Determination of anti pitch geometry. acceleration [1/3]

Similar documents
Suspension systems and components

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF

Modeling of 17-DOF Tractor Semi- Trailer Vehicle

SPMM OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000?

EFFECTIVE SOLUTIONS FOR SHOCK AND VIBRATION CONTROL

ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S.

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

SPMM OUTLINE SPECIFICATION - SP20016 issue 2 WHAT IS THE SPMM 5000?

Shock Absorbers What is Ride Control Vehicle Dynamics Suspension System Shock Absorbers Struts Terminology

6: Vehicle Performance

Design, analysis and mounting implementation of lateral leaf spring in double wishbone suspension system

CHAPTER 4: EXPERIMENTAL WORK 4-1

Relative ride vibration of off-road vehicles with front-, rear- and both axles torsio-elastic suspension

Simulation and Analysis of Vehicle Suspension System for Different Road Profile

III B.Tech I Semester Supplementary Examinations, May/June

A double-wishbone type suspension is used in the front. A multi-link type suspension is used in the rear. Tread* mm (in.) 1560 (61.

R10 Set No: 1 ''' ' '' '' '' Code No: R31033

Special edition paper

ACOCAR active suspension

Semi-Active Suspension for an Automobile

Technical Report Lotus Elan Rear Suspension The Effect of Halfshaft Rubber Couplings. T. L. Duell. Prepared for The Elan Factory.

SUMMARY OF STANDARD K&C TESTS AND REPORTED RESULTS

Storvik HAL Compactor

Design and Analysis of suspension system components

Technical elements for minimising of vibration effects in special vehicles

Modelling and Simulation of a Passenger Car for Comfort Evaluation

Procedia Engineering 00 (2009) Mountain bike wheel endurance testing and modeling. Robin C. Redfield a,*, Cory Sutela b

Chapter 2. Background

Vibration Analysis of an All-Terrain Vehicle

International Journal of Current Engineering and Technology E-ISSN , P-ISSN Available at

Torque steer effects resulting from tyre aligning torque Effect of kinematics and elastokinematics

Optimization of vehicle handling performance by increasing the ARB effectiveness. Date :- 22 June 2010

SUSPENSION OF A MOUNTAIN BIKE SVOČ FST Bc. Vít Prošek University of West Bohemia Univerzitni 8, Pilsen Czech Republic

According to Newton's First Law, a moving body will continue moving in a straight line until it is acted

Active Suspension Analysis of Full Vehicle Model Traversing over Bounce Sine Sweep Road

DESIGN AND ANALYSIS OF PUSH ROD ROCKER ARM SUSPENSION USING MONO SPRING

Modeling tire vibrations in ABS-braking

2. Write the expression for estimation of the natural frequency of free torsional vibration of a shaft. (N/D 15)

Parameter optimisation design for a six-dof heavy duty vehicle seat suspension

VEHICLE SUSPENSION OPTIMIZATION FOR STOCHASTIC INPUTS KAILAS VIJAY INAMDAR. Presented to the Faculty of the Graduate School of

MECHANICAL EQUIPMENT. Engineering. Theory & Practice. Vibration & Rubber Engineering Solutions

NEW DESIGN AND DEVELELOPMENT OF ESKIG MOTORCYCLE

Unsprung Mass The Myths and Realities Closing the Circle

Variable Anti-roll Bars on the Touareg

ROTATING MACHINERY DYNAMICS

Localized-Based Control Algorithm For Passenger Ride Comfort

CHAPTER 1 BALANCING BALANCING OF ROTATING MASSES

STUDY OF ROLL CENTER SAURABH SINGH *, SAGAR SAHU ** ABSTRACT

CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY

Design, Modelling & Analysis of Double Wishbone Suspension System

Active Suspensions For Tracked Vehicles

Robustness Analysis in Vehicle Ride Comfort

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

Modeling, Design and Simulation of Active Suspension System Root Locus Controller using Automated Tuning Technique.

