PT8A mA Li-ion/Polymer Battery Charger

Similar documents
SGM4056 High Input Voltage Charger

Lithium Ion Battery Charger for Solar-Powered Systems

1A Linear Li+ Battery Chargers with Integrated Pass FET and Thermal Regulation in 2mm x 2mm TDFN

CONSONANCE CN3051A/CN3052A. 500mA USB-Compatible Lithium Ion Battery Charger. General Description: Features: Pin Assignment.

CE3211 Series. Standalone 1A Linear Lithium Battery Charger With Thermal Regulation INTRODUCTION: FEATURES: APPLICATIONS:

800mA Lithium Ion Battery Linear Charger

DT V 800mA Standalone Linear Li-ion Battery Charger FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

ACE4054C. 500mA/1.5A Standalone Linear Li-Ion Battery Charge

Fully integrated constant current/constant voltage Li-ion battery charger

CE3152 Series. Standalone Linear LiFePO4 battery charger with Thermal Regulation INTRODUCTION: FEATURES: APPLICATIONS: PIN CONFIGURATION:

COTAG GENERAL DESCRIPTION

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

Standalone Linear Li-Ion Battery Charger with Thermal Regulation

Package: RN: SOT23-5 TRN: TSOT23-5 Features: P: Standard (default, lead free) C: Customized. 1uF

800mA Linear Li-Ion Battery Charger with Protection of Reverse Connection of Battery

HM8202. The HM8202 is available in the SOP-8L package. Charging Docks Handheld Instruments Portable Computers

DT V 1A Standalone Linear Li-ion Battery Charger FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

CONSONANCE. 1A LiFePO4 Battery Charger CN3058E. Features: General Description: Applications: Pin Assignment

ACE4108 Max.2A Li-ion Switching Charger IC

800mA Lithium Ion Battery Linear Charger

The XA4203 is available in the SOP-8L package. Charging Docks Handheld Instruments Portable Computers

1.2A Single-chip Li-ion and Li-POL Charge

Rev1.0 UCT V 1A Standalone Linear Li-ion Battery Charger GENERAL DESCRIPTION FEATURES APPLICATIONS

ETA mA Fully Integrated Linear Charger for 1 Cell Li-ion Battery APPLICATIONS ORDERING INFORMATION TYPICAL APPLICATION

MP V, 1A, Li-lon, Linear Battery Charger with 10mA High Voltage LDO

SC61A05. Standalone Linear Li-Lon Battery Charger. With Thermal Regulation. Features. Description. Applications

BL8578 DESCRIPTION FEATURES APPLICATIONS PIN OUT & MARKING TYPICAL APPLICATION. Max.2A Li-ion Switching Charger IC

1.2A Single-chip Li-ion and Li-POL Charge

FEATURES. Charging. - High Voltage Chemistry Support: up to 4.35V. Others

HM5061 Max.1.6A Li-ion Switching Charger IC

PRODUCT DATASHEET AAT3681

DIO5538B 5~100mA,Single Li-ion Battery Charger

PT1054 Lithium Ion Battery Linear Charger

CONSONANCE. 1A Nickel-Metal Hydride Battery Charger IC CN3085. General Description: Features: Pin Assignment. Applications:

800mA Linear Li-Ion Battery Charger

FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION PIN OUT & MARKING. Max.2A Li-ion Switching Charger IC

800mA Standalone Linear Li-Ion Battery Charger with Dual LED Display

A4063. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

DIO5518D 300mA,Single Li-ion Battery Charger

1A Linear Li-Ion Battery Charger in SOP8/MSOP8

1A Linear Li-Ion Battery Charger in SOP8

CE3151 Series. Standalone Linear Li-Ion Battery Charger with Thermal Regulation

CONSONANCE CN mA USB-Compatible Lithium Battery Charger. General Description: Features: Applications: Pin Assignment

1A/800mA Standalone Linear Li-Ion Battery Charger. Features

Li-ion/Li Polymer Battery Charger. Features

ISL6297. Li-ion/Li Polymer Battery Charger. Features. Applications. Pinout. Ordering Information. Data Sheet July 30, 2007 FN9215.

