Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM Using Fuzzy Logic Controller

Similar documents
Wind Farm Evaluation and Control

Use of STATCOM for Improving Dynamic Performance of Wind Farms Connected in Power Grid

CONTROL AND PERFORMANCE OF A DOUBLY-FED INDUCTION MACHINE FOR WIND TURBINE SYSTEMS

Fuzzy based STATCOM Controller for Grid connected wind Farms with Fixed Speed Induction Generators

A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC)

Comparative Analysis of Integrating WECS with PMSG and DFIG Models connected to Power Grid Pertaining to Different Faults

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC

Performance of FACTS Devices for Power System Stability

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

Fuzzy Based Unified Power Flow Controller to Control Reactive Power and Voltage for a Utility System in India

Wind Power Plants with VSC Based STATCOM in PSCAD/EMTDC Environment

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC

CHAPTER 3 TRANSIENT STABILITY ENHANCEMENT IN A REAL TIME SYSTEM USING STATCOM

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK

Using energy storage for modeling a stand-alone wind turbine system

Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant

Studies regarding the modeling of a wind turbine with energy storage

Integration of Large Wind Farms into Electric Grids

DYNAMIC BEHAVIOUR OF SINGLE-PHASE INDUCTION GENERATORS DURING DISCONNECTION AND RECONNECTION TO THE GRID

Accidental Islanding of Distribution Systems with Multiple Distributed Generation Units of Various Technologies

COMPARISON OF DIFFERENT METHODS FOR EXCITATION OF SYNCHRONOUS MACHINES

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System

CHAPTER 6 POWER QUALITY IMPROVEMENT OF SCIG IN WIND FARM USING STATCOM WITH SUPERCAPACITOR

Integration of Photovoltaic-Fuel Cell Scheme for Energy Supply in Remote Areas

IEEE Transactions on Applied Superconductivity, 2012, v. 22 n. 3, p :1-5

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Wind Turbine Emulation Experiment

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line

A Variable Speed Wind Generation System Based on Doubly Fed Induction Generator

Stability Study of Grid Connected to Multiple Speed Wind Farms with and without FACTS Integration

ENERGY STORAGE FOR A STAND-ALONE WIND ENERGY CONVERSION SYSTEM

Possibilities of Distributed Generation Simulations Using by MATLAB

Implementation of FC-TCR for Reactive Power Control

Design and Control of Lab-Scale Variable Speed Wind Turbine Simulator using DFIG. Seung-Ho Song, Ji-Hoon Im, Hyeong-Jin Choi, Tae-Hyeong Kim

International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: )

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC)

ENHANCEMENT OF ROTOR ANGLE STABILITY OF POWER SYSTEM BY CONTROLLING RSC OF DFIG

Journal of American Science 2015;11(11) Integration of wind Power Plant on Electrical grid based on PSS/E

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED

FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE

Battery Energy Storage System addressing the Power Quality Issue in Grid Connected Wind Energy Conversion System 9/15/2017 1

Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC

VOLTAGE STABILITY IMPROVEMENT IN POWER SYSTEM BY USING STATCOM

Reactive power support of smart distribution grids using optimal management of charging parking of PHEV

A Comprehensive Study on Speed Control of DC Motor with Field and Armature Control R.Soundara Rajan Dy. General Manager, Bharat Dynamics Limited

Effect of crowbar resistance on fault ride through capability of doubly fed induction generator

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN

Statcom Operation for Wind Power Generator with Improved Transient Stability

Using MATLAB/ Simulink in the designing of Undergraduate Electric Machinery Courses

APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT

Induction Generator: Excitation & Voltage Regulation

Simulation and Analysis of a DFIG Wind Energy Conversion System with Genetic Fuzzy Controller

Critical Clearing Time and Voltage Stability of DG Integration in Lebanon: A Simulation Using MATLAB/SIMULINK

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching

Control of Grid Voltage and Power of Doubly Fed Induction Generator wind turbines during grid faults