USING STANDARD ISOLATORS TO CONTROL UNWANTED MACHINE VIBRATION

EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES

CH16: Clutches, Brakes, Couplings and Flywheels

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 89

Faculty Code: AU13. Faculty Name: RAJESH. M. Designation: LECTURER

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System

Development and validation of a vibration model for a complete vehicle

Identification of tyre lateral force characteristic from handling data and functional suspension model

Modeling, Design and Simulation of Active Suspension System Frequency Response Controller using Automated Tuning Technique

Chapter 5. Design of Control Mechanism of Variable Suspension System. 5.1: Introduction: Objective of the Mechanism:

Unit HV04K Knowledge of Heavy Vehicle Chassis Units and Components

Design and Integration of Suspension, Brake and Steering Systems for a Formula SAE Race Car

College of Mechanical & Power Engineering Of China Three Gorges University, Yichang, Hubei Province, China

Tech Tip: Springs & Dampers, Part One The Phantom Knowledge

Influence of Parameter Variations on System Identification of Full Car Model

DAMPING OF VIBRATION IN BELT-DRIVEN MOTION SYSTEMS USING A LAYER OF LOW-DENSITY FOAM

Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals

Analysis of Interconnected Hydro-Pneumatic Suspension System for Load Sharing among Heavy Vehicle Axles

A NEW METHODOLOGY FOR DETECTION OF A LOOSE OR WORN BALL JOINTS USED IN VEHICLES SUSPENSION SYSTEM

1 Summary PROPORTIONAL RESPONSE TECHNICAL SUMMARY. Contents

ENERGY RECOVERY SYSTEM FROM THE VEHICLE DAMPERS AND THE INFLUENCE OF THE TANK PRESSURE

Study on Dynamic Behaviour of Wishbone Suspension System

11/12/2017 Erwin H. Doorenspleet

EMC-HD. C 01_2 Subheadline_15pt/7.2mm

KINEMATICAL SUSPENSION OPTIMIZATION USING DESIGN OF EXPERIMENT METHOD

KINEMATICS OF REAR SUSPENSION SYSTEM FOR A BAJA ALL-TERRAIN VEHICLE.

Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model

WHY CHOOSE MOTOR TRIKE INDEPENDENT REAR SUSPENSION?

VIBRATIONAL ANALYSIS OF A MULTIBODY VIRTUAL DUMMY FOR CAR AND MOTORCYCLE USERS

Analysis and control of vehicle steering wheel angular vibrations

Design of Damping Base and Dynamic Analysis of Whole Vehicle Transportation based on Filtered White-Noise GongXue Zhang1,a and Ning Chen2,b,*

Full Paper Proc. of Int. Colloquiums on Computer Electronics Electrical Mechanical and Civil 2011

APS 113 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5

Linear Actuator with Toothed Belt Series OSP-E..B

SMART FLUID SELF ADAPTIVE DAMPER SYSTEM (SFSADS)

System. Hefei University of Technology, China. Hefei University of Technology, China. Hefei University of Technology, China

Linear Actuator with Ball Screw Series OSP-E..S. Contents Description Overview Technical Data Dimensions 79

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers

Vehicle Engineering MVE 420 (2015)

Linear Drive with Ball Screw Drive Series OSP-E..SB

APS 420 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5

QUARTER CAR SUSPENSION SYSTEM WITH ONE DEGREE OF FREEDOM SIMULATED USING SIMULINK. L. Bereteu, A. Perescu

Sulastic Rubber Springs

Distributed control of a car suspension system

MODELING OF SUSPENSION SYSTEM OF A LIGHT TRACKED VEHICLE

II YEAR AUTOMOBILE ENGINEERING AT AUTOMOTIVE CHASSIS QUESTION BANK UNIT I - LAYOUT, FRAME, FRONT AXLE AND STEERING SYSTEM

Transcription:

1of 39 Determination of anti pitch geometry Similar to anti squat Opposite direction of D Alembert s forces. acceleration [1/3] Front wheel forces and effective pivot locations

2of 39 Determination of anti pitch geometry acceleration [2/3] It follows that the change in the front spring force is: where k f = front suspension stiffness. Similarly for the rear wheels.

