The development of FCC catalysts for producing FCC gasoline with high octane numbers

Similar documents
Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Strategies for Maximizing FCC Light Cycle Oil

Unit 4. Fluidised Catalytic Cracking. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

Recycle and Catalytic Strategies for Maximum FCC Light Cycle Oil Operations

On-Line Process Analyzers: Potential Uses and Applications

Results Certified by Core Labs for Conoco Canada Ltd. Executive summary. Introduction

Commercial Application of Novel Heavy Oil Catalytic Cracking Catalyst HSC

Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process

A new simple and robust process FT-NIR Spectrometer with small footprint and extended maintenance interval

Two Companies Joined to Develop a Catalytic Solution for Bottoms Upgrading to Diesel in the FCC Unit

A comparative study of liquid product on non-catalytic and catalytic degradation of waste plastics using spent FCC catalyst

Utilizing the Flexibility of FCC Additives for Shale Oil Processing. Todd Hochheiser Senior Technical Service Engineer, Johnson Matthey

Distillation process of Crude oil

Alternative Carrier Gases for ASTM D7213 Simulated Distillation Analysis

Co-Processing of Green Crude in Existing Petroleum Refineries. Algae Biomass Summit 1 October

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate

PILOT PLANT DESIGN, INSTALLATION & OPERATION Training Duration 5 days

Refining/Petrochemical Integration-A New Paradigm

The GENESIS TM Catalyst System

Modernizing a Vintage Cat Cracker. Don Leigh HFC Rahul Pillai KBR Steve Tragesser KBR

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Effect of Feedstock Properties on Conversion and Yields

THE OIL & GAS SUPPLY CHAIN: FROM THE GROUND TO THE PUMP ON REFINING

Fig:1.1[15] Fig.1.2 Distribution of world energy resources. (From World Energy Outlook 2005, International Energy Agency.)[16,17]

Chemical Technology Prof. Indra D. Mall Department of Chemical Engineering Indian Institute of Technology, Roorkee

Composition distribution and characteristic of a typical commercial gasoline in market

Oil & Gas. From exploration to distribution. Week 3 V19 Refining Processes (Part 1) Jean-Luc Monsavoir. W3V19 - Refining Processes1 p.

Conversion Processes 1. THERMAL PROCESSES 2. CATALYTIC PROCESSES

M. Endisch, M. Olschar, Th. Kuchling, Th. Dimmig

Influence of Pressure to the Hydrocracking Process of Goudron in the Presence of a Modificated Suspended Halloysite

Journal of KONES Powertrain and Transport, Vol. 21, No ISSN: e-issn: ICID: DOI: /

CHAPTER 2 REFINERY FEED STREAMS: STREAMS FROM THE ATMOSPHERIC AND VACUUM TOWERS

Strategies for Metals Management in Resid FCC Units ERTC. November Dr. Vasilis Komvokis, Technology Manager

GTC TECHNOLOGY WHITE PAPER

Catalytic Reforming for Aromatics Production. Topsoe Catalysis Forum Munkerupgaard, Denmark August 27 28, 2015 Greg Marshall GAM Engineering LLC 1

HOW OIL REFINERIES WORK

Roles of Emerging FCC-based Technologies in Shifting to Petrochemicals Production

PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California

Coking and Thermal Process, Delayed Coking

Refinery Maze Student Guide

Abstract Process Economics Program Report 211A HYDROCRACKING FOR MIDDLE DISTILLATES (July 2003)

Unit 1. Naphtha Catalytic Reforming. Assistant lecturers Belinskaya Nataliya Sergeevna Kirgina Maria Vladimirovna

Development of HS-FCC (High Severity FCC) Process

Solvent Deasphalting Conversion Enabler

FCC UNIT FEEDSTOCK FLEXIBILITY IN MOL S DANUBE REFINERY

PCE154. Refinery Process and Products. H.H. Sheikh Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E

STUDY OF CHANGES IN THE HYDROCARBON COMPOSITION OF GASOLINE AFTER EACH STAGE REFORMING REACTOR

Study of viscosity - temperature characteristics of rapeseed oil biodiesel and its blends

Maximizing FCC Light Cycle Oil Operating Strategies Introducing MIDAS -300 Catalyst for Increased Selectivity

