mroy Pneumatic Capacity Control

Similar documents
Double Diaphragm with Pressure-Type Leak Detector. For MILROYAL, CENTRAC B And MAXROY

E.R.I.C. Series Electronic Metering Pump Installation & Operation Manual (Enhanced Control) Manual No.: Revision : 00 Rev.

Fisher 657 Diaphragm Actuator Sizes and 87

CENTAC Inlet and Bypass Valve Positioners

Bennett Pump Company

Powers Controls RL 147 Positioning Relay

Control Valves Positioner

Control Valves Positioner

Material Specifications

LogSplitterPlans.Com

E8 Mini-Matic 3/8" Bolted Plastic Pumps Operating Instructions

Baumann Sanitary Diaphragm Angle and Inline Control Valve

INSTRUCTION AND MAINTENANCE MANUAL GC31 COMMANDAIRE POSITIONER

6200 Series. Specifications. Fluid End Power End Models 6211, 6212, 6221, & 6222 Models 6241 & 6242 Part Material Part Material Part Material

Fisher 3024C Diaphragm Actuator

SD Bendix E-10PR Retarder Control Brake Valve DESCRIPTION. OPERATION - Refer to Figure 2

CONTROL VALVES. Installation, Maintenance & Operating Instructions. Read these instructions carefully before installation or servicing.

Versa-Matic. Operating Manual. 3/8" Bolted Plastic Pumps. Polypropylene Kynar

Model 8329 Table of Contents

Fisher 2506 and 2516 Receiver/Controllers

INJECTION CHECK VALVE DISCHARGE TUBING SPACER, E.P.U

Flowrite AP 599 Series

GH-BETTIS SERVICE INSTRUCTIONS DISASSEMBLY & REASSEMBLY FOR MODELS HD521-M4, HD721-M4 AND HD731-M4 DOUBLE ACTING SERIES PNEUMATIC ACTUATORS

Flowrite TM AP 599 Series 8-inch Pneumatic Valve Actuator

ANDERSON GREENWOOD SERIES 500 PILOT OPERATED SAFETY RELIEF VALVES INSTALLATION AND MAINTENANCE INSTRUCTIONS

Paramax Series Control Ball Valve. Specification Data CM6004 7/97

Type 310A-32A Pressure Reducing Regulator

2506 Series Multi-Trol Receiver/Controllers (Types 2506, 2516, 2516F)

Module 4: Actuators. CDX Diesel Hydraulics. Terms and Definitions. Cylinder Actuators

Natural Gas Reference Guide

Baumann Sanitary Diaphragm Angle & In-Line Control Valve Instructions

Pressure Sensor No Series

Series C1 Electronic Metering Pump. Specification Sheet and Assembly Details Manual No : 1619, 1829 Rev. : G, D Rev. Date : 6/09, 10/2015

Actuators & Surface Safety Valves

Catalog HY /NA. Catalog HY /NA. Parker Hannifin Corporation Hydraulic Pump Division Marysville, Ohio USA

Series C9 Electronic Metering Pump. Specification Sheet and Assembly Details Manual No : 1619, 1795 Rev. : G, E Rev. Date : 6/09, 10/2015

MODEL 73N BUILT-IN VALVE POSITIONER

DO NOT INSTALL, OPERATE, OR MAINTAIN AN ATI PRODUCT UNLESS TRAINED AND QUALIFIED IN PRODUCT AND ACCESSORY INSTALLATION, OPERATION AND MAINTENANCE.

Baumann Sanitary Angle Control Valve

771 XS BALL VALVE WITH ADA PNEUMATIC ACTUATOR

TECHNICAL DATA CAUTION

Series PVP Variable Volume Piston Pumps

Model Table of Contents. SERVICE & OPERATING MANUAL Original Instructions. Instructions Sheet:

Operation and Maintenance Instructions for Bettis GVO-C Series GVO-CLP-SR Pneumatic Actuators

Crispin Valves Operating Guide. Crispin

ENGINEERING DATA. Quick Reference Chart. Variable Volume Vane Pumps Models SV-20 & SV-25 Flange & Subplate Mounted. Industrial Hydraulics

MAR031615A 1. PABD Installation & Maintenance. Guide *Parts will differ for high pressure valves.

