Experimental Investigation of Performanec of Single Cylinder 4s Diesel Engine Using Dual Vegetable Oil Blended

Similar documents
Performance Analysis of 4 Stroke Single Cylinder Diesel Engine Using Blend Of Soya Oil with Diesel

PERFORMANCE, EMISSIONS AND COMBUSTION EVALUATION OF CI ENGINE USING BIOFUEL

Performance Analysis of Single Cylinder 4- Stroke Diesel Engine Using Diesel and Waste Cooking Oil Blend

International Journal of Advance Engineering and Research Development

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Performance and Emission Analysis of Diesel Engine using palm seed oil and diesel blend

Effect of Tangential Groove Piston on Diesel Engine with Jatropha Methyl Ester

Experimental Study on Performance and Emission of Diesel Engine using Sunflower Oil-Diesel Blends as Fuel

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER

Material Science Research India Vol. 7(1), (2010)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH MUSTARD OIL-DIESEL BLENDS AS FUEL

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 11 Nov p-issn:

Project Reference No.: 40S_B_MTECH_007

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Prediction of Performance and Emission of Palm oil Biodiesel in Diesel Engine

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BTE AND NOX IN A DIRECT INJECTION VCR DIESEL ENGINE RUNNING WITH RICE BRAN METHYL ESTER

PERFORMANCE OF DIRECT INJECTION C.I. ENGINE USING KARANJA OIL AT DIFFERENT INJECTION PRESSURES

Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

Experimental Investigation of Multi Cylinder Diesel Engine Using Rubber seed oil and Diesel

Comparative Analysis of Performance and Emission Charactristics of Neem Oil Using 3 And 4 Holes Injection Nozzle on DI Diesel Engine

EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL BLENDS

Performance, Combustion and Emission Characteristics of Corn oil blended with Diesel

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

Performance Test of IC Engine Using Blends of Ethanol and Kerosene with Diesel

Performance Analysis of Four Stroke Single Cylinder CI Engine Using Karanja Biodiesel-Diesel Blends

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

International Journal of Modern Engineering Research (IJMER) Vol.3, Issue.1, Jan-Feb pp ISSN:

Performance Analysis of a Diesel Engine with the Help of Blends of Linseed Oil Biodiesel

Automotive Technology

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

International Journal on Theoretical and Applied Research in Mechanical Engineering (IJTARME)

T.Venkata Subba Rao 1 K.Srinivas 2

Parametric Optimization of Single Cylinder Diesel Engine for Specific Fuel Consumption Using Palm Seed Oil as a Blend

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

Assistant Professor, Dept. of Mechanical Engg., Shri Ram College of Engineering & Management, Banmore, Gwalior (M.P) 2

National Journal on Advances in Building Sciences and Mechanics, Vol. 1, No.2, October

Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine

American International Journal of Research in Science, Technology, Engineering & Mathematics

Experimental Investigation on the Performance of Single Cylinder Diesel Engine using Tobacco-Diesel Blends

TO INVESTIGATE THE PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE USING MUSTARD OIL BIODIESEL AS FUEL

Experimental Investigation of Performance and Emission Characteristics of Simarouba Biodiesel and Its Blends on LHR Engine

EXPERIMENTAL INVETIGATIONN ON PERFORMANCE AND EMISSION CHARACTERISTICS OF DI- CI ENGINE FUELED WITH PREHEATED SHEA OLEIN BIODIESEL

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online):

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

Feasibility Study of Soyabean Oil as an Alternate Fuel for CI Engine at Variable Compression Ratio

Performance and Emission Analysis of C.I. Engine using Biodiesels and its Blends

Inturi Vamsi et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 5, ( Part -4) May 2015, pp.

Investigation of the Performance and Emission Characteristics of CI Engine Using Simarouba Biodiesel as Fuel

Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Mahua Biodiesel

Performance, emission and combustion characteristics of fish-oil biodiesel engine

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

Use of Alternative Fuel in Lower Heat Rejection Engine with Different Insulation Levels

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Performance Characteristics of Ethanol Derived From Food Waste As A Fuel in Diesel Engine

An Experimental Study on the Equivalence Ratio of Biodiesel and Diesel Fuel Blends in Small Diesel Engine

Experimental Investigation of Single Cylinder Diesel Engine with Sesame Oil and Ethanol Blends at Various Compression Ratio.