3of 39 Determination of anti pitch geometry Pitch angle acceleration [3/3] Zero pitch occurs when θ = 0, i.e. when the term in square brackets is zero. anti squat and anti pitch performance depends onthe following vehicle properties suspension geometry, suspension stiffnesses (front and rear) and Tractive force distribution. ib i For a solid axle the drive torque is reacted within the wheel assembly, i.e. it is an internal moment as far as the free body is concerned. In this case, M = 0 and equations modified by setting r = 0 for the appropriate p solid axle(s)

4of 39 Lateral load transfer during cornering Notation and assumptions in the analysis are: G is the sprung mass centre of gravity; The transverse acceleration at G due to cornering is a ; The sprung mass rolls through the angle φ about the roll axis; The centrifugal (inertia) force on the sprung mass m s a acts horizontally through G; The gravity force on the sprung mass m s g acts vertically downwards through G; The inertia forces m uf a and m ur a act directly on the unsprung masses at the front and rear axles. Each transfers load only between its own pair of wheels. Steady state cornering analysis

5of 39 Load transfer due to the roll moment [1/2] Replace the two forces ocesat G with the same forces ocesat A plus a moment (the roll moment) M s about the roll axis, i.e Assuming linear relationship between M φ and φ φ M φ = k s φ k s = total roll stiffness

6of 39 Load transfer due to the roll moment [2/2] k sf + k sr = k s Load dtransfer sin two axles are T f and T r are the front and rear track widths of the vehicle

7of 39 Load transfer due to sprung mass The sprung mass is distributed to the roll centers at front and rear axles. Centrifugal force distribution is Corresponding load transfers are inertia force

8of 39 Load transfer due to the unsprung mass inertia forces Total load transfer

9of 39 Suspension components Need for compliance between unsprung and sprung mass. Requirements: Good isolation of the body(good ride) Soft response Inconsistent with roll resistance in cornering Roll stiffening using ant roll bars Spring can hit limits Additional springs as bump stops Prevent high frequency vibration from being transmitted Use rubber bush connections Good road grip (Good handling) Hard response

10 of 39 Steel springs Semi elliptic springs earliest developments in motor vehicle Robust and simple used for heavy applications Hotchkiss type to provide both vertical compliance and lateral constraint for the wheel travel change in length of the spring produced by bump loading is accommodated by the swinging shackle Leaf spring design

11 of 39 Leaf spring analysis Wheel load F W,isvertical. F C is parallel to the shackle Two load member The stiffness (rate) of the spring is determined by the number, length, width and thickness of the leaves Angling of the shackle link used to give a variable rate When the angle θ <90, thespringratewillincrease (i.e. rising rate) with bump loading

12 of 39 Coil springs Light and compact form of compliance for weight and packaging constraints Little maintenance and provides Opportunity for co axial mounting witha damper Variable rate springs produced either by varying the coil diameter and/or pitch of the coils along its length Disadvantages: Low levels of structural damping, there is a possibility of surging (resonance along the length of coils) Spring as a whole does not provide any lateral support for guiding the wheel motion.

13 of 39 Torsion bars Very simple form of spring and consequently very cheap The principle p of operation is to convert the applied load F W into a torque F W R producing twist in the bar Stiffness related to diameter, length of the torsion bar and the torsion modulus of the material Principle of operation of a torsion bar spring

14 of 39 Hydro pneumatic springs Spring is produced by a constant tmass of gas (typically nitrogen) in a variable volume enclosure As the wheel deflects in bump, the piston moves upwards transmitting the motion to the fluid and compressing the gas via the flexible diaphragm The gas pressure increases as its volume decreases to produce a hardening spring characteristic Systems are complex (and expensive) and maintenance Basic diaphragm accumulator spring Principles of a hydro pneumatic suspension spring

15 of 39 Anti roll bars (stabilizer) Reduce body roll Ends of the U shaped bar connected to the wheel supports and Central length of bar attached to body of the vehicle Attachment points need to be selected to ensure that bar is subjected to Torsional loading without bending Anti roll bar layout