Renewable Sources Based Micro-Grid Control Schemes and Reliability Modeling

VECTOR CONTROL OF THREE-PHASE INDUCTION MOTOR USING ARTIFICIAL INTELLIGENT TECHNIQUE

Power Balancing Under Transient and Steady State with SMES and PHEV Control

INDUCTION motors are widely used in various industries

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications

Design Modeling and Simulation of Supervisor Control for Hybrid Power System

Power Quality Improvement Using Statcom in Ieee 30 Bus System

Improvement of Voltage Profile using ANFIS based Distributed Power Flow Controller

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

Grid Code Testing of Wind Turbines by VSC-based Test Equipment

Design and Implementation of an 11-Level Inverter with FACTS Capability for Distributed Energy Systems

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM

Design and Implementation of Reactive Power with Multi Mode Control for Solar Photovoltaic Inverter in Low Voltage Distribution System

Transient Stability Improvement of a FSIG Based Grid Connected wind Farm with the help of a SVC and a STATCOM: A Comparison

CHAPTER 5 ACTIVE AND REACTIVE POWER CONTROL OF DOUBLY FED INDUCTION GENERATOR WITH BACK TO BACK CONVERTER USING DIRECT POWER CONTROL

Grid code Compliance and Renewable Energy Projects. Mick Barlow, Business Development Director, S&C Electric, United Kingdom

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online:

Enhancement of Transient Stability Using Fault Current Limiter and Thyristor Controlled Braking Resistor

Islanding of 24-bus IEEE Reliability Test System

Decoupling and Control of Real and Reactive Power in Grid-Connected Photovoltaic Power System

Influence of Unified Power Flow Controller on Flexible Alternating Current Transmission System Devices in 500 kv Transmission Line

Asynchronous Generators with Dynamic Slip Control

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM

Renewable Energy Grid Integration and Distributed Generation Specialization Syllabus

Modelling and Simulation of DFIG based wind energy system

DESIGN AND ANALYSIS OF CONVERTER FED BRUSHLESS DC (BLDC) MOTOR

Improving Voltage of Grid Connected to Wind Farm using Static VAR Compensator

Wind-Turbine Asynchronous Generator Synchronous Condenser with Excitation in Isolated Network

`POWER QUALITY IMPROVEMENT FOR GRID CONNECTED WIND ENERGY SYSTEM USING STATCOM - CONTROL SCHEME

POWER QUALITY IMPROVEMENT IN GRID CONNECTED WINDENERGY SYSTEM USING STATCOM S. Rajesh Rajan

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 201

Analysis of Grid Connected Solar Farm in ETAP Software

Combined Input Voltage and Slip Power Control of low power Wind-Driven WoundRotor Induction Generators

Model Predictive Control of Back-to-Back Converter in PMSG Based Wind Energy System

A Novel Hybrid Smart Grid- PV-FC V2G Battery Charging Scheme

Advance Electronic Load Controller for Micro Hydro Power Plant

Modeling and Simulation of TSR-based SVC on Voltage Regulation for Three-Bus System

ELECTRICAL POWER SYSTEMS 2016 PROJECTS

Facility Employing Standard Converters for Testing DFIG Wind Generators up to 30kW

Real-Time Simulation of A Modular Multilevel Converter Based Hybrid Energy Storage System

IMPROVING VOLTAGE PROFILE OF A GRID, CONNECTED TO WIND FARM USING STATIC VAR COMPENSATOR

THE IMPORTANCE OF INTEGRATING SYNCHRONOUS COMPENSATOR STATCOM IN WIND POWER PLANT CONNECTED INTO THE MEDIUM VOLTAGE GRID

Transcription:

Bulletin of Electrical Engineering and Informatics ISSN: 2302-9285 Vol. 5, No. 3, September 2016, pp. 271~283, DOI: 10.11591/eei.v5i3.593 271 Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM Using Fuzzy Logic Controller SA Gawish, SM Sharaf, MS El-Harony Department of Electrical Power and Machines Engineering, Faculty of Engineering of Helwan University of Helwan, Cairo, Egypt Abstract This paper describes a complete implementation of the experimental voltage regulation of a wind energy conversion system using STATCOM. Firstly conventional control technique is used which is proportional plus integral controller. The control technique is performed using a PC computer through a suitable interfacing and opt-isolating facilities. Secondly fuzzy logic controller is facilitated in this scheme to improve the performance of the experimental setup. Several efforts are done to choose the suitable gains of the fuzzy controller to achieve superior performance of the wind system. Experimental results of the system show the effectiveness of the proposed technique in regulating the output voltage. Thanks to the operation of the STATCOM in controlling the reactive power of the system to fix the output voltage at the desired value regardless of the wind speed. Keywords: wind system, STATCOM, Voltage stabilization, PI controller, fuzzy logic controller 1. Introduction Moreover, wind power is expected to be economically attractive when the wind speed of the proposed site is considerable for electrical generation and electric energy is not easily available from the grid. Wind system with STATCOM is very reliable because the STATCOM acts as a cushion to take care of variation in wind speed and would always maintain an average voltage equal to the set point. However, in addition to the unsteady nature of wind, another serious problem faced by the isolated power generation is the frequent change in load demands. This may cause large and severe oscillation of power. Several tests are made to validate the system response at different operating conditions. Different choices of the scaling factors of the fuzzy logic controller have been assumed toobtainthe best response of the system. The test results are recorded and plottedfor a wide range in wind speed. Output power, inverter current, inverter voltage, and STATCOM control voltage (Vc) are recorded. In each test change in wind speed, several combination of scaling factors are asummed. Which system is regulated at different wind speed [1, 2]. Nevertheless, under the sudden change of load demands and random wind power input, the pitch controller of the wind side able to effectively control the system frequency due to theirs slow response. FACTS devices can be a solution to these problems [3]. They are able to provide rapid active and reactive power compensations to power systems, and therefore can be used to provide voltage support and power flow control, increase transient stability and improve power oscillation damping. Suitably located FACTS devices allow more efficient utilization of existing transmission networks. Among the FACTS family, the shunt FACTS devices such as the STATCOM has been widely used to provide smooth and rapid steady state and transient voltage control at points in the network. In this paper, a STATCOM is added to the power network to provide dynamic voltage control for the wind system, dynamic power flow control for the transmission lines, relieve transmission congestion and improve power oscillation damping. Following sections deals with the experimental tests of the wind system equipped with STATCOM. Proportional plus integral controller schemes are used to improve the voltage regulation and to minimize the voltage fluctuation during variation in wind speed. Several experimental tests are performed to adjust the proportional plus integral gains at optimal operation of the practical system. Each test describe the voltage adjust by injection voltage by STATCOM. In addition, the controlling voltage of the STATCOM is recorded. Received October 26, 2015; Revised May 29, 2016; Accepted June 16, 2016

272 ISSN: 2089-3191 Fuzzy logic controller (FLC) [4, 5], is an evolutionary computation technique that has been applied to other voltage engineering problems, giving better results than classical techniques and with less computational effort. In this paper the gains of the controllers with STATCOM have been optimized and optimum transient by trial and error it using to determine the optimal parameters of the PI controller in STATCOM such as PI controller in AC voltage regulator, DC voltage regulator. 2. Experimental System Implementation Figure 1 shows a complete block diagram of the experimental system, which consists of the DC motor emulation as a wind turbine, three phase synchronous generator, single phase converter, firing circuit, electrical load and grid, speed and current sensors, over-head transmission line, interface circuit and PC computer. A separately excited DC motor is used to emulate the characteristics of the wind turbine. The armature current of the motor is controlled so that it can have the different active powers at different wind speeds while the rotor speed is constant due to the grid connection of the synchronous generator. Figure 2 shows the functional block diagram of the laboratory simulator of the wind turbine using a DC motor with current control technique. Figure 1. Block diagram of the experimental system with STATCOM Figure 2. Block diagram of the DC motor emulation The input signals are the DC machine armature current that used to calculate the electrical power of the DC machine; the second input signal is the rotor speed that used to calculate the electric frequency of the generated voltage. The output signals are the firing voltage that controls the firing angle of the single phase converter that control the current of the DC machine in current control loop to enable the machine to be behaves as a real wind turbine. The output signals are the firing voltage of D.C motor. The experimental model is simple and more economical. Figures 3-5 show the experimental circuits. Bulletin of EEI Vol. 5, No. 3, September 2016 : 271 283