HX6038 HX

XA4202. The XA4202 is available in the 8-lead SO Package. Charging Docks Handheld Instruments Portable Computers.

ACT V/1.5A Backup Battery Pack Manager FEATURES APPLICATIONS GENERAL DESCRIPTION. Rev 0, 06-Nov-13 Product Brief

AAT A USB Port/Adapter Lithium-Ion/Polymer Battery Charger

500mA Linear Li-Ion Battery Charger in SOT23

XA4217. Preset 8.4V Charge Voltage with 1% Accuracy

1A Single Chip Li-Ion and Li-Polymer Charger

ME4054 Standalone Linear Li-Ion Battery Charger with Thermal Regulation in ThinSOT ME4054

2A Switch-Mode Li-Ion Battery Charger

A4059. AiT Semiconductor Inc. Available in PSOP8 Package APPLICATION ORDERING INFORMATION

AAT A/1.0A USB Port/Adapter Lithium-Ion/Polymer Battery Charger

500mA Standalone Linear Li-Ion Battery Charger. Features

500mA USB Port or AC Adapter Li-Ion/Polymer Battery Charger General Description. Features BAT ADP. SKY83681A-x STAT ISET GND

MCP Stand-Alone System Load Sharing and Li-Ion / Li-Polymer Battery Charge Management Controller. Features. Applications.

VS6102 Standalone Linear Lithium Battery Charger

1A Single Chip Li-Ion and Li-Polymer Charger

FEATURES TYPICAL APPLICATIO. LTC4062 Standalone Linear Li-Ion Battery Charger with Micropower Comparator DESCRIPTIO APPLICATIO S

Techcode. Features. General Description. Applications. Package Types DATASHEET

Techcode. General Description. Features. Applications. Package Types DATASHEET. 1A Standalone Linear Li-lon Battery Charger with Thermal Regulation

300mA,Ultra-low noise, Small Package Ultra-Fast CMOS LDO Regulator

TO-220. Symbol Description Max Units VIN Input Voltage 15 V IOUT DC Output Current PD/(VIN-VO) ma. -40 to 125 (* in case of IL

AAT3683 PRODUCT DATASHEET. 1A Linear Li-Ion Battery Charger. Features. General Description. Applications. Typical Application

LTC4063 Standalone Linear Li-Ion Charger with Micropower Low Dropout Linear Regulator

1A is compatible with the USB interface, linear battery management chip

DATASHEET ISL9301. Features. Applications. Ordering Information. Pinout. High Input Voltage Charger With Power Path Management

IL1117C-xxLow Dropout Positive Voltage Regulator TECHNICAL DATA

5A Synchronous Buck Li-ion Charger With Adapter Adaptive

2A Synchronous Buck Li-ion Charger

CE3150B Series. Standalone Linear Li-Ion Battery Charger with Thermal Regulation

XT2059. Programmable voltage and current linear battery management chip. General Description. Applications. Package. Features

+Denotes lead(pb)-free and RoHS compliant. JU1 JU4 4

Selection Guide Typical charge cycle (1000mAh battery) Pin Configuration 深圳明和科技有限公司 2/20

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 551A-B LITHIUM-ION BATTERY CHARGER WITH CHARGE TERMINATION

ACT3780. ActivePath TM Battery Charger

Advanced Power Electronics Corp.

IL1117-xx. 1.0A Low Dropout Positive Voltage Regulator TECHNICAL DATA. Features. Applications. Absolute Maximum Ratings. Rev. 02

Advanced Lithium-Ion Linear Battery Charger

ChipLead Technology VAS A USB/Adapter Switching Charger. Features. General Description. Applications

AAT3693 PRODUCT DATASHEET. 1.6A Lithium-Ion/Polymer Battery Charger in 2.2x2.2 TDFN AAT3693. Features. General Description.

2 cell Li-ion Battery Charge from 3V~12V

2.5A, 3MHz Switching Charger with Dynamic Power Path in 8-pin ESOP SYS 2.2K STAT. 2A Switching Charger with Minimum Component Count

AMS1117 1A Adjustable / Fixed Low Dropout Linear Regulator

AN-1166 Lithium Polymer Battery Charger using GreenPAK State Machine

5A LOW DROPOUT POSITIVE REGULATOR

1-A Linear Li-Ion/Polymer Battery Charger with 28V Over-Voltage Protection. Features BATS IN IN BAT AAT3783 FLT OVP INCHR TS

PART MAX1612EEE MAX1613EEE TOP VIEW BBATT LRI +3.3V +5V V CPU

Compact, 1.5 A Linear Charger for Single-Cell Li+ Battery ADP2291

ST3S01PHD BATTERY CHARGE I.C.