Reactivity of several olefins in the HDS of full boiling range FCC gasoline over sulphided CoMo/Al 2 O 3

Supply of Services for Detailed OEB Crude Assay Analysis

Hydrocracking of atmospheric distillable residue of Mongolian oil

HYDRODESULFURIZATION AND HYDRODENITROGENATION OF DIESEL DISTILLATE FROM FUSHUN SHALE OIL

Production of Transportation Fuels by Co-processing Biomass-Derived Pyrolysis Oils in a Petroleum Refinery Fluid Catalytic Cracking Unit

High Temperature Simulated Distillation Performance Using the Agilent 8890 Gas Chromatograph

Jagdish Rachh, TSC EMEA, 4 th October UniSim Design New Refining Reactors Deep Dive

Boron-Based Technology: An Innovative Solution for Resid FCC Unit Performance Improvement

Fischer-Tropsch heavy products up-grading

Impact of HY as an Additive in Pd/HBETA Catalyst on Waste Tire Pyrolysis Products

PRACTICE EXAMINATION QUESTIONS FOR 1.6 ALKANES (includes some questions from 1.5 Introduction to Organic Chemistry)

1 The diagram shows the separation of petroleum into fractions. gasoline. petroleum Z. bitumen. What could X, Y and Z represent?

SOLVENT DEASPHALTING OPTIONS How SDA can increase residue upgrading margins

HOW OIL REFINERIES WORK

HYDROCRACKING OF FISCHER-TROPSCH PRODUCTS

FCC pretreatment catalysts

Fischer-Tropsch Refining

Synthesis, Characterization and Evaluation of Sulphated Zirconias for Biodiesel Production by Triglyceride Cracking

Upgrading Biomass Pyrolysis Vapors to Fungible Hydrocarbon Intermediates

Sensitivity analysis and determination of optimum temperature of furnace for commercial visbreaking unit

PETROLEUM SUBSTANCES

Investigation of Isoparaffin Rich Alternative Fuel Production

CONTENTS 1 INTRODUCTION SUMMARY 2-1 TECHNICAL ASPECTS 2-1 ECONOMIC ASPECTS 2-2

Optimization of Propylene Production Process from Fluid Catalytic Cracking Unit

Analysis and calculation model of energy consumption and product yields of delayed coking units

TYPES OF BLENDING PROCESS

Exelus. ExSact A Step-Out iso-paraffin Alkylation Technology. By Mitrajit Mukherjee & Sankaran Sundaresan, Exelus Inc. Part 1. Catalyst Development

Reactivity of several olefins in the HDS of full boiling range FCC gasoline over PtPd/USY

Monitor Chlorine in Crude at Sub-ppm Levels

Consulting and Training Services Available to the Petroleum Industry

Challenges and Solutions for Shale Oil Upgrading

Characterization and Refinery Processing of Partially-upgraded Bitumen

The Role of a New FCC Gasoline Three-Cut Splitter in Transformation of Crude Oil Hydrocarbons in CRC

(Syn)Gas to Fuel HIGH QUALITY GASOLINE FROM METHANOL

How. clean is your. fuel?

Unit 7. Vaccum Distillation of Crude

MODERN REFINING CONCEPTS No Oil Refining without Hydroprocessing

IHS CHEMICAL PEP Report 29J. Steam Cracking of Crude Oil. Steam Cracking of Crude Oil. PEP Report 29J. Gajendra Khare Principal Analyst

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER

EXPERIMENTAL STUDY ON THE INFLUENCE OF ETHANOL AND AUTOMOTIVE GASOLINE BLENDS By

STUDIES ON FUSHUN SHALE OIL FURFURAL REFINING

Effect of Dodecylbenzene Sulfonic Acid Used as Additive on Residue Hydrotreating

opportunities and costs to upgrade the quality of automotive diesel fuel

Resid fluid catalytic cracking catalyst selection

OIL REFINERY PROCESSES

Alkylation & Polymerization Chapter 11

R&D on New, Low-Temperature, Light Naphtha Isomerization Catalyst and Process

identify the industrial source of ethylene from the cracking of some of the fractions from the refining of petroleum Oil drilling rig

New Residue Up-grading Complex at European Refinery Achieves Euro 5 Specifications