Bulletin of EEI ISSN: 2302-9285 273 Figure 3. Photograph of the experimental control circuit Figure 4. Photograph of (a) STATCOM, (b) inverter Figure 5. Photograph of (a) motor generator set, (b) DC Bridge 3. Wind Turbine Performance without STATCOM In the following sections the behaviour of the wind energy system will be studied when the wind system connected to infinite bus of constant voltage and frequency (direct connected to the main grid), before connection to the grid, the synchronization must be done, the generator was soft started and its output voltage and frequency are adjusted from their fields at rated values of 380V, and 50Hz. Since the proposed wind energy system is directly connected to the grid the following different cases are studied as shown in the following sections. In this section, the wind energy is operated in open loop mode to evaluate the performance of wind turbine. To demonstrate the response of the system, the wind speed will be fixed at particular value for certain time and after the system reaches its steady state, the system will be subjected to step change in the wind speed. Experimental results depicting the variation of the various variables for step change in wind speed are shown in Figures 6-9. Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM (SA Gawish)

274 ISSN: 2089-3191 Figure 6. Wind turbine performance with inverter at step up in wind speed Figure 7. Wind turbine performance with inverter at step down in wind speed Bulletin of EEI Vol. 5, No. 3, September 2016 : 271 283

Bulletin of EEI ISSN: 2302-9285 275 Figure 8. Wind turbine performance with inverter at step up-down-up in wind speed Figure 9. Wind turbine performance with inverter at step down-up-down in wind speed Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM (SA Gawish)

276 ISSN: 2089-3191 From those figures the output power and inverter voltages following the changes in wind speed. Above sections deals with the experimental tests of the wind speed, if it increases, the output power, the inverter current, the inverter voltage, and D.C current are increase. If the wind speed decreases the output power, the inverter current, the inverter voltage, and D.C current are decrease. 4. Wind Turbine Performance with STATCOM and Connected to Grid A STATCOM is used to supply the A.C voltage from a DC capacitor. This can be achieved by using a reliable firing circuit. 4.1. Voltage Regulation of a Wind Energy System with STATCOM using PI Controller In open loop experimental results has been shown that the electrical power generated and voltage is fluctuated according to the operating wind speed. To regulate the output voltage regardless of the wind speed, STATCOM is used to control the reactive power of the system. A proposed controller called proportional-integral controller will be designed on a PC computer using MATLAB software package and LAPVIEW software. Figures 10-13 show the performance of the wind energy system at suddenly step change in wind speed. Figure 10. Experimental voltage regulation of wind system at step up in wind speed using PI controller Bulletin of EEI Vol. 5, No. 3, September 2016 : 271 283

Bulletin of EEI ISSN: 2302-9285 277 Figure 11. Experimental voltage regulation of wind system at step down in wind speed using PI controller Figure 12. Experimental voltage regulation of wind system at step up-down-up in wind speed using PI controller Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM (SA Gawish)

278 ISSN: 2089-3191 Figure 13. Experimental voltage regulation of wind system at step down-up-down in wind speed using PI controller From those figures the inverter voltages is fixed at any changes in wind speed due to the use of STATCOM. 5. Voltage Regulation of a Wind Energy System with STATCOM using Fuzzy Logic Controller Several tests are made to validate the system response at different operating conditions. Different choices of the scaling factors of the fuzzy logic controller have been assumed toobtainthe best response of the system. The test results are recorded and plotted in the following figures for a wide range in wind speed. Output power, inverter current, inverter voltage, and STATCOM control voltage (Vc) are recorded. In each test change in wind speed, several combination of scaling factors are asummed. Figures 14-20 show the regulating system at different wind speeds. From those figures the inverter voltages is fixed at any changes in wind speed due to the use of STATCOM. The voltage response is better than of using PI controller, where the response is fast and less steady state error in case of fuzzy logic controller. Bulletin of EEI Vol. 5, No. 3, September 2016 : 271 283

