Biodiesel Production and Analysis

Similar documents
CHEMISTRY 135. Biodiesel Production and Analysis

Biodiesel Production and Analysis

Experiment 4 - A Small Scale Synthesis of Biodiesel

Biodiesel: Making Renewable Fuel from Waste Oils

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 7: Using Differences in Solubility to Remove Contaminants from Biodiesel

BIODIESEL Using renewable resources Introduction: Reference: Background information:

Chemistry of Biodiesel: The beauty of Transesterfication

Chem(Bio) Week 10 Bomb Calorimetry of Biodiesel

By the end of the activity, each student will have transformed vegetable oil into biodiesel

Biofuels Unit Plan Kim Misyiak-Chumney

Biodiesel Unit Lesson 2

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

SYNTHESIS OF BIODIESEL

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Filtertechnik Filtration, Purification & Separation Solutions

There s a lot of corn in the Midwest but can we use it to fly?

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

What s s in your Tank?

The preparation of biodiesel from rape seed oil or other suitable vegetable oils

How to Make Biodiesel

Selection of an Efficient Method of Biodiesel Production from Vegetable Oil Based on Fuel Properties

Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles. Overview:

Fractional Distillation Lab Simulating The Refining of Petroleum 12/12 Integrated Science 3 Redwood High School Name : Per:

Technology Education

Bomb Calorimetry and Viscometry: What Properties Make a Good Fuel?

While each lab can stand on its own, each also builds on the previous labs, so using them in sequence can provide a richer experience.

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

Soybean Oil: Powering A High School Investigation of Biodiesel. 1. Northview High School, Covina, CA 91722

Edexcel GCSE Chemistry. Topic 8: Fuels and Earth science. Fuels. Notes.

Direct transesterification of lipids from Microalgae by acid catalyst

Hydrocarbons 1 of 29 Boardworks Ltd 2016

Food or Fuel? (Student Handout) (The Chemistry and Efficiency of Producing Biodiesel)

Material Science Research India Vol. 7(1), (2010)

4025 Synthesis of 2-iodopropane from 2-propanol

Performance of Biodiesel Fuel in cold weather condition. Mechanical Engineering Graduation Thesis / Presented by: Zeloon Lye

Excessive Waste. Some of the grease is used to supplement feed farms but majority of it ends up in landfills

TESTING OF FUELS : FLASH AND FIRE POINT

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

Q1. The table shows how much carbon dioxide is produced when you transfer the same amount of energy by burning coal, gas and oil.

METHANOL RECOVERY: BASICS, FINE TUNING, AND ENERGY BALANCE ISSUES. Dickinson College Biodiesel Shop Carlisle, PA

Q1. Useful fuels can be produced from crude oil. Crude oil is a mixture of hydrocarbons.

Heating Methods. Reflux and Distillation

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

New Energy Activity. Background:

An Analysis of Alternative Fuels for Automotive Engines. Joey Dille

Emission Analysis of Biodiesel from Chicken Bone Powder

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY

TESIGNG OF FUELS: VISCOSITY OF LIQUID FUELS

Grow it Now, Drive it Later?

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

This presentation focuses on Biodiesel, scientifically called FAME (Fatty Acid Methyl Ester); a fuel different in either perspective.

DarkStar VI 841 St Louis Rd., Collinsville, IL Biodiesel Basics. By Phillip D. Hill (Updated March 9 th, 2006)

Heat Engines Lab 12 SAFETY

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

Project Reference No.: 40S_B_MTECH_007

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

Biodiesel Energy Balance

Biodiesel Process Unit EBDB

Greenhouse gases affect the temperature of the Earth. Which gas is a greenhouse gas? Tick one box. Argon Methane Nitrogen Oxygen

Renewable Energy Sprint

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

Basic Guidance for the Production/Blending of Biodiesel Product and Complying with Applicable Code

USES FOR RECYCLED OIL

ZINSSER-MINILAB A Complete Laboratory in a Case

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Energy Engineering Lab

Where We Are. Today: Finish up Chapter 4, hopefully! Discussion: Alternative fuels, the benefits of conservation Where to go next?