The refining industry, especially

Lecture 3: Petroleum Refining Overview

Transcription:

Appl Petrochem Res (2014) 4:379 383 DOI 10.1007/s13203-014-0075-9 ORIGINAL ARTICLE The development of FCC catalysts for producing FCC gasoline with high octane numbers Zhongdong Zhang Zhaoyong Liu Rui Feng Pusheng Liu Zifeng Yan Received: 5 May 2014 / Accepted: 8 July 2014 / Published online: 22 August 2014 The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The effects of acidity and pore properties of rare earth modified USY on heavy oil conversion were investigated. USY with varied rare earth contents were prepared with impregnation method. FCC catalysts were also prepared with modified USY and tested by micro activity tests (MAT) and advanced catalytic evaluation (ACE). The results showed that USY3 had a good performance in cracking polycyclic hydrocarbons in heavy oil and diesel to aromatics and iso-olefins that exist in gasoline; the surface area and pore volume of USY3 increased by 54 m 2 /g and 0.032 ml/g, respectively, after porosity cleaning; the new optimized FCC catalysts improved the cracking of polycyclic aromatic hydrocarbons (PAHs) to form gasoline with high octane numbers. When tested on a pilot riser unit at 500 C and 1.89 s with a catalyst-to-oil ratio of 5.6, the new catalyst Cat-3 had a 0.24 % higher propylene yield and a 1.52 % higher liquid yield compared with the reference catalyst Cat-1. However, it had a 7.89 % lower olefin content in FCC gasoline with the same octane numbers. Keywords USY Pseudo-boehmite Aluminum debris Octane number Olefin Z. Zhang Z. Liu (&) R. Feng Z. Yan State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, China University of Petroleum, Qingdao 266555, China e-mail: lzy0539@126.com Z. Yan e-mail: zfyancat@upc.edu.cn Z. Zhang Z. Liu P. Liu Lanzhou Petrochemical Research Center, China National Petroleum Corporation, Lanzhou 730060, China Introduction Gasoline in refineries comes mainly from the units such as steaming of crude oil, catalytic cracking, catalytic reforming, hydrocracking and alkylation. The fluid catalytic cracking (FCC) process is one of the most important means in deep process of crude oil due to its applicability, flexibility and good economical feasibility. In China, more than 75 % of motor gasoline is provided by fluid catalytic cracking (FCC) units. However, the octane numbers of FCC gasoline is too low to meet the requirements of motor fuels. On the other hand, the increasing severe crude oil supplies worldwide and more attention on environmental regulations are promoting the tendency of converting heavy oil into high qualified gasoline with high octane numbers by FCC process [1, 2]. Besides, with the rapid development of China s automobile industry, car ownership especially imported high-end cars and domestic joint ventures has been increasing substantially. To work with high compression as well as to meet the requirements of increasingly stringent environmental regulations on automobile engines, gasoline upgrading and the demand of high-octane gasoline are increasing prominently and had been rapidly increasing in recent decades. Besides, FCC gasoline generally has high content of olefins which has high octane numbers. However, extravagant olefins make the gasoline stability worse and increase the emission of CO and NO when combusted in engines. The olefin content in end gasoline products is also strictly restricted. Therefore, controlling the olefin content simultaneously to improve the octane numbers of FCC gasoline is the key to improving current and future end gasoline product s qualities. Among numerous methods, the use of catalysts or additives to improve the FCC gasoline octane is the most cost-effective, direct and effective way to upgrade petrol problem.

