCD15W Series PART NUMBER STRUCTURE

MECHATRONICS LAB MANUAL

Transmitter CSA-591 Instruction Manual

Precautions on the use of Multilayer Ceramic Capacitors

LANC245.1W12. DC/DC Converter VDC Input 5.1 VDC Output at 2.4A. Features:

DC/DC Converter Application Information

Advanced Monolithic Systems

Emergency power supply of elevator based on DIPIPM TM

Transcription:

No.34 (Ver.1) 1. Introduction Miniaturization and a low profile are demanded of the semiconductors and electronic components used in portable devices such as smartphones and tablets. Accompanying the lower voltages and larger currents used in semiconductors in devices, DC/DC converters, which have a higher conversion efficiency than linear regulators, are seeing increasing use. DC/DC converters normally include a power control IC, coil, capacitor, and resistor. For this reason, more mounting space is needed than a linear regulator, which contributes to increased board cost. In addition, inappropriate selection of components and board layout may lead to circuit malfunctioning and noise problems. As a solution to these issues, micro DC/DC converters are gaining increasing attention. Micro DC/DC converters have a small number of components, and thus the board layout is simple and little noise occurs, which helps reduce development time. This document introduces micro DC/DC converter products and provides points for effective use. 2. Structures and Features of s TOREX micro DC/DC converter products are centered on a switching regulator with a single output that integrates the control IC and coil. The package structure is determined by consideration of the product specifications, IC, coil, heat generation (heat dissipation), and other characteristics. Each package structure has advantages and disadvantages (Table 1). Structure number Table 1: Structure and Features of Micro DC/DC Converters TYPE - 1 TYPE - 2 TYPE - 3 Drawing Description The IC is covered by the coil The IC is stacked on the coil Features * Products * Best, Better, Good Radiated noise Near magnetics field Cost Mounting area Large current Heat dissipation XCL11 (step-up) XCL1/XCL2 (step-down) XCL5/XCL6/XCL7 (step-down) Radiated noise Near magnetics field Cost Mounting area Large current Heat dissipation XCL8/XCL9 (step-down) The IC and coil are placed side-by-side Radiated noise Near magnetics field Cost Mounting area Large current Heat dissipation XCL211/XCL212 (step-down) XCL213/XCL214 (step-down) 2.1 TYPE 1 Structure The coil lies flat on the IC package. This shortens the path of the switching current and minimizes noise. 2.2 TYPE 2 Structure The resin mold mounts the IC chip on top of the coil. Relatively inexpensive because a coil with a generic shape can be used. January, 14 1

No.34 (Ver.1) 2.3 TYPE 3 Structure The coil and IC chip are placed side-by-side in the resin mold. The IC and coil have good heat dissipation, so large currents can be used. 3. Designed for Noise Reduction In order to obtain full performance from electronic components, whether or not the design achieves noise reduction is an important concern from the stage of circuit design. However, even though the power circuit is a source of noise, component selection comes last. No matter how high the performance of the ICs and LSIs that are used, it will not be possible to obtain good performance from these components if the power circuit design is bad. In order to reduce noise in TOREX micro DC/DC converters, a variety of measures are taken, including: Using a coil with minimal flux leakage Adjustment of coil characteristics for the micro DC/DC Optimization of DC/DC operation Deciding pin assignments and structure based on consideration of the current path Using measurements of radiated noise and near magnetics field strength, the following section describes the extent to which noise characteristics actually differ in a power circuit composed of discreet components (XC9236) and in a micro DC/DC converter (XCL6). 3.1 EMI (Electromagnetic Interference) Fig. 1 shows a comparison of radiated noise in two products, the XC9236B18DMR-G and the XCL6B183AR-G The XC9236 (black waveform) generates noise over a wide range from 5M to 3MHz. By contrast, the XCL6 (yellowish green waveform) has a very low noise level. Even at the same operating frequency, the difference is clear. For this reason, the XCL6 (micro DC/DC converter) does not require full implementation of the noise measures that always tend to be put off until later. And on the XCL2 (Freq = 1.2MHz), which has the same structure as the XCL6, the operating frequency is reduced for even lower noise (refer to the P.7 EMI data on page 7). Testing conditions: V IN = 3.7V (DC power supply), V OUT = 1.8V, I OUT = ma (resistor: 9Ω) XC9236B18DMR-G (Freq = 3MHz): Cin = 4.7μF, CL = 1μF XCL6B183AR-G (Freq = 3MHz): Cin = 4.7μF, CL = 1μF 7 6 Horizontal XC9236B18DMR XCL6B183AR 7 6 Vertical XC9236B18DMR XCL6B183DR 5 3 5 3 1 1 1 1 1 1 1 1 Fig. 1: Radiated Noise, XC9236B18DMR-G vs. XCL6B183AR-G January, 14 2