Features VIN AAT3693 STAT1 STAT2 ISET R SET GND

EUP8075/8079. Preliminary. USB-Compliant Li-Ion Battery Charger Integrated with System Power-Path Management FEATURES DESCRIPTION APPLICATION

A4004 BATTERY MANAGEMENT ONE CELL LITHIUM-ION/POLYMER BATTERY PROTECTION IC

Output Voltage Current. Input Current Ripple. Efficiency (typ.) Load VDC VDC ma ma ma(typ.) ma(typ.) ma(typ.) μf % 2.

1A Charge+ 3A Synchronous Boost PMIC

LM317L 3-Terminal Adjustable Regulator

Transcription:

Features A Constant-Current / Constant-Voltage Linear Charger for Single-Cell Li-ion/Polymer Batteries Integrated Pass Element and Current Sensor Highly-Integrated, Requiring No External FETs or Blocking Diode ±0.5% 4.2V Voltage Accuracy at Room Temperature. ±1% All Temperatures. (Available with 4.1V and 4.36V options upon request) Programmable Charge Current 50mA to 500mA Programmable End-Of-Charge Current by Current Recharge Algorithm Pre-Charge for Fully Discharged Batteries Less Than 1µA Leakage Current Of the Battery when No Input Power Attached or Charger Disabled Power Present and Charge Status Indications Thermal Regulation on Charging Current to Prevent Over-Heat Available with 8-pin 2x3 TDFN Package Applications Cell-phones, PDA, MP3, MP4, PMP Standalone Chargers Bluetooth Applications Description The PT8A2803 is a fully integrated single-cell Liion/Polymer battery charger. The charger operates in a constant-current-constant-voltage (CC/CV) charging profile without employing external FETs and blocking diodes. The fast charge current and end-of-charge (EOC) current can be easily programmed by modifying two external resistors. When the battery is deeply discharged to lower than 2.8V, the charger firstly pre-charges the battery with typically 20% of the programmable fast charge current. When the charge current is reduced to the programmed EOC current level (almost works completely in a constant-voltage (CV) mode), an EOC indication is displayed through the pins. PT8A2803 is protected by thermal regulation technology to prevent the IC from over-heat during charging. Two status indication pins ( PPR and ), which are both implemented as an open-drain outputs, can be used to drive LEDs or work as logic interface to a microprocessor. When no adapter is attached or when the charger is disabled, the leakage current from battery cell is less than 1µA typically. Pin Assignment 1 8 PPR 2 7 3 4 6 5 BAT IREF IMIN GND TDFN 2x3 Pin Description Pin I/O Name Descriptions 1 I/O Supply Input. 2 O PPR Power Present Active-Low Open Drain Power Status Indicator 3 O Charge Active-Low Open Drain Charge Status Indicator 4 I Enable Active-Low Input 5 I/O GND Ground 6 I IMIN End-Of-Charge Current Setting Input 7 I IREF Charge Current Setting Input 8 O BAT Battery Terminal 1