380 Appl Petrochem Res (2014) 4:379 383 In this work, USY has been modified with rare earth to adjust their acidity and pore structures. Thereafter, the corresponding FCC catalysts have been prepared, characterized and tested using MAT, ACE evaluation and riser to investigate their performance in hydrocarbon cracking and producing high-octane FCC gasoline. Experimental section Modification of USY The modified USY was obtained by ion exchange method and impregnation method, using commercial zeolite NaY as raw material. The ion exchange of NaY was carried out in the solution of lanthanum chloride and ammonium salt at 80 100 C for 1 h. USY was obtained in sequence of filtration, washing, drying of the above suspension and finally heating in the presence of water steam at 500 600 C for 2 h. USY1, USY2 and USY3 with different rare earth contents were finally prepared after impregnation and calcination. Catalyst preparation The matrix was firstly prepared by mixing chemical water, binder and functional component. The catalysts were obtained by adding modified USY into the above matrix under stirring and then treated in sequence of spray drying, washing and drying. The catalysts were, respectively, marked as Cat-1, Cat-2 and Cat-3 containing corresponding USY1, USY2 and USY3. Characterization The element content was determined by X-ray fluorescence (XRF) using a Rigaku ZSX Primus spectrometer. The degree of crystallinity and unit cell size (UCS) were obtained on a Rigaku D/MAX-3CX diffractometer. The pore properties of catalysts were carried out in a Coulter Omnisorp 360 analyzer. The samples were first outgassed at 300 C for 4 h with a vacuum degree of 1.33 9 10-7 Pa. The thermal stability of catalysts was tested on a PCT-II TG DTA analyzer. NH3-TPD was measured on a Micromeritics 2910 analyzer. The samples were firstly treated at 550 C for 2 h and then absorbed in an NH 3 gas stream (25 ml/min) at 100 C for 0.5 h. The signal was collected at a heating rate of 10 C/min to 900 C inan 2 gas stream of 50 ml/min. Catalytic evaluation The micro activity tests (MAT) of catalysts were performed in a bench-scale unit WF-2006. The catalytic reactions occurred at 460 C for 70 s with a catalyst-to-oil (CTO) ratio of 3, using 5.0 g catalyst and Dagang light diesel as feed. The catalysts were hydrothermally treated in 100 % water steam at 800 C for 4 h before catalytic tests. The evaluation of cracking activity was performed in a Kayser ACE catalytic cracking unit and LPEC/SINOPEC XTL-5 riser unit [3, 4]. The properties of feedstock are displayed in Table 1. The catalysts were hydrothermally treated in 100 % water steam at 800 C for 17 h before ACE tests and 10 h before riser tests, respectively. The ACE tests were performed at 530 C with a CTO ratio of 5 and the riser tests were performed at 500 C with a CTO ratio of 6. The resulting cracking gases were collected and analyzed by an Agilent CP3000 gas chromatograph (GC). The compositions of gasoline, diesel and heavy oil were analyzed by simulated distillation on a HP 6890 GC. The gasoline fraction was in the boiling points below 205 C and diesel fraction was in the boiling point in the range of 205 350 C. Results and discussion Rare earth modified USY It is wide acknowledged that the majority of active sites of FCC catalysts which are responsible for the cracking of heavy oil into light hydrocarbons exist on zeolite. Therefore, the activity stability, acidity distribution and unit cell size (UCS) of zeolites determine the ability of FCC catalysts to crack heavy oil, selectivity of products and octane numbers of FCC gasoline. NaY modification with rare earth ions is mostly used to prepare REUSY with adjustable rare earth contents and thermal and/or hydrothermal stabilities. In this process, one or more of the metal or nonmetal ions are usually used to change the acidity and stability of zeolites. In this work, three USY with varied rare earth contents were prepared and their properties are shown in Table 2. It was shown that USY1 with the lowest rare earth content possessed the smallest UCS but the highest collapse temperature and retention of crystallinity after modification. Additionally, the cell parameters were increased by rare earth doping. The acidity properties of rare earth modified USY were measured using NH 3 as probe molecules (Fig. 1). Three desorption peaks were observed at 185, 370 and 680 C, which belonged to weak, medium and strong acidic sites, respectively. Obviously, the amount of the total acidic sites and the strong ones of USY3 were the highest and the corresponding desorption peak of strong acidity shifted to higher temperature. In contrast, the amounts of medium strong acidic sites of USY1 and USY2 were much higher