No.34 (Ver.1) 3.2 Near Magnetics Field Strength Figure 2 shows a comparison of the near magnetics field strength of the XC9236B18DMR-G and the XCL6B183AR-G. The near magnetics field strength does not always correlate directly to the strength of unwanted radiated noise, however, it provides an effective means of identifying noise sources due to high-frequency current flowing in the board. Testing conditions: V IN = 3.7V (DC power supply), V OUT = 1.8V, I OUT = ma (resistor: 9Ω) XC9236B18DMR-G (Freq = 3MHz): Cin = 4.7μF, CL = 1μF XCL6B183AR-G (Freq=3MHz): Cin = 4.7μF, CL = 1μF XC9236B18DMR-G XCL6B183AR-G Frequency Range 3MHz - 1MHz 5MHz - 3MHz Evaluation Board Fig. 2: Near Magnetics Field Strength, XC9236B18DMR-G vs. XCL6B183AR-G January, 14 3

No.34 (Ver.1) At a frequency range of 5M to 3MHz, orange and red appear in a ring-like shape around the XC9236 IC. It can be seen that the strongest noise occurs in the vicinity of the IC s GND pin. Yellow ring-shaped noise can also be seen at the coil. The coil is a simple shield type (ferrite powder mixed in the resin), and thus it is likely that the noise is due to flux leakage. By contrast, the XCL6 (micro DC/DC converter) has no red or orange, and little noise is generated. 4. Using Micro DC/DC Converters Effectively A micro DC/DC converter can be operated without detailed knowledge. A basic knowledge is sufficient to reduce noise and heat generation in circuit components, increase component reliability, and improve product acclaim. 4.1 Compact and Low Profile A micro DC/DC converter requires only half the mounting space of a regular DC/DC converter consisting of discrete components, and thus also helps save board cost. The same board space as a linear regulator is sufficient. XC9236B18DMR-G (DC/DC Converter) XCL2B181BR-G (microdc/dc Converter) XC6221A182MR-G (Linear Regulator) Evaluation Board 36mm 2 3mm 18mm 2 18mm 2 3mm 18mm 1mm 3mm 3mm Fig. 3: Comparison of Mounting Space 4.2 Efficiency and Component Temperature There is a large difference in power conversion efficiency between linear regulators and micro DC/DC converters (Fig. 4). Example) XC6221 48% (@I OUT = 1mA) XCL2 87% (@I OUT = 1mA) This difference in efficiency creates a big difference in device battery drive time. The efficiency difference is loss due to conversion to IC heat (Fig. 5). XC6221(PKG:SOT25) 61.3 C (@Ta=23.4 C) XCL2(PKG:CL25 36.3 C (@Ta=23.4 C) Efficiency : EFFI [%] 1 8 6 XCL2 XC6221 V IN =3.7V V OUT =1.8V.1 1 1 1 Output Current : I OUT [ma] Fig. 4: Power Conversion Efficiency, XC6221A182MR-G vs. XCL2B181BR-G January, 14 4