Maximum Ratings Storage Temperature..-65 o C to +150 o C Supply Voltage to Ground Potential (V IN PT8A2803) -0.3V to+7.0v Supply Voltage to Ground Potential (IMIN/IREF/BAT/ / / PPR ) 0.3V to+7.0v Thermal Resistance (Typical for TDFN Package).θJA ( C/W)=59...θJC ( C/W)=4.5 Recommended Operating Conditions Sym Parameter Min Typ Max Unit Operating Voltage 4.3-5.5 V Programmable Current - 50-500 ma T A Operating temperature -30 - +85 C Electrical Specifications Typical values are at V IN =5V and T A =25 C. All maximum and minimum values are at T A = -30 C to +85 C, unless otherwise noted. Parameter Sym Conditions Min Typ Max Units POWER-ON RESET Rising POR Threshold V POR V BAT =3.0V, use PPR to indicate the 3.3 3.9 4.3 V Falling POR Threshold V POR output 3.1 3.6 4.15 V -VBAT OFFSET VOLTAGE Rising Edge V OS V BAT =4.0V, use pin to indicate the - 90 150 mv Falling Edge V OS comparator output 10 50 - mv STANDBY CURRT BAT pin sink current I STBY Charger disabled or the input is floating - 1 - µa DC Supply Current I DC Charger disabled - 300 400 µa DC Supply Current I DC Charger enabled - 500 700 µa VOLTAGE REGULATION Output voltage V CH 4.3V < V IN <5.5V Charge current=20ma 4.158 4.20 4.242 V Power FET ON Resistance R DS(ON) V BAT =3.8V, charge current=0.5a, R IREF =8kΩ Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 0.6 - Ω CHARGE CURRT Constant Charge Current I R IREF =29.4kΩ, V BAT = 2.8 4.0V 135 150 165 ma Precharge Charge Current I PRE R IREF =29.4kΩ, V BAT = 2.4V 18 25 32 ma End of Charge Current I MIN R IMIN =137kΩ 20 30 40 ma EOC Rising Threshold I RE R IREF =29.4kΩ 90 100 130 ma PRECHARGE CHARGE THRESHOLD Precharge Threshold Voltage V PRE - 2.45 2.55 2.65 V Precharge Voltage Hysteresis V PREHYS - 40 100 150 mv INTERNAL TEMPERATURE MONITORING Thermal regulation threshold (Note) T FOLD - - 115 - C LOGIC INPUT AND OUTPUTS Pin Logic Input High V H - 1.3 - - V Pin Logic Input Low V L - - - 0.5 V Pin Internal Pull Down Resistance R - 100 200 400 kω Pin Sink Current When LOW I OL V =1V 10 20 - ma Pin Leakage Current When HIGH I OH V =5.5V - - 1 µa PPR Pin Sink Current When LOW I PPROL V PPR =1V 10 20 - ma PPR Pin Leakage Current When HIGH I PPROH V PPR =5.5V - - 1 µa Note: This parameter is guaranteed by design, not tested. 2

Application Circuits DC IN C1 1 VBAT 8 BATTERY R2 R1 D2 D1 2 3 PPR PT8A2803 IREF IMIN 7 6 RIREF RIMIN C2 ON OFF 4 GND 5 Figure 1 PT8A2803 Typical Application Circuit to Indication LEDs Component Description for Figure 1 Part Description C1 1µF X5R ceramic cap C2 1µF X5R ceramic cap RIREF 29.4kΩ, 1% for 150mA charge current RIMIN 294kΩ, 1% for 15mA EOC current R1, R2 300Ω, 5% D1, D2 LEDs for indication DC IN C1 MCU 1 VBAT 8 BAT BATTERY BAT R2 R1 2 3 PPR PT8A2803 IREF IMIN 7 6 RIREF RIMIN C2 MCU MCU OFF 4 GND 5 ON Figure 2 PT8A2803 Typical Application Circuit Interfacing to a MCU Component Description for Figure 2 Part Description C1 1µF X5R ceramic cap C2 1µF X5R ceramic cap RIREF 29.4kΩ, 1% for 150mA charge current RIMIN 294kΩ, 1% for 15mA EOC current R1, R2 100kΩ, 5% 3