Improving the quality of life in the communities we serve.

Synthesis and Evaluation of Alternative Fuels. The notion of using vegetable oil as a fuel source is as almost as old as the internal combustion

Louis Dreyfus Claypool Holdings, LLC. Biodiesel Production Plant Claypool, Indiana

Food or Fuel? (Teacher Notes) (The Chemistry and Efficiency of Producing Biodiesel)

BYOE: Using the Biodiesel Process as a Lab Activity to Reinforce Chemistry Concepts

Temperature-Viscosity Correlation for Biodiesel Blends Derived from Corn, Olive and Palm Oil

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Chemicals BV. for tomorrow s. Tackifiers. for Lubricants and Greases. for tomorrow s. World

Dr. Jim Henry, P.E. Professor of Engineering University of Tennessee at Chattanooga 615 McCallie Avenue Chattanooga, TN Dr.

Use of Ultrasound for Monitoring Reaction Kinetics of Biodiesel Synthesis: Experimental and Theoretical Studies.

International Engineering Research Journal (IERJ) Special Issue Page , June 2016, ISSN

Investigation of Emission Properties and Performance Characteristics of Biodiesel from Chicken Waste

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Published in Offshore World, April-May 2006 Archived in

Unit 7 Part 2 Introduction to Organic Chemistry Crude Oil: Sources and Uses of Alkanes UNIT 7 INTRODUCTION TO ORGANIC CHEMISTRY

The Purification Feasibilityof GlycerinProduced During

EFFECT OF ETHANOL BLENDED WITH COTTONSEED OIL METHYL ESTER ON ENGINE PERFORMANCE AND EMISSION IN A DI DIESEL ENGINE BY VARYING INJECTION PRESSURE

Processing of Biodiesel from Algae and Experimental Investigation on Single Cylinder Diesel Engine

Name: C7 Organic Chemistry. Class: 35 Questions. Date: Time: Marks: Comments: Brookvale Groby Learning Trust

Exceeding Expectations

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Module8:Engine Fuels and Their Effects on Emissions Lecture 36:Hydrocarbon Fuels and Quality Requirements FUELS AND EFFECTS ON ENGINE EMISSIONS

Environmental Protection Agency

JCHPS Special Issue 7: 2015 NCRTDSGT 2015 Page 408

Lesson 15: Biofuels in Your Backyard

The table below gives information about milk bottles. Raw materials Sand, limestone, salt Crude oil. Bottle material Soda-lime glass HD poly(ethene)

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

Research Article. Bio diesel production by transesterification in presence of two different catalysts and engine performance of the biodiesels

Transcription:

Biodiesel Production and Analysis Introduction A key current focus in science and engineering is the development of technologies for generating and utilizing new sources of energy. Climate change, geopolitics, national security, and diminishing resources are driving a significant portion of this work toward renewable sources of energy. The energy obtained is sometimes referred to as green, though the environmental impact of different energy sources is a complex topic beyond the scope of this course. Among the renewable energy approaches are a number of strategies for generating fuels from plants. These are particularly relevant to Kansas given the importance of agriculture in the state economy. They include ethanol (C 2 H 6 O), which is derived in the U.S. from corn and mixed with gasoline; and biodiesel, i.e., diesel fuel derived from a biological source, which is a mixture of different organic molecules (involving C, H, and O) derived from plants such as soybeans. In this laboratory experiment, you will generate a biodiesel fuel from common vegetable oil and analyze its properties. While there are many variations of biodiesel synthesis, all follow the same basic premise. In this laboratory experiment, you will combine methanol (CH 3 OH) with sodium hydroxide (NaOH) to form sodium methoxide (NaOCH 3 ) and water (see Reaction 1 below). This is a reversible process, so you will drive the reaction forward by heating the mixture up to 60 C. You will then take vegetable oil and mix it with sodium methoxide to form 3 equivalents of biodiesel and 1 equivalent of glycerin (Reaction 2). This is called a transesterification reaction. NOTE: The mixture of carbon chain lengths and the locations of carbon-carbon single/double bonds vary with the type of oil. The following reaction scheme is a simplified representation. 2