No.34 (Ver.1) Testing conditions: V IN = 3.7V, V OUT = 1.8V, I OUT = 1mA (resistor: 18Ω), Ta = 23.4 C XC6221A182MR-G (Linear Regulator) IC XCL2B181BR-G () IC Cap. Cap. Fig. 5: Heat Characteristics, XC6221A182MR-G vs. XCL2B181BR-G 4.3 Board Layout Points The GND wiring appears simple in the circuit diagram, however, in some cases the actual layout on the printed circuit board is very difficult. It is not a matter of simply making connections, because if the connection positions and board layout are bad, the performance of the entire system will be degraded. For example, a step-down DC/DC converter alternately switches switch 1 (SW1) and switch 2 (SW2) ON/OFF, controlling the currents in order to stabilize the output voltage. The currents that flow when this is done are Current (1) and Current (2) (refer to Fig. 6). Current only flows in the red wiring shown in Fig. 7 when either Current (1) only or Current (2) only operates. When switch 1 (SW1) and switch 2 (SW2) are switched, the switching current is instantaneously interrupted, causing the L (inductance) component of the wiring to generate an electromotive force. SW1 SW2 L CL R SW1 SW2 L CL R C IN C IN Current1 Current2 SW1:ON SW2:OFF Current1 SW1:OFF SW2:ON Current2 Fig. 6: Current Path of Step-Down DC/DC Converter Fig. 7: Step-Down DC/DC Converter Noise The detailed steps that must be taken are explained below using circuit diagrams. To reduce noise, the red wiring in Fig. 7 must be kept short. Apart from the wiring inside the IC, the input capacitance (C IN ) should be placed near the V IN GND pins of the DC/DC converter and connected with short wiring (refer to Fig. 8). Caution is required because GND in particular will disperse noise throughout the entire system. January, 14 5

No.34 (Ver.1) The next explanation refers to the actual test board of the XCL6 (micro DC/DC converter). There is a power GND (PGND) and an analog GND (AGND). In this case, the input capacitance (C IN ) can be connected by a short connection to the power GND (PGND) to make the area of the GND pattern (red) where the electromotive force generated is extremely small (Fig. 9). Fig. 8: CIN Connection Location on Circuit Diagram TAB and AGND patterns can either be connected or not connected on the front The current path changes, so the TAB and PGND pins are not connected on the front. A small area and short connection to C IN prevents PGND noise dispersion. Fig. 9: XCL6 Printed Circuit Board Layout (TOP VIEW/BOTTOM VIEW) In terms of pin assignments on the XCL6 test board, the layout of the GND pattern appears to be simply a matter of connecting the power GND (PGND), TAB, and analog GND (AGND) in a line on the front pattern. However, from the perspective of noise, caution is required because the current path changes and the effectiveness of C IN drops, resulting in a negative effect. 5. Conclusion Manufacturers inside and outside Japan have recently been aggressively pursuing the development of wearable devices. Starting several years ago, many TOREX micro DC/DC converters have been adopted for use in GPS watches (sports watches), HMDs (Head Mounted Displays), pulse oximeters, and other devices. Wearable devices are worn for long periods of time, and as such their design reflects concern for preventing burn injury due to component heat generation, battery drive time, and the effects of high frequency noise on the body. This is a likely reason for the increased use of micro DC/DC converters with their compact size, high efficiency, and low noise among the manufacturers. Noise data (radiated noise, near magnetics field strength) are provided at the end of this document to serve as an aid in component selection. January, 14 6

No.34 (Ver.1) EMI (Electromagnetic Interference) V IN = 3.7V, V OUT = 1.8V/I OUT = ma Horizontal Vertical 7 7 6 6 XCL9B183DR XC9236B18DMR-G Level [dbuv/m] Level [dbuv/m] 5 3 1 1 1 1 7 6 5 3 1 Level [dbuv/m] Level [dbuv/m] 5 VCCI Class 3 1 1 1 1 7 6 5 3 1 1 1 1 1 1 1 7 7 6 6 XCL6B183DR-G 5 3 1 5 3 1 1 1 1 7 6 1 1 1 7 6 XCL2B181BR-G 5 3 1 5 3 1 1 1 1 1 1 1 January, 14 7

No.34 (Ver.1) Near Magnetics Field Strength V IN = 3.7V, V OUT = 1.8V/I OUT = ma 5MHz - 3MHz Frequency Range 3MHz - 1MHz XCL2B181BR-G XCL6B183DR-G XCL9B183DR XC9236B18DMR-G January, 14 8