Function block diagram BAT POR VREF VOS VBAT PPR Charge Control VREF GND 200K DIE TEMP 115 C IREF IMIN Figure 3 Block diagram of PT8A2803 Functional Description (Refer to Function Block Diagram) The PT8A2803 charges a single-cell Li-ion/Polymer battery with a programmable constant current (CC) or a constant voltage (CV) algorithm. The fast charge current (I) can be programmed by setting an external resistor RIREF (see Figure 1/2) while constant voltage is factory-trimmed at 4.2V (4.1V or 4.36V) options area available upon request). If the battery voltage was deeply discharged to lower than 2.55V, PT8A2803 firstly pre-charges the battery with 20% of the programmed fast charge current. Normally, the battery voltage rises gradually during CC charge phase. When the battery voltage reaches almost 4.2V, the charger enters the constant-voltage (CV) charging mode and begins to regulate the battery voltage at 4.2V while diminishing the charging current gradually. When charging current is reduced to an amount smaller than the programmed End-Of-Charge (EOC) current level, the charger gives out a full-charge indication through the pin, but the charger still continues to regulate the battery voltage at 4.2V with safe & small current. Figure 4 shows the typical charge profile with the EOC/reset event. PT8A2803 employs current recharge algorithm. The end-of charge (EOC) current level can be easily programmed with an external resistor RIMIN (see Figure 3/4). The signal turns to LOW when pre-charge starts and rises to HIGH when EOC is reached. After reaching EOC, the charge current has to rise to typically 76% I before the signal will turn on again, as shown in Figure 4. The current surge after EOC can be caused by a load connected to the battery. When the die temperature reaches 115 C (typically) during charging, a thermal regulation function is employed to reduce the charge current accordingly to maintain the temperature from increasing furthermore. This is an important function to achieve safe operation especially when the printed circuit board (PCB) is not effective in leaking out heat generated by the linear charger. PPR Indication The PPR pin is implemented as an open-drain output to provide a power-good indication of the input power source such as an AC adapter. When the input voltage is higher than the POR (Power-On Reset) threshold, the PPR pin turns on the internal open-drain MOSFET to indicate a logic LOW signal. The PPR indication is designed to be independent on the chip enable ( -pin) input. When the internal open-drain FET is turned off, the PPR pin should leak less than 1µA current. When turned on, the PPR pin should be able to sink at least 10mA current under all operating conditions. The PPR pin can be used to drive an LED (see Figure 1) or worked as logic interface to a microprocessor (see Figure 2). 4

Power-Good Range The input voltage is considered as power good when it meets the following three conditions: 1. > VPOR 2. - VBAT > VOS The VOS is the offset voltage to determine if the battery voltage is even higher than the input voltage. All VPOR and VOS are realized with sufficient hysteresis, as given in the Electrical Specification table. All charging activities are disabled when the input voltage falls out of the power-good range. Input and Output Comparator Obviously, when the input source voltage is lower than the battery voltage, no charging activity could be started and the charger will disable the internal pass element to prevent battery leakage. Charge begins when the input voltage is higher than the battery voltage by a defined offset voltage (VOS). This scheme also ensures that the charger is completely turned off when the input power is removed from the charger. Indication The pin is implemented as an open-drain output to give a logic LOW when a charge cycle begins and turn HIGH when an end-of-charge (EOC) condition is reached. This pin is designed with a sinking ability of more than 10mA so as to drive an LED. When the charger is disabled through -pin, the outputs a high impedance. The pin can also be used to interface with a microprocessor. Input The chip is enabled by a logic LOW signal applied to the pin. This pin is realized with a 200kΩ internal pull-down resistor such that even the pin is left floating, the input is equivalent to logic LOW and the chip is enabled by default. Similarly, the chip is disabled when the pin receives a logic HIGH signal. The threshold for HIGH is given in the ES (Electrical Specifications). IMIN Indication The IMIN pin can be used to program the End-of-Charge (EOC) current by connecting a resistor between this pin and the GND pin. The programming is defined by the following equation: IMIN (ma) = 4180/ R IMIN Where R IMIN is usually in kω. IREF Pin The IREF pin is for fast charge-current programming. By connecting a resistor between this pin and the GND pin, the fast charge current limit is determined by the following equation: I (ma) = 4400/R IREF Where R IREF is in kω. The actual charge current is guaranteed to have 10% accuracy of I with the charge current set at 150mA. BAT pin Always connect the BAT pin to a single-cell Li-ion/Polymer battery in parallel with a 1µF (or larger) X5R ceramic capacitor for decoupling and guaranteeing system stability. When the pin is pulled to logic HIGH, the BAT output is disabled. The PT8A2803 relies on a battery for stability and is not guaranteed to be stable if the battery is not connected. Dropout Voltage When the input voltage is low while the battery voltage is high, the charging current may not be maintained according to the equation I MIN (ma) = 4180/R IMIN due to a limited internal on-resistance (R DS(ON) ) of the internal pass element. The worst resistance of the pass FET is about 1.2Ω at the maximum operating temperature, thus if tested with 500mA current and 4.2V battery voltage, constant current could still be maintained when the input voltage is below 4.62V. Thermal Foldback The bottom big exposed pad in DFN package is used for thermal foldback. For reducing the chip ambient temperature as much as possible, it is recommended to connect as much copper as possible to this pad either on the component layer or other layers through thermal vias. The thermal regulation function starts to reduce the charge current when the internal temperature reaches a typical value of 115 C. 5