Viscosity is simply a measure of a fluid s thickness, i.e., its resistance to flow. Rigorous measurement of absolute viscosity, expressed traditionally in the unit of centipoise (cp), is beyond the scope of this lab. We will use an ordinary Pasteur pipet to measure relative viscosities; this approach is derived from the Ford viscosity cup method. Below is a table of viscosity measurements obtained with the pipet method for water, ethanol (C 2 H 6 O), and octane. You will likely recognize the latter as a component of gasoline. When referred to in gasoline, it actually involves a number of different molecules with the general formula C 8 H x, and the octane rating measures the quantity of such molecules in the gasoline blend. When a change in the When a change in the energy of a system results in a temperature difference, we say that energy has been transferred as heat. An equation that expresses heat in the internationally accepted energy unit of Joules (J) is q = msδt where q is heat released or absorbed (usually expressed in J), m is mass (usually in g), s is specific heat (usually in J/(g o C)), and ΔT = T final - T initial is the change in temperature (usually in o C). The above equation describes the heat transferred to a calorimeter. The convention, however, is to focus attention on the system from which the heat is being obtained, here the biodiesel fuel, rather than the calorimeter which is receiving the heat. Accordingly, the experimental quantity of interest is numerically equal in magnitude but opposite in sign: q = -msδt Sample Relative Viscosity (time in sec. required to gravity-empty pipet) Distilled Water 5.5 Ethanol 5.6 Octane 4.8 This is the heat transfer from the perspective of the system (i.e., if q is negative, energy has been transferred from the system to its surroundings, if q is positive, energy has been transferred to the system from its surroundings). In general, the specific heat of a substance, s, refers to the amount of heat gained or lost when one gram of that substance changes temperature by one degree Celsius ( o C). For example, the specific heat of water is 4.184 J/(g C). Thus, 4.184 J of energy is required to raise the temperature of exactly 1 g of water by exactly 1 C. Given a value for s, what experimental data do we need to calculate the heat transferred, q, for a process? We must know m, the total mass of water inside the calorimeter undergoing warming or cooling, which we define as the system. We must also measure the net temperature change, ΔT. Performed as described here, the experimentally calculated quantity q corresponds to the net heat change, also known as the enthalpy change, ΔH. The enthalpy change is actually defined as the heat transferred under constant pressure conditions. Since the atmospheric pressure in the laboratory does not change much during the course of your experiments, the heat you measure is therefore an enthalpy change. 3

Pre-lab Prelab assignments must be completed by the scheduled class start time. Safety Goggles must be worn at all times. This lab involves a number of substances that must be handled with care. NaOH (sodium hydroxide) is highly caustic - if you get it on you immediately wash the affected area with soap and water. Biodiesel is highly flammable. You will also have excess NaOH in the biodiesel. Remove all potentially flammable items from the area before igniting the biodiesel. Methanol will cause blindness if ingested and is highly flammable. Be sure to return the methanol to the hood immediately after use. The normal boiling point of methanol is 64.7 C. To avoid rapid vaporization of methanol during biodiesel production, do not combine methanol or methanolic solutions with oil if the oil temperature exceeds 64 C. Biodiesel, organic solvent (methanol), and sodium hydroxide should be collected in the appropriate waste containers. Do not discard magnetic stir bars in the waste container. Check with your TA if you have questions about proper disposal. (1) List all of the chemicals you will use for this week's experiment. For each chemical, list specific safety precaution(s) that must be followed. In order to find specific safety information, please obtain a Materials Safety Data Sheet (MSDS) on the chemical of interest. MSDSs can be found through an internet search (e.g., google) or from the following website: www.hazard.com Read the MSDS and find specific safety concerns for each chemical. (2) Assuming that you are limited to the standard glassware and equipment available in the Chemistry lab room, write a procedure to determine the density of an oil. (3) In one student's experiment, the tin can containing 100 ml of water described in the Part 2 Procedure "Energy Content" showed a temperature increase of 9.65 C. Determine the energy content of this fuel (in J/g) if the student began with 2.655 g of biodiesel. (4) Is the combustion of biodiesel an endothermic or exothermic process? Why? Procedure Part 1 Producing Biodiesel from Waste Vegetable Oil In this Part of the experiment, you will generate biodiesel from vegetable oil. This will be accomplished through a simple chemical reaction in which the longer-chain hydrocarbons making up the vegetable oil are broken up into shorter-chain molecules (biodiesel) and reaction side products (glycerol). This biodiesel production procedure is based on the published work of S. A. Meyer and M. A. Morgenstern (see The Chemical Educator 2005, 10, 130-132). 4