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

STUDY ON THE PERFORMANCE ANALYSIS OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE FUELLED WITH TOBACCO SEED METHYL ESTERS AND CASTOR SEED METHYL ESTERS.

6979(Print), ISSN (Online), Volume 5, Issue 2, March - April (2014), pp IAEME RESEARCH AND DEVELOPMENT (IJIERD)

A COMPARATIVE STUDY OF PERFORMANCE AND EMISSION CHARACTERISTICS OF FOUR STROKE DIESEL ENGINE WITH MAHUA AND JATROPHA BIODIESEL BLENDED WITH DIESEL

Power Performance and Exhaust Gas Analyses of Palm Oil and Used Cooking Oil Methyl Ester as Fuel for Diesel Engine

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

Effect of Varying Load on Performance and Emission of C.I. Engine Using WPO Diesel Blend

IJRASET 2013: All Rights are Reserved

Impact of Kerosene Oil Blend with Diesel Fuel on Engine Performance: An Experimental Investigation

PERFORMANCE IMPROVEMENT OF A DI DIESEL ENGINE WITH TURBOCHARGING USING BIOFUEL

Performance Analysis of Single Cylinder 4Stroke SI Engine Using Ethenol Blends With Gasoline

Appropriation of bio-diesel blends in diesel engine

An Experimental Investigation On Four Stroke Single Cylinder Diesel Engine Using Animal Fat And Palm Oil As Biodiesel

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

Cottonseed Oil and Esterifies Cottonseed Oil as Lubricant in IC

Experimental Investigation of Performance, Combustion and Emission characteristics of neat Lemongrass oil in DI Diesel engine

Performance of Single Cylinder DI Diesel Engine Varied Compression Ratio Fueled With Blends of Ethanol

Experimental Investigation on Performance Characteristic of Diesel Engine by Using Methyl Ester of Linseed and Neem oil

Ester (KOME)-Diesel blends as a Fuel

Performance and Emission Characteristics of a Kirloskar HA394 Diesel Engine Operated on Mahua Oil Methyl Ester

Optimization of Injection Parameters of Ci Engine Using Cotton Seed and Pongamia Pinnata Bio Diesel as Fuel

Experimental Investigation of Variable Compression Ratio Diesel Engine using Ziziphus Jujuba oil

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhance Performance on Diesel Engine

Tamanu (Calophyllum Inophyllum) Biodieselasan Alternative Fuelfor CI Engine: Review

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Performance and Emission Characteristics of Double Cylinder Diesel Engine Fuelled With Diesel, Citronella Oil & Grape Seed Oil

International Journal of Engineering Science Invention Research & Development; Vol. II Issue II August e-issn:

Performance and Emission Analysis of Diesel Engine using Biodiesel and Preheated Jatropha Oil

International Engineering Research Journal Performance and Emission Analysis of a Diesel Engine Fuelled with Waste Turmeric oil.

Experimental Investigation On Performance, Combustion Characteristics Of Diesel Engine By Using Cotton Seed Oil

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

ISSN: [Sirivella, 6(10): October, 2017] Impact Factor: 4.116

Transcription:

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 RESEARCH ARTICLE OPEN ACCESS Experimental Investigation of Performanec of Single Cylinder 4s Diesel Engine Using Dual Vegetable Oil Blended Prof. C. S. Koli*, Prof. Ram Bansal*, Amit Agrawal**, Ashish Agrawal** *Asst. Prof. Mech. Engg. Dept. SRCEM, Banmore ** Research Scholar Mech. Dept. SRCEM, Banmore ABSTRACT Over the last two decades there has been a tremendous increase in the number of automobiles and a corresponding increase in the fuel price. In this regard, alternative fuels like vegetable oils play a major role. Use of pure vegetable oil in diesel engines causes some problems due to their high viscosity compared with diesel fuel. To solve the problems due to high viscosity various techniques are used. One such technique is fuel blending. This paper investigated the performance parameters of dual vegetable oil blends (mixture of Mustard oil and Palm oil with diesel on a stationary single cylinder, four stroke direct injection compression ignition engine. The blends of BB 10 (combination of Diesel 90% by volume, Mustard oil 5% by volume and Palm oil 5% by volume and blends of BB 20 (combination of Diesel 80% by volume, Mustard oil 10% by volume and Palm oil 10% by volume gave better brake thermal efficiency, lower total fuel consumption and lower brake specific fuel consumption than other blends (BB 30, BB 40 and BB 50. Key word: Diesel engine, Mustard oil, Palm oil, Performance parameters, Specific gravity, Flash point, Fire point. I. INTRODUCTION Vegetable oils have some advantages. They are renewable, easily available in the rural areas, have high cetane number, heat release rate is similar to diesel, it s emission rate is relatively low to be used in Compression Ignition engines with simple modifications and can be easily blended with diesel. Jatropha oil, sesame oil, coconut oil, sunflower oil, neem oil, mahua oil, peanut oil, palm oil, rubber seed oil, cotton seed oil and rape seed oil are some of the vegetable oils that have been tried as fuel in Internal combustion engines. The use of vegetable oils as an alternative fuel for diesel engines dates back to around a century. Due to rapid decline of crude oil reserve and increase in price, the use of vegetable oils is again prompted in many countries. Depending upon soil condition and climate, different nations are looking for different vegetable oils for example, soybean oil in U.S.A., Mustard oil in Bangladesh, rapeseed and sunflower oil in Europe, palm oil in Malaysia and Indonesia, coconut oils in Philippines are being considered to substitute of diesel fuel. II. OBJECTIVE The aim of the present study is to evaluate the performance using different blends of palm oil and mustard oil with diesel in a CI engine. The following are the major objectives to fulfil the aim of present study. 1. Extraction of palm oil from palm seeds. 2. Determination of physical properties of palm oil, mustard oil and diesel. 3. Study of effect of dilution on properties of blending of palm oil and mustard oil with diesel. 4. Performance evaluation of Diesel engine using different blends of palm oil and mustard oil with diesel. III. EXPERIMENTAL SETUP ENGINE: The engine is water cooled single cylinder four stroke constant speed diesel engine 5 H.P Make Kirloskar. Figure 1 : Setup of single cylinder four stroke diesel engine 78 P a g e

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 Rope Brake Dynamometer: A rope brake dynamometer is supplied with the engine coupled with the flywheel of engine. Load indicator: It indicates the load in kg range 0-20 kg Make Harrison. IV. BLENDED OILS WITH DIFFERENT PERCENT S OF DIESEL, MUSTARD OIL AND PALM OIL M.S. Base Frame: The engine and the dynamometer are mounted on a solid M.S. Channel Base Frame. Instrumentation for measuring various inputs/outputs: All instrumentation is incorporated on a control panel. The various factors to be measured are as follows: Fuel measurement: This is done by using burette which is mounted on the control panel. The fuel tank is mounted on panel. The fuel is supplied to engine using a fuel line to fuel injection system. The amount of fuel consumed is determined by the change in the readings shown on the burette. A three way cock is used both to fill the burette and to allow the fuel to flow to the engine Air flow measurement: Air flow is measured using an air box Orifice is fixed in the inlet of air box suction pressure difference across the orifice is read on the U-tube manometer mounted on the panel. The outlet of the air suction box goes to the engine through the flexible hose for air suction. measurement: For heat balance analysis the PT-100 sensors are connected at exhaust gas calorimeter and engine cooling. V. EQUIPMENTS USED FOR THE EXPERIMENT Table:1Engine Specification Sr. no. Items Specifications 1 Model KIRLOSKAR, AV1 2 Compression ratio 19:1 3 Method of Hand starting starting 4 Type, no. of cylinders Vertical 4stroke,1cylinder 5 Bore x 87.5x110 stroke(mm 6 Cubic capacity 624 7 Maximum 5 Hp power 8 Nominal speed 1500 rpm 9 Cooling system Water-cooled 10 Fuel filter Present 11 Lube oil filter Present 79 P a g e