V 4.2V CC Mode CV Mode Added loading Battery Voltage 2.55V A Charging Current I I RE I PRE I MIN Charging (LED ON) EOC (LED OFF) Recharge (LED ON) Figure 4 PT8A2803 Typical Charge Profile Application Information Input Capacitor Selection The input capacitor is employed to decouple the power supply from load transients and suppress noise from power lines. Typically, a 1µF X5R ceramic capacitor is recommended to be placed very close between the pin and GND pin to stabilize the operation during the start up, especially when the input supply is passing the POR threshold and the -BAT comparator offset voltage. Once passing through the POR threshold, there is a voltage hysteresis to provide sufficient guard band from noise or load transient to trigger the system to reset. Output Capacitor Selection The criterion for selecting the output capacitor is to maintain the stability of the charger as well as to bypass any transient load current. Typically, a minimum capacitance of 1µF X5R ceramic capacitor is recommended and sufficient for stabilizing the system. For systems that may happen to occasionally see high load transients, the output capacitor may be increased to further bypass any ripples so caused. 6

Charge Current Limit During the constant-current (CC) charging mode, the charging current is primarily determined by I as calculated in previous formula. However, the actual charge current is the CC mode could also be limited by other factors as described by below Figure 5. When the input () and output (VBAT) voltage are too close to each other, the on-resistance of the internal pass element may limit the amount of current that passes through it. For example, the solid curve describes a typical case in which the battery voltage is 4.0V and the charge current (I ) is set at 350mA. When the input voltage is sufficiently higher than the battery voltage but has not increased the die temperature over the thermal limit yet, the charging current is accurately regulated at 350mA. Figure 5: PT8A2803 Charge Current Limits In CC Mode When the input voltage is reduced (or the battery voltage is increases towards the input voltage), the charge current is limited by the on-resistance of the pass element. Therefore, it is recommended to employ sufficiently high input voltage for applications that require constant charging current over the entire charging period. But for applications that needs to minimize the heat dissipation, a current-limiting adapter maybe applied to maintain constant charging current at whole charging phase. In addition, if the input voltage increases, the charge current may also be reduced due to the thermal foldback function. The high voltage drop across the pass element increases the power dissipation therein and thus causing the die temperature to increase significantly. Layout Guidance The PT8A2803 employs thermally-enhanced DFN package, which have an exposed thermal pad at its bottom side. It is recommended to connect as much copper as possible between the exposed pad and PCB to make it effective in dissipating the heat away from the die. For applications requiring high charging current, the thermal impedance should be further reduced by employing more layers of copper to connect with the exposed pad through thermal via. Input Power Sources PT8A2803 works with different types of AC/DC adapter or USB port (any type) with no special requirements. For PT8A2803, it works with input voltage ranges from 4.3V to 5.5V for normal operation but the maximum input voltage is 7V. 7

Mechanical Information ZEE (Lead free and Green TDFN 2x3) Note: Ref: JEDEC MO-229 Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.035 A1 0.000 0.050 0.000 0.002 A3 0.203REF 0.008REF D 1.924 2.076 0.076 0.082 E 2.924 3.076 0.115 0.121 D1 1.400 1.600 0.005 0.063 E1 1.400 1.600 0.005 0.063 K 0.200MIN 0.008MIN b 0.200 0.300 0.008 0.012 e 0.500TYP 0.020TYP L 0.224 0.376 0.009 0.015 8

Ordering Information Part Number Package Code Package PT8A2803ZEE ZE Lead free and Green 8-pin TDFN 2x3 Notes: E = Pb-free and Green Adding X Suffix= Tape/Reel Pericom Semiconductor Corporation 1-800-435-2336 www.pericom.com 9