Bulletin of EEI ISSN: 2302-9285 279 Figure 14. Experimental voltage regulation of wind system at step up in wind using fuzzy logic controller Figure 15. Experimental voltage regulation of wind system at step down in wind using fuzzy logic controller Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM (SA Gawish)

280 ISSN: 2089-3191 Figure 16. Experimental voltage regulation of wind system at step up and down in wind using fuzzy logic controller Figure 17. Experimental voltage regulation of wind system at step down and up and down (small step in wind speed) in wind using fuzzy logic controller Bulletin of EEI Vol. 5, No. 3, September 2016 : 271 283

Bulletin of EEI ISSN: 2302-9285 281 Figure 18. Experimental voltage regulation of wind system at step down and up and down (high step in wind speed) in wind using fuzzy logic controller Figure 19. Experimental voltage regulation of wind system at step up in wind speed in steps using fuzzy logic controller Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM (SA Gawish)

282 ISSN: 2089-3191 Figure 20. Experimental voltage regulation of wind system at step down in wind speed in steps using fuzzy logic controller 6. Conclusion This paper concerned with solution of the voltage problems of the wind energy system. Several techniques are proposed to regulate the output voltage of the wind system. Digital controller is developed such as proportional plus integral, and fuzzy logic to achieve the best performance of the STATCOM. Wide range of operating conditions of wind speed was considered in this paper to achieve the most suitable controlling technique. From the results shown in this paper, it can be concluded that the STATCOM is an effective controller in controlling the wind energy system voltage during normal conditions. The grid voltage at point of common coupling (PCC) is still constant at any step change in wind speed due to the effect of adding STATCOM. The STATCOM delivering or absorbing reactive power depends on the voltage level. All results and comparison with them illustrates the voltage regulation of inverter voltage in case of using a fuzzy controller is better than in case using a PI controller, where the response is fast with small steady-state error. With STATCOM controller the voltage of the inverter was independent of the winds speed. That means, the STATCOM was fully regulated to achieve a constant inverter voltage independent the wind speed variations. References [1] Energinet.dk: Wind turbines connected to grids with voltages above 100 kv Technical regulations for the properties and the control of wind turbines, Energinet.dk, Transmission System Operator of Denmark for Natural Gas and Electricity, Technical Regulations TF 3.2.5, Available: www.energinet.dk. 2004: 1-30. Bulletin of EEI Vol. 5, No. 3, September 2016 : 271 283

Bulletin of EEI ISSN: 2302-9285 283 [2] C Schauder, M Gernhardt, E Stacey, T Lemak, L Gyugyi, WT Cease, A Edris. Development of a ±100 MVAr static condenser for voltage control of transmission systems. IEEE Transactions on Power Delivery. 1995; 10(3): 1486 1496. [3] SH Hosseini, R Rahnavard, Y Ebrahimi. Reactive Power Compensation in Distribution Networks with STATCOM by Fuzzy Logic Theory Application. Power Electronics and Motion Control Conference. 2006; 2: 1-5. [4] Jang JSR. ABFIS: Fuzzy Inference System. IEEE Transactions on Systems, Man and Cybernetics. 1993; 23(3): 665-685. [5] MAM Prats, JM Carrasco, E Galvan, JA Sanchez, LG Franquelo, C Batista. Improving transition between power optimization and power limitation ofvariable speed, variable pitch wind turbines using Fuzzy control techniques. IECON - Proc. 2000; 3(1): 1497-1502. [6] Ackermann T. Wind Power in Power Systems. John Wiley & Sons. 2005. [7] Akhmatov V. Analysis of dynamic behavior of electric power systems with large amount of wind power. PhD thesis. 2003. Ørsted DTU. [8] JD Hanson, C Horwill, J Loughran, RD Monkhouse. The application of a relocatable STATCOMbased SVC on the UK National Grid System. Transmission and Distribution Conference and Exhibition, IEEE/PES. 2002; 2: 1202-1207. [9] Petitclair P, Bacha S, Ferrieux JP. Optimized linearization via feedback control law for a STATCOM. France. 1997: 880 885. Experimental Resultsofa Wind Energy Conversion Systemwith STATCOM (SA Gawish)