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 Table: 2Properties of Diesel, Palm oil, Mustard oil and its blends Fuel Density( Kg/m 3 VI. EXPERIMENTAL PROCEDURE Fill the fuel tank with the fuel. Start the cooling water supply to the engine and the calorimeter. Fill the burette with the fuel. Switch on the control panel. Start the engine with cranking handle provided. Note down the readings in the observation table. Load the engine gradually by providing weights on the loading hanger. Note down the reading, for various load. VII. CALCULATIONS The basic performance parameters that were determined for performance evaluation of engine are: Brake Power Brake thermal efficiency Brake specific fuel consumption Total fuel consumption Various formulae that were used for performance evaluation are listed below: The brake power is calculated by measuring load on dynamometer and engine speed and then putting these values in, = Calorific value(kj /Kg Flash Point( 0 C ( W s π D + d N KW 60 1000 Fire Point( 0 C Diesel 825.9 44000.0 72 210 Mustard oil 925.24 32390.0 297 343 Palm oil 918 40000.0 267 296 BB 10 818 43219.5 85 95 BB 20 864 42439.0 92 110 BB 30 909 41658.5 105 126 BB 40 936 40878.0 123 148 BB 50 955 40097.5 145 172 Where, W is the weight applied on spring balance N is the engine speed in RPM D = Dia. of Drum (340mm d = Dia. of Rope (20mm The fuel consumption rate is noted for each loading and then brake specific fuel consumption is calculated as, = 3600 kg/kw-hr The brake thermal efficiency of the engine is calculated as, = CV 100 Total fuel consumption, = cc(ml time 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 (specificgravity 1000 VIII. kg sec RESULTS Variation of Total Fuel Consumption with for different fuels 0 10 20 30 Figure 2: Variation of Total Fuel Consumption with for different fuels FIGURE:2, Depicts about variation in total fuel consumption with bp for different fuels. From the curve it is observed that the value of the total fuel consumption is increased from BB10 to BB40, after that the blending ratio are increases, decreases in the total fuel consumption. We get better total fuel consumption at BB10 and BB20. 1.5 1 0.5 0 0 10 20 30 Figure 3: Variation of Brake specific fuel consumption with for different fuels 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB Variation of Brake specific fuel consumption with for different fuels 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB FIGURE:3, Depicts about variation in Brake specific fuel consumption with bp for different fuels. From the curve it is observed that the value of the total fuel consumption is increased from BB10 to BB40, after that the blending ratio are increases, decreases in the 80 P a g e

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 Brake specific fuel consumption. We get better Brake specific fuel consumption at BB10 and BB20. 15 10 5 0 Figure 4: Variation of Brake Thermal Efficiency with for different fuels FIGURE:4, Depicts about variation in Brake thermal efficiency with bp for different fuels. From the curve it is observed that the value of the Brake thermal efficiency is decreased from BB10 to BB40, after that the blending ratio are increases, increases in the Brake thermal efficiency. We get better Brake thermal efficiency at BB10 and BB20. 300 250 200 150 100 50 0 Variation of BrakeThermal Efficiency with for different fuels 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB 0 10 20 30 Variation of exhaust gas tempe with Brake Power for different fuels 0 10 20 Figure 5: Variation of exhaust gas tempe with Brake Power for different fuels FIGURE:5, Depicts about variation in Exhaust gas tempe with bp for different fuels. From the curve it is observed that the value of the Exhaust gas tempe is increased from BB10 to BB40, after that the blending ratio are increases, decreases in the Exhaust gas tempe. We get better Exhaust gas tempe at BB10 and BB20. Table:3 PERFORMANCE ANALYSIS Vegetable oil Blend Calorific Value (MJ/kg Pure Diesel 44.00 10 BB 43.22 20 BB 42.44 30 BB 41.66 40 BB 40.88 50 BB 40.10 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB 45 44 43 42 41 40 39 38 0 BB 10 BB20 BB30 BB40 BB50 BB calorific value Figure 6: Graphical representation of Calorific value of different fuel Table:4 RUNNING COST OF ENGINE WITH DIFFERENT BLENDS Fuel Cost (Rs./lr. Diesel 60.35 Mustard oil 80.00 Palm oil 55.00 BB10 61.06 BB20 61.78 BB30 62.49 BB40 63.21 BB50 63.92 IX. CONCLUSION The value of the total fuel consumption is increased from BB10 to BB40, after that the blending ratio are increases, decreases in the total fuel consumption. We get better total fuel consumption at BB10 and BB20. The value of the total fuel consumption is increased from BB10 to BB40, after that the blending ratio are increases, decreases in the Brake specific fuel consumption. We get better Brake specific fuel consumption at BB10 and BB20. The value of the Brake thermal efficiency is decreased from BB10 to BB40, after that the blending ratio are increases, increases in the Brake thermal efficiency. We get better Brake thermal efficiency at BB10 and BB20. The value of the Exhaust gas tempe is increased from BB10 to BB40, after that the blending ratio are increases, decreases in the Exhaust gas tempe. We get better Exhaust gas tempe at BB10 and BB20. REFRENCES [1] A. K. Azad et. al. Mustard oil, an alternative Fuel: An experimental investigation of Bio-diesel properties with and without Trans-esterification reaction Global Advanced Research Journal of 81 P a g e