16 of 39 Anti roll bars (stabilizer) Conditions: One wheels is lifted relative to the other, half the total anti roll stiffness acts downwards on the wheel and the reaction on the vehicle body tends to resist body roll. If both wheels lift by the same amount the bar is not twisted and there is no transfer of load to the vehicle body. If the displacements of the wheelsaremutually opposed (one wheel up and the other down by the same amount), the full effect of the anti roll stiffness is produced. Total roll stiffness k rs is equal to the sum of the roll stiffness produced by the suspension springs k r, sus and the roll stiffness of the anti roll bars k r,ar, Roll bar contribution to total roll stiffness

17 of 39 Dampers types and characteristics Frequently called shock absorbers Main energy dissipators in a vehicle suspension Two types: dual tube, Mono tube. In mono tube Surplus fluid accommodated by gas pressurized free piston Damper types, (a) dual tube damper, (b) free piston monotube damper

18 of 39 Dampers types and characteristics In dealing with road surface undulations in the bump direction (damper being compressed) relatively low levels of damping are required compared with the rebound motion (damper being extended) These requirements lead to damper characteristics which are asymmetrical when plotted on forcevelocity axes Ratios of 3:1 Damper characteristics

19 of 39 Dampers types and characteristics Damper designs are achieved by a combination of orifice flow and flows through spring loaded done way valves At low speeds orifices are effective At higher pressure valves open up lot of scope for shaping and fine tuning of damper characteristics Shaping of damper characteristics Typical curves for a three position (electronically) adjustable damper

20 of 39 Road surface roughness and vehicle excitation Road surfaces have random profiles > > nondeterministic. Methods based on the Fourier transform Power spectral density S(n) of the height variations i as a function of the spatial il frequency n κ = the roughness coefficient

21 of 39 Road surface roughness and vehicle excitation Substituting The variation of S( f ) for a vehicle traversing a poor minor road at 20 m/s is shown

22 of 39 Human response to whole body vibration Human body complex assemblage of linear and non linear elements Range of body resonances 1 to 900 Hz For a seated human 1 2 Hz (head neck) 4 8 Hz (thorax abdomen) abdomen) Perception of vibration motions diminishes above 25 Hz and emerges as audible sound. Dual perception (vibration and sound) up to several hundred Hz is related to the term harshness

23 of 39 Human response to whole body vibration Motion sickness (kinetosis) low frequency, normally in ships ISO 2631 (ISO, 1978) and the equivalent British Standard BS 6841 (BSI, 1987) whole body vibration from a supporting surface to either the feet of a standing person or the buttocks of a seated person The criteria are specified in terms of Direction of vibration input to the human torso Acceleration magnitude Frequency of excitation Exposure duration

24 of 39 Human response to whole body vibration Most sensitive frequency range for vertical vibration is from 4 8 Hz corresponding to the thorax abdomen resonance most sensitive range for transverse vibration is from 1 to 2 Hz corresponding to head neck resonance ISO 2631 discomfort boundaries 0.1 to 0.63 Hz for motion sickness. most sensitive range is from 0.1 to 0.315 Hz RCB Reduced Comfort Boundary Whole body RCB vibration criteria, (a) RCB for vertical (z axis) vibration (b) RCB for lateral (x and y axis vibration)

25 of 39 Analysis of vehicle response to road excitation Most comprehensive of these has seven degrees of freedom Three degrees of freedom for the vehicle body (pitch, bounce androll) Vertical degree of freedom at each of the four unsprung masses. This model allows the pitch, bounce and roll The suspension stiffness and damping rates are derived d from the individual spring and damping units Full vehicle model

26 of 39 Analysis of vehicle response to road excitation Much useful information can be derived fromsimpler vehicle models. The two most often used for passenger cars are the half vehicle model dland the quarter vehicle model. These have four and two degrees of freedom respectively. Reduced number of degrees of freedom In the case of the half vehicle model, roll information is lost and for the quarter vehicle model pitch information is also lost Half and quarter vehicle models, dl () (a) half vehicle model, (b) quarter vehicle model