Appl Petrochem Res (2014) 4:379 383 381 Table 1 Properties of feed in ACE and riser unit evaluation Density (20 C)/(g cm -3 ) w (SARA)/% w (Metal)/(lg g -1 ) Saturates Aromatics Resins Asphaltenes Ni V Fe Na Cu 0.901 63.5 25.8 10.7 0 7.46 4.40 3.98 5.00 0.66 Conradson carbon/% w (Element)/% C H N S 4.30 85.72 12.33 0.45 1.4 Table 2 The properties of rare earth modified USY Item Re 2 O 3, Intensity of NH 3 -TPD 0.06 0.05 0.04 0.03 0.02 0.01 0.00 C/C 0, 185 UCS, Å 370 Collapse temperature, C USY1 1.8 64 24.52 1,030 74 USY2 8.1 52 24.63 1,004 61 USY3 12.8 53 24.67 1,014 65 680 Crystallinity retention, % USY1 USY3 USY2 0 150 300 450 600 750 900 1050 Temperature Table 3 ACE evaluation results of modified USY containing FCC catalysts Item Cat-1 Cat-2 Cat-3 Zeolite USY1 USY2 USY3 Yield, Dry gas 2.67 2.55 2.80 LPG 16.84 20.61 22.54 Gasoline 46.54 53.85 54.12 Diesel 15.58 12.45 10.58 Heavy oil 13.03 4.94 3.75 Coke 5.33 5.60 6.20 Conversion, 71.39 82.61 85.67 Total yields, 78.96 86.91 87.24 Light oil yields, 62.12 66.30 64.70 Properties of gasoline N-paraffins, v% 6.37 5.31 4.98 Iso-paraffins, v% 14.19 24.19 26.59 Olefins, v% 42.14 26.29 19.90 Naphthenes, v% 4.72 5.04 5.39 Aromatics, v% 32.58 39.16 43.15 MON 80.1 80.8 81.5 RON 90.9 89.7 90.8 Fig. 1 The NH 3 -TPD curves of rare earth modified USY than USY3. The gradient acidity distribution of modified USY was of great importance in catalytic cracking process. The effects of modified USY on reactions To investigate the effects of acidity and UCS of zeolite on catalytic reactions, three catalysts were prepared with modified USY and tested by ACE evaluation. The results (Table 3) showed that Cat-1 had the lowest conversion for heavy oil, while USY3 had the highest conversion which might be ascribed to its high content of strong acidic sites. However, the low acidity density of Cat-1 was responsible for the high olefin content and octane numbers. It could be ascribed to the decreased hydrogen transfer reactions which decreased the saturation of olefins. For Cat-3, the yields of iso-paraffins and aromatics were obviously higher which enhanced the octane numbers of FCC gasoline, especially for the motor octane number (MON). It was attributed to the higher cracking ability of Cat-3 on converting more PAHs in the heavy oil and diesel to aromatics and iso-paraffins, which compensated the loss of octane numbers due to the decrease of olefins. The effects of pore structure of USY3 on reactions The pore structures of catalysts are important for reactions. For FCC catalysts, three types of pores are involved according to the classification criterion by IUPAC. The micropores that are less than 2 nm are provided by the zeolites and acting as the main repository for cracking hydrocarbons. However, the heavy oil molecules are too big to enter into the micropores for its sizes are in the range of 3 10 nm. It was found out that the diffusion of molecules in pores of catalysts was not limited when the optimized pores were 2 6 times bigger than the sizes of

382 Appl Petrochem Res (2014) 4:379 383 Table 4 The pore properties of USY3 before and after modification Item Surface area, m 2 /g Pore volume, ml/g Before modification 578 0.41 After modification 629 0.44 Table 5 ACE evalution of FCC catalysts containing the USY3 before and after modification Item Before modification After modification Differences Fig. 2 N 2 sorption curves of USY3 before and after modification Yields, Dry gas 2.74 2.70-0.04 LPG 23.27 23.22-0.05 Gasoline 52.33 52.85?0.52 Diesel 10.77 10.63-0.14 Heavy oil 4.10 3.93-0.17 Coke 6.79 6.67-0.12 Selectivity, Conversion, 85.12 85.44?0.32 Total yields, 86.37 86.70?0.33 Light oil yields, 63.11 63.49?0.38 Octane numbers of gasoline MON 81.5 82.1?0.6 RON 91.6 92.0?0.4 Table 6 Properties of Cat-3 Na 2 O, RE 2 O 3, Abrasive resistance, Pore volume, ml/g MAT (4 h), % 0.20 2.9 1.4 0.38 76 Fig. 3 Pore distributions of USY3 before and after modification molecules. Therefore, the macropores ([50 nm) mainly composed by the interpores between small particles were used for pre-cracking of heavy oil macromolecules. In contrast, the mesopores in between were the secondary pores of zeolites and are used for cracking cycloparaffins and side chains of aromatics into light cycle oil (LCO). The acidity in mesopores should be mild and its numbers were usually limited [5]. Generally, aluminum or silica fragments were formed and partially blocked the pores of zeolites in the process of catalyst preparation. At the same time, it caused a partial deactivation and over cracking of hydrocarbons. In this work, the USY3 was cleaned by modifier and the N 2 sorption curves and pore distribution of USY3 before and after optimization were shown in Figs. 2 and 3, respectively. The data (Table 4) showed that the surface area and pore volume of catalyst increased after cleaning while the pore sizes remain the same. The results indicated that the fragments in the pores of zeolite were removed and the pores were much clearer. The ACE evaluation results of FCC catalysts containing the USY3 before and after modification are shown in Table 5. It showed that after modification, the yields of heavy oil and coke decreased by 0.17 and 0.12 %, respectively, while the total yields increased by 0.33 %. For FCC gasoline, the MON and RON increased by 0.6 and 0.4 unit, respectively. It indicated that the clean pores were in favor of fast diffusion of high octane components before over cracking. Catalytic tests of new catalysts on a riser The properties of newly prepared FCC catalysts are displayed in Table 6. It indicated that the FCC catalyst Cat-3 met the requirements of industrial catalysts.