1. Create a warm water bath (~60 C) using a large beaker (at least 400-mL-size) on a hot plate. 2. Place 14 ml of methanol in a large test tube. Use a ring stand and clamp to support the test tube in the water bath. 3. Grind 0.5 g of NaOH and add it to the methanol. Close the stock container immediately; NaOH is corrosive and hygroscopic! 4. When the NaOH is dissolved, place a small beaker containing 60.0 ml of vegetable oil on the hot plate to warm it. Do not allow the temperature of the oil to exceed 64 C. 5. Place the beaker containing warm oil on a stir plate, and add the warm methanol solution to it. 6. Use a stir bar to stir the mixture for 30 min. 7. Pour the product mixture into 2 small test tubes (each about two-thirds full) and centrifuge for 3 min. 8. The layer on top is biodiesel, and the bottom layer is methanol and glycerol. Use a disposable pipet to decant the biodiesel; collect it in a beaker. Be sure to properly dispose of the waste in the proper container and return the methanol to the hood. Before using biodiesel in engines, the biodiesel is washed with water to remove sodium hydroxide. Why? Part 2 Analysis of Biodiesel In this Part of the experiment, several tools will be used to assess the quality of the fuel produced in Part 1. Specifically, your group will measure density, viscosity, and energy content. Density Determination Use the procedure you developed for your Prelab to determine the density of your fuel. Viscosity Measurement 1. Take a disposable pipet (shown at right) and stand it straight up in a beaker, ensuring that the tip is flat against the bottom. 2. Fill the pipet to the brim with biodiesel (some oil will fall out of the pipet, but continue filling it until the oil level reaches the top). 3. Use a stopwatch to determine the time it takes for all of the biodiesel to pour out of the pipet only using gravity (there may be some oil left in the very tip, but stop timing at the moment the oil stops pouring from the pipet). Considering the viscosities given in the Introduction, what are the implications for your biodiesel in an engine? 5

Energy Content 1. Mount an iron ring on a ring stand. Take a tin can with two holes cut in the top and insert a glass rod. Hang the can on the iron ring. 2. Weigh the empty tin can. Add approximately 100 ml of water to the can and re-weigh. Calculate the mass of water in the can. Return the can to the apparatus and place a thermometer in it. You may gently clamp the thermometer to ensure that it is submerged in the water--but it should be suspended slightly above the can bottom. 3. Place ~1 g of biodiesel on a watch glass. Bend a metal wire to form a small "matchstick stand" and place it on the watch glass. Place the watch glass assembly underneath the tin can. The arrangement is pictured below. (Check with your TA if you have questions.) 4. Record the initial temperature, T initial. 5. Remove all potentially flammable items from the area. Light a match and carefully place it on the matchstick stand to ignite the biodiesel. 6. Wait until the biodiesel has been consumed by combustion. The water temperature may continue to increase for a short time after burning has ceased. The highest temperature reached should serve as T final in your calculations. 7. Clean up the entire area your group used to perform today s experiments. There should be no trace of oil or other reagents on the bench top. All glassware must also be cleaned thoroughly and returned to your group s glassware drawer! 8. Determine the energy content of your fuel, that is, the enthalpy change involved in combustion of the biodiesel, according to the equations given in the Introduction. When selecting a fuel for your car, would you want a high or low energy content? Why? 6