27 of 39 Response to road excitation Pitch and bounce characteristics Equivalent stiffness is calculated as Generalized co ordinates are z and θ Notation for pitch bounce analysis

28 of 39 Response to road excitation Equations simplify as If B=0 the equations are uncoupled On a bump only pitching occurs not desired ω = n, bounce ω = npitch, C A

29 of 39 Response to road excitation Roots of the equation are Distance of O 1 & O 2 (Oscillation centres)from G

30 of 39 Response to road excitation If inertia coupling ratio is O 1 and O 2 are at suspension centers it becomes a 2 DOF (2 mass) system (0.8 for sports cars,1.2 for some If w nf < wfront nr, T nf > T nr drive and on a cars) bump one gets a feeling of in phase motion and minimal pitching better ride No coupling of front and rear suspensions Two equivalent masses <

31 of 39 Suspension performance analysis Quarter car model Frequency ranges Low 1 to 2 Hz resonance of sprung mass High 10 11 Hz resonance of un sprung or wheel hop Suspension designer has selection of characteristics and parameter values for suspension springs and dampers to achieve the desired suspension performance

32 of 39 Suspension performance analysis Lowest transmissibility (best ride) is produced with the softest suspension good road holding requires a hard suspension low transmissibility at the wheel hop frequency and in the mid frequency range between the two resonances r s = k t /k s (b) Road holding (a) ride Effect of suspension stiffness on sprung and unsprung mass transmissibilities, (a) sprung mass transmissibility, (b) unsprung mass transmissibility

33 of 39 Effect of Suspension Damping sprung and unsprung mass transmissibilities, (a) sprung mass transmissibility, (b) unsprung mass transmissibility Control of the sprung mass resonance requires high levels of damping, but results in poor isolation in the mid frequency Wheel hop resonance also requires high levels of damping for its control, but with the same penalties in the mid frequencyrange 0.3 used for passenger cars

34 of 39 Refined non linear analysis suspension spring and damper non linearities, iti random road excitation assessment of ride, tyre force fluctuation and clearance space limitations highly non linear analysis Requires simulations in the time domain ISO weighted acceleration response of the sprung mass denoted by the Discomfort Parameter D is evaluated ISO weighting characteristic for vertical vehicle body acceleration

35 of 39 Suspension performance analysis Influences on variables by the choice of parameter values to maintain a constant value of C Ideal Suspension minimizes D and L. When the vehicle traverses a different type of road and/or at a different speed, the performance locus changes and the suspension settings are no longer optimal controllable suspensions, Conflictdiagramfor for constant where parameter values can suspension workspace (C) be continuously adjusted

36 of 39 Controllable suspensions With passive suspensions the control force exerted simultaneously on the sprung and unsprung masses is: Control of the wheel hop frequency is, however, not possible because the forces required would have to react against the spring mass and necessarily increase its acceleration

37 of 39 Controllable suspensions Hydraulic Control Speed of response, high bandwidth, up to 60 Hz Actuator is driven by an on board pump p controlled by signals derived from transducers fitted to the sprung and unsprung masses. Signals are processed in a controller according to some control law to produce a controlled force at the actuator With practical limitations taken into account, ride can be improved by 20 30% for the same wheel travel and dynamic tire load when compared with a passive suspension Fully active suspension

38 of 39 Slow active controlled suspensions Low bandwidth (up to approximately 6 Hz). The aim of this form of suspension is to control the body mode to improve ride. Above its upper frequency limit it reverts to a conventional passive system which cannot be bettered for control of the wheel hop mode. Such systems require much less power than the fully active system, with simpler forms of actuation. The potential performance gains are less than those for a fully active systems, but the viability is much improved. Slow active suspension

39 of 39 Another Controllable suspension Passive damper is replaced with a controllable one. Designed to produce a controlled force when called upon to dissipate energy and then switches to a notional zero damping state when called upon to supply energy. Performance potential of this suspension closely approaches that of a fully active system under certain conditions, but the hardware and operational costs of this type of suspension are considerably less Performance is impaired by changes in payload which halter the suspension working space : overcome by combining the controllable damper with some form of self leveling system Semi active suspension