225 CARTRIDGE DUAL SEAL

kythe Best in Sanitary Flow Control Equipment

OPERATOR'S MANUAL FOR DOUBLE ACTING PISTON HAND PUMP

PNEUMATICALLY ACTUATED 2-WAY

Baumann Mikroseal Control Valve

Types 472, 473, 3572, 3573

VIKING HG SERIES HELICAL GEAR EXTERNAL GEAR PUMPS

Double Acting and Spring Return Direct Gas Quarter-turn Actuators Output Torques to 6,500,000 lb.in.

Adjustable Differential Relay A1

Quality Value Assurance

SPECIFICATIONS. General Specifications. Dimensions

Type Installation, Operation and Maintenance Instructions. Ordering Information. Contents CA20 -

WARNING CAUTION. CAUTION Do not exceed 120 psig (8.3 bar) air-inlet pressure.

EJECTORS GENERAL OPERATION & MAINTENANCE MANUAL

2. Hydraulic Valves, Actuators and Accessories. 24 Marks

PRESSURE REDUCING CONTROL VALVE

Pilot-Operated Regulators

WILROY. Operation. Optional Diaphragm Rupture Detection HYDRAULICALLY ACTUATED DIAPHRAGM PUMP

Fisher 4194HS Differential Pressure Indicating Controllers

TLD 2500 Tube Testing Guns

INSTRUCTION MANUAL TABLE OF CONTENTS

Becker Precision Equipment

INSTRUCTION AND MAINTENANCE MANUAL FR95 PRESSURE REGULATOR

Mustang Series PRESSURE REDUCING CONTROL VALVE. M115 (Globe) M1115 (Angle) Schematic. Standard Components. Options & Accessories.

Fisher L3 Pneumatic Level Controller

Identify and Assemble the Pneumatic Components

Double Acting & Spring Return. SERIES 92/93 Rack & Pinion PNEUMATIC ACTUATOR. The High Performance Company

Instruction Manual. Series E7 Metering Pumps. For file reference, please record the following data:

490 Series Actuators. 490 Series. Contents. Introduction

L3 Pneumatic Level Controller

Moniteur INSTALLATION & OPERATING INSTRUCTIONS. SERIES 40 Positioners. Installation and Operating Instructions Series 40 Positioners.

CAPSU-PHOTOHELIC PRESSURE SWITCH/GAGE*

Technical Data PRESSURE (PSI) DIMENSIONS inches AND WEIGHTS pounds

Fisher 480 Series Yokeless Piston Actuators

Fisher 2506 and 2516 Receiver Controllers

User s Manual OM th edition

aero 2 -IOM aero 2 ACTUATOR - INSTALLATION, OPERATION & MAINTENANCE MANUAL

PRESSURE REDUCING VALVE

TECHNICAL DATA 1-1/2 (dn40)

Type 289RC Exhaust Booster

PRESSURE REDUCING VALVE

BETTIS SERVICE INSTRUCTIONS DISASSEMBLY AND REASSEMBLY FOR CB-SR-S SEISMIC SPRING RETURN SERIES PNEUMATIC ACTUATORS

SD Bendix E-12 & E-15 Dual Brake Valve DESCRIPTION

1/2" AIR DRIVEN DIAPHRAGM PUMP

MF205, MF205-4, MF210, MF210-4, MF220 & MF220-4 Compact

I N S T R U C T I O N M A N U A L

PRESSURE REDUCING VALVE

Series Low Pressure Steam Heating Boiler Safety Valves


Instructions for Installation, Operation, Care and Maintenance

Valtek Auxiliary Handwheels and Limit Stops

DENISON HYDRAULICS Premier Series. open circuit pump controls P16 B-mod, P09 A-mod. service information

Type 2625 and 2625NS Volume Boosters

Transcription:

mroy Pneumatic Capacity Control Instruction Manual Manual No. : 53871 Rev. : 00 Rev. Date : 06/2015

PRECAUTIONS For Pumps with PVC & 316SS Liquid Ends WHEN USED IN SWIMMING POOLS OR SPAS/HOT TUBS (ANSI/NSF 50) Caution on Chemical Concