LESSON PLAN: Circuits and the Flow of Electricity

Similar documents
ACTIVITY 1: Electric Circuit Interactions

Science Olympiad Shock Value ~ Basic Circuits and Schematics

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Period 11 Activity Sheet Solutions: Electric Current

FUN! Protected Under 18 U.S.C. 707

Mandatory Experiment: Electric conduction

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23

FUN! Protected Under 18 U.S.C. 707

Lab 08: Circuits. This lab is due at the end of the laboratory period

1103 Period 16: Electrical Resistance and Joule Heating

Series and Parallel Circuits

SC10F Circuits Lab Name:

Circuits. Now put the round bulb in a socket and set up the following circuit. The bulb should light up.

Electrical Circuits. Vanderbilt Student Volunteers for Science. Training Presentation VINSE/VSVS Rural

Circuits. This lab is due at the end of the laboratory period

VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE Electrical Circuits VINSE/VSVS Rural

Can You Light the Bulb?

Science 10-Electricity & Magnetism Activity 4 (2007) Activity 3E Investigating Electric Current

reflect energy: the ability to do work

Activity 3: Electricity

IT'S MAGNETIC (1 Hour)

Electricity and Magnetism

Electricity and Magnetism. Introduction/Review

Electricity. Teacher/Parent Notes.

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny

The Shocking Truth About Electrical Safety Teacher s Guide

Electricity and Magnetism (Demo Version) The pictures show different arrangements of a battery, a light bulb, and a piece of copper wire.

Simplifying Electricity

Engaging Inquiry-Based Activities Grades 3-6

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

Electromagnetism - Invisible Forces

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change?

Using your Digital Multimeter

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

Understanding Electricity and Electrical Safety Teacher s Guide

Phys 202A. Lab 7 Batteries, Bulbs and Current

Overcurrent protection

Physics 144 Chowdary How Things Work. Lab #5: Circuits

PHY152H1S Practical 3: Introduction to Circuits

NEW CAR TIPS. Teaching Guidelines

Electricity Practice (Demo Version)

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered

Electricity and Magnetism

1.69 Electric Conductors and Insulators

Science Test Revision

Electrical Energy THE TEAK PROJECT: TRAVELING ENGINEERING ACTIVITY KITS. The TEAK Project Rochester Institute of Technology

What is included in a circuit diagram?

2. There are 2 types of batteries: wet cells and dry cells.

Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Activity 8: Solar-Electric System Puzzle

Stay Safe Around Electricity Teacher s Guide

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT.

PURE PHYSICS ELECTRICITY & MAGNETISM (PART I)

Simplifying Electricity

Current, resistance and potential difference

Based on results from TIMSS Key. bulb. bulb. switch. wir. battery. wir. switch. Lesson plan on investigative science. wire.

Electricity Program of Study Content Assessment: Explanations for Current Electricity Items

AIR CORE SOLENOID ITEM # ENERGY - ELECTRICITY

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section.

Electricity. Grade Level: 4 6

EXPERIMENT - 1 OHM S LAW

Physical Processes B Light & Sound / Electricity

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

LETTER TO PARENTS SCIENCE NEWS. Dear Parents,

Activity 3 Solutions: Electricity

LICENCE TO LIGHTING,TEACHER S BOOK

Lesson Plan: Electricity and Magnetism (~100 minutes)

School In The Park Curriculum

7.9.2 Potential Difference

Electricity Unit Review

How is lightning similar to getting an electric shock when you reach for a metal door knob?

Electric current, resistance and voltage in simple circuits

Electrical Connections

Algebra 1 Predicting Patterns & Examining Experiments. Unit 2: Maintaining Balance Section 1: Balance with Addition

What Is an Electric Motor? How Does a Rotation Sensor Work?

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it?

Lesson Plan 11 Electric Experiments

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current.

Student Instruction Sheet: Unit 3 Lesson 2. Electric Circuits

Solar Kit Lesson #13 Solarize a Toy

a) One light bulb, One battery, Two wires

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate.

8.2 Electric Circuits and Electrical Power

SPS10. Students will investigate the properties of electricity and magnetism.

Experiment P-16 Basic Electromagnetism

PAPER ASSIGNMENT #1: ELECTRIC CIRCUITS Due at the beginning of class Saturday, February 9, 2008

Student Exploration: Advanced Circuits

Section 3 Electric Circuits

It s a Wired World Teacher s Guide


Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14

Reliable Reach. Robotics Unit Lesson 4. Overview

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

Electricity to Light

Introduction: Electromagnetism:

1ACE Exercise 1. Name Date Class

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor

Transcription:

LESSON PLAN: Michigan Curriculum Framework Middle School Benchmark SCI.IV.1.MS.5 Construct simple circuits and explain how they work in terms of the flow of current. Benchmark SCI.IV.1.MS.6 Investigate electrical devices and explain how they work, using instructions and appropriate safety precautions. High School Benchmark SCI.IV.1.HS.5 Describe how electric currents can be produced by interacting wires and magnets, and explain applications of this principle. Benchmark SCI.IV.1.HS.4 Explain how current is controlled in simple series and parallel circuits. Lesson Outcome The student will apply understanding of current electricity to design a circuit and describe its workings. Rationale/Purpose for Lesson To understand current electricity, many vocabulary words must be introduced. The first part of this lesson uses a hands-on, problem-solving activity that helps students define the vocabulary terms and demonstrate the terms relationships. After gaining foundational understanding, students create their own circuits. Resources/Materials Required 12 small balls (such as tennis balls or other soft balls) Copies of Making Circuits handout One circuit kit for each group. Circuit kits contain one D cell battery, battery holder, two 1.5 volt bulbs, two sockets for the light bulbs (or E-10 light bulb bases), and four pieces of 6-inch insulated solid strand copper wire (18 22 gauge), with one inch of insulation removed at each end wire. Materials for circuit kits can be purchased at a local hardware store. Paper to record observations Introduction Ask two student volunteers to go to the front of the classroom. Assign one student the role of the battery and the other student the role of the light bulb. It may be 1

helpful to have each student stand by the chalkboard with a picture of his or her role (the battery or light bulb) nearby. Ask students, How can the battery give energy to the light bulb in order to create light? Provide the battery with a basket of balls. Explain that the balls represent the electrons of an atom. Draw a diagram of an atom and discuss the negative charge of electrons. Explain that electrons carry energy and it is the flow of electrons that generate electricity. Have the battery toss the balls to the light bulb. Now the light bulb has been supplied energy to generate light. Procedures Once the battery has thrown all of the balls to the light bulb, the supply of energy to the light bulb is exhausted and no more light can be generated. Ask students, How can the light bulb be lit for a longer period of time? Possible answers: o Have more balls o Have the light bulb return the balls to the battery quickly While the first answer would still work for only a limited time, the second answer introduces the term circuit. A circuit is a complete path; in this case the path is completed when the balls are returned to their starting point and can then be given more energy and used again. Ask students, How could the light bulb give off light that is brighter? Possible answers: o Have each ball carry more energy by making the balls bigger. (In this case, using basketballs for example.) However, in an atom, it is easier to move the small, negatively charged electrons than the larger, positive charges. o Throw the ball harder. This introduces the term voltage (V). Voltage is the measure of pressure under which electricity flows; in this case it is the measure of how much energy or force the battery is giving each ball. If the same number of balls are thrown, but each ball is given more force or energy, more power will be sent to the light bulb. o Throw the balls faster; send more balls to the light bulb per second. This introduces the terms current (I) - the movement or flow of electricity, and amps - the measure of the amount of electrical current. Since the electrical current is how many electrons pass by each second, if we send twice as many electrons or balls each second, we will send twice the energy. o Throw the balls harder and faster. This introduces the equation of total power (P), which is the product of current and voltage. P = I x V. In this case, the total power would be number of balls thrown multiplied by how much energy each one has. 2

Distribute the Making Circuits handouts and provide each group of three or four students with a circuit kit. Allow students time to complete the activities on the handout. Closure Have students show their completed working circuits to the class. Ask students to explain the circuits by tracing the flow of energy from the battery through the course of the circuit. Have them either present this explanation or write it. Extension Pose the following question to students: Will the light bulbs in the parallel circuit or the series circuit burn brighter? Have students test their predictions. Ask students if their predictions were correct and to explain the results of the test. After a simple circuit is constructed, investigate electric insulators and conductors by completing the Insulators and Conductors lesson. 3

Making Circuits Materials in the circuit kit One D cell battery Battery holder Two 1.5 volt bulbs Two sockets for the light bulbs (or E-10 light bulb bases) Four pieces of 6-inch insulated solid strand copper wire (18 22 gauge), with one inch of insulation removed at each end wire Directions Simple circuit with single light bulb: 1. Using two wires, connect one end of each wire to the light bulb base. 2. Connect the other end of each wire to the battery, unless this has already been done for you. 3. Record what happens. Does the light bulb light? Where does the energy flow? Describe and illustrate the flow of electrical current from the battery through the wires and to the bulb. 4. Using your circuit, demonstrate how switches must work to turn lights on and off. Draw a diagram of what the circuit would look like if the switch was in the off position. Parallel circuits: Parallel circuits are circuits in which electrical current from the battery flows with equal voltage into two or more bulbs. In this type of circuit, electricity can flow through more than one path. 5. To make a parallel circuit, you will need two more pieces of wire, an additional light bulb and socket. Connect one end of the two new wires to the new light bulb. Connect the other ends of the two new wires to the first light bulb that is still attached to the battery. 4

6. Record what happens with this type of circuit. Do both light bulbs light? What happens if one light bulb is unscrewed from its socket? Why? Series circuits: Series circuits are circuits in which electrical current from the battery flows through one bulb and then through another bulb. Electricity in this type of circuit can only flow in one path. 7. Rearrange the position of the wires and light bulbs in your circuit to create a series circuit. You will need three pieces of wire (only one if the battery holder already has one attached to each side). Connect one end of the wire the battery is attached to at the end of the first light bulb. Connect one end of the second piece of wire to the first light bulb and the other end of the wire to the second light bulb. Connect the other end of the piece of wire attached to the battery to the second light bulb. 8. Record what happens with this type of circuit. Do both light bulbs light? What happens if one light bulb is unscrewed from its socket? Why? 5