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 Engineering, Technology and Innovation Vol. 1(3 pp. 075-084, June, 2012. [2] T. Venkata Subba Rao et. Al. Performance Analysis of Vegetable Oil Blended With Diesel Additive International Journal of Engineering Research and Applications (IJERA ISSN: 2248-9622 Vol. 2, Issue 5, September- October 2012, pp.297-302. [3] A. Haiter Lenin et. al. Experimental Investigations on a Diesel Engine using Blends of Methyl Esters of Pongamia Oil as the Fuels European Journal of Scientific Research ISSN 1450-216X Vol.72 No.2 (2012, pp. 273-284 EuroJournals Publishing, Inc. 2012. [4] K. Arun Balasubramanian Dual Biodiesel Blends in Diesel Engine - Performance and Emission Analysis European Journal of Scientific Research ISSN 1450-216X Vol.75 No.3 (2012, pp. 400-408 EuroJournals Publishing, Inc. 2012. [5] K. Karuppasamy et. al. The Effect of Biodiesel Blends on Single Cylinder DI Diesel Engine and Optimization using Response Surface Methodology European Journal of Scientific Research ISSN 1450-216X Vol.84 No.3 (2012, pp.365-376 EuroJournals Publishing, Inc. 2012. [6] Lovekush Prasad et. al. Experimental Investigation of Performance of Diesel Engine Working On Diesel and Neem Oil Blends IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE ISSN: 2278-1684 Volume 1, Issue 4 (July-August 2012, PP 48-51. [7] Jawad Nagi et. al. Palm Biodiesel an Alternative Green Renewable Energy for the Energy Demands of the Future International Conference on Construction and Building Technology, ICCBT 2008 - F - (07 pp79-94. [8] K. Anbumani et. al. Performance of Mustard And Neem Oil Blends With Diesel Fuel In C.I. Engine ARPN Journal of Engineering and Applied Sciences Vol. 5, No. 4, APRIL 2010, ISSN 1819-6608 2006-2010 Asian Research Publishing Network (ARPN. [9] Khiraiya Krunal B. et. al. A Review of Recent Research on Palm oil Biodiesel as Fuel for CI Engine International Journal of Applied Research & Studies ISSN 2278 9480, ijars/ Vol. II/ Issue I/Jan, 2013/293. [10] Mazel, M.A., summers, J.D. and Batch elder, D.G.1985 Peanut, soybean and cottonseed oil as diesel fuels Trans. ASAE. 28(5: 1375-1377. [11] Canakei, M. and Van Gerpen, J. 2003 Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel and soybean oil biodiesel American Society of Agricultural Engineers. 46(4: 937-944. [12] F. Karaosmanoglu, G. Kurt and T. Ozaktas, Long term C.I engine test of sunflower oil, International journal of Renewable Energy, Vol. 19, 2000, 219-221. [13] O. M. I. Nwafor and G. Rice, Performance of rapeseed oil methyl ester in diesel engine, International journal of Renewable Energy, 0960-1481 Vol. 95, 1995 00022-4. [14] P. K. Devan and N. V. Mahalakshmi, Performance, emission and combustion characteristics of poon oil and its diesel blends in a DI diesel engine, Fuel, Vol. 88, 2009, 861-867. [15] Altan R, Cetinkay S, Yucesu HS (2001. The potential of using vegetable oil fuels as fuel for diesel engines, Energy Conversion and Management, 42(5: 529-538. Sr. No. OBSERVATION TABLE W(KG S(KG N (RPM APENDIX Table 5: Pure Diesel FUEL TIME T1 (ML (SEC T2 1. 2 0.2 1472 20 122 108 53 26 29 26 36 2. 4 0.4 1468 20 85 130 59 26 30 26 38 3. 6 0.5 1466 20 58 165 69 26 31 26 40 4. 8 0.6 1464 20 46 194 78 26 32 26 42 82 P a g e