Appl Petrochem Res (2014) 4:379 383 383 Table 7 The reaction results obtained on a riser Item Cat-1 Cat-3 Yields, Dry gas 1.72 1.63 LPG 24.81 24.68 Gasoline 41.32 42.64 Diesel 15.95 16.28 Heavy oil 9.17 6.79 Coke 6.79 7.66 Propylene 10.31 10.55 Conversion, 74.88 76.93 Total yields, 82.08 83.60 Composition of gasoline, v% N-paraffins 4.80 4.87 Iso-paraffins 23.70 27.73 Olefins 44.27 36.38 Naphthenes 8.33 8.93 Aromatics 18.90 22.09 MON 83.1 83.0 RON 93.6 93.7 to aromatics and iso-paraffins, which compensated the loss of octane numbers due to the decrease of olefins. The total acidic sites and the strong ones. Conclusions When adopting the modified USY3 as the active component, FCC catalyst had better cracking activity when converting PAHs of heavy oil and diesel to aromatics and isoparaffins into gasoline fraction. In addition, USY possessed higher surface area and pore volume by 51 m 2 /g and 0.03 ml/g after cleaning up zeolite skeleton fragments. Compared with Cat-1, the results of Cat-3 carried out on a riser showed that it had a good performance in cracking the heavy hydrocarbons and lowering the olefin yield of gasoline with unchanged gasoline octane numbers. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The results of riser evaluation in Table 7 showed that the new catalyst Cat-3 had higher propylene yield by 0.24 % and decreased heavy oil yield by 2.38 % compared with reference catalyst Cat-1. At the same time, the total liquid yields of Cat-3 increased by 1.52 %. It was noted that the olefin yield of FCC gasoline decreased 7.89 % and the yields of iso-paraffins and aromatics increased significantly. As a result, both the RON and MON of FCC gasoline remained almost unchanged. Using USY with higher content of rare earth, it will convert heavy oil to FCC gasoline with lower olefin and high aromatics. Its total acidic sites and the strong ones and higher surface area could produce higher cracking ability. The outstanding performance was attributed to the higher cracking ability of Cat-3 on converting more PAHs in the heavy oil and diesel References 1. Long J, Yang G (2003) The development history and future direction of our gasoline standard for vehicle. Pet Process Petrochem 34:41 47 2. Wang Q (1988) Recent development and research trend of octane cracking catalysts abroad. Pet Process Petrochem 9:1 4 3. Sun Y, Zhang C, Cao L, Yanqing MA, Fan J, Liao Y (2013) Evaluation of reaction performance of catalytic cracking catalysts by ACE experimental device. Petrochem Technol Appl 31:477 481 4. Liu Z, Gao Y, Zhang Z, Wang Li (2009) Performance of LIP-200B catalystfor maximizing propylene yield and heavy oil conversion. Pet Process Petrochem 40:10 13 5. Chen Junwu (2005) Fluid catalytic cracking technology and engineering. China Petrochemical Press Co., Ltd, Beijing