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 W(KG S(KG Table 6: 90%Diesel, 5% Palm oil, 5% Mustard oil (RPM (ML (SEC 1. 2 0.2 1466 20 98 107 64 27 29 27 40 2. 4 0.4 1462 20 73 136 70 27 30 27 43 3. 6 0.5 1440 20 52 173 81 27 31 27 45 4. 8 0.6 1432 20 45 196 92 27 32 27 48 W(KG S(KG Table 7: 80% Diesel, 10% Palm oil, 10% Mustard oil (RPM (ML (SEC 1. 2 0.2 1468 20 100 110 56 27 29 27 40 2. 4 0.4 1462 20 74 140 65 27 30 27 42 3. 6 0.5 1442 20 54 178 77 27 31 27 45 4. 8 0.6 1440 20 46 198 85 27 32 27 48 W(KG S(KG Table 8: 70% Diesel, 15% Palm oil, 15% Mustard oil (RPM (ML (SEC 1. 2 0.2 1470 20 102 112 56 27 29 27 39 2. 4 0.4 1464 20 74 142 64 27 30 27 45 3. 6 0.5 1446 20 56 180 76 27 31 27 50 4. 8 0.6 1444 20 45 210 85 27 32 27 56 W(KG S(KG Table 9: 60% Diesel, 20% Palm oil, 20% Mustard oil (RPM (ML (SEC 1. 2 0.2 1472 20 105 114 55 27 29 27 38 2. 4 0.4 1468 20 75 148 62 27 30 27 41 3. 6 0.5 1448 20 56 183 78 27 31 27 42 4. 8 0.6 1446 20 46 230 87 27 32 27 45 83 P a g e

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 W(KG S(KG Table 10: 50% Diesel, 25% Palm oil, 25% Mustard oil (RPM (ML (SEC 1. 2 0.2 1470 20 108 111 59 27 29 27 37 2. 4 0.4 1462 20 77 143 65 27 30 27 39 3. 6 0.5 1446 20 57 181 79 27 31 27 42 4. 8 0.6 1440 20 48 222 92 27 32 27 45 Table 711: Total Fuel Consumption & of Different blending ratio with Diesel 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB (kw (kw (kw (kw (kw (kw 1.474 4.897 1.669 4.877 1.728 4.884 1.782 4.890 1.800 4.897 1.785 4.890 2.115 9.767 2.241 9.727 2.335 9.727 2.457 9.741 2.520 9.767 2.504 9.727 3.100 14.902 3.146 14.638 3.200 14.658 3.246 14.699 3.375 14.719 3.382 14.698 3.909 20.023 3.635 19.585 3.756 19.695 4.040 19.749 4.109 19.776 4.017 19.694 Table 8: & Break Powers of different blending ratio with Diesel 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB W-hr (kw W-hr (kw W-hr (kw W-hr (kw W-hr (kw W-hr (kw 1.084 4.897 1.232 4.877 1.274 4.884 1.312 4.890 1.323 4.897 1.314 4.890 0.779 9.767 0.829 9.727 0.864 9.727 0.908 9.741 0.929 9.767 0.927 9.727 0.749 14.902 0.774 14.638 0.786 14.658 0.795 14.699 0.825 14.719 0.828 14.698 0.703 20.023 0.668 19.585 0.686 19.695 0.736 19.749 0.748 19.776 0.734 19.694 84 P a g e

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1, March 2014, pp.78-85 7.550 10.495 10.925 11.641 ( C Table 9: & Break Powers of different blending ratio with Diesel 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB (k W 4.89 7 6.761 9.76 7 10.043 14.9 02 10.766 20.0 23 12.466 (k W 4.877 6.66 9.727 9.816 14.63 8 10.793 19.58 5 12.355 (k W 4.884 6.587 9.727 9.517 14.65 8 10.87 19.69 5 11.734 (k W 4.890 6.655 9.741 9.481 14.69 9 10.669 19.74 9 11.774 (k W 4.897 9.767 14.719 19.776 6.832 9.688 10.838 12.227 Table 10: Exhaust Gas s & Break Powers of different blending ratio with Diesel 0 BB 10 BB 20 BB 30 BB 40 BB 50 BB (kw (kw (kw (kw (kw ( C ( C ( C ( C ( C (k W 4.890 9.727 14.69 8 19.69 4 (kw 108 4.897 107 4.877 110 4.884 112 4.890 114 4.897 111 4.890 130 9.767 136 9.727 140 9.727 142 9.741 148 9.767 143 9.727 165 14.902 173 14.638 178 14.658 180 14.699 183 14.719 181 14.698 194 20.023 196 19.585 198 19.695 210 19.749 230 19.776 222 19.694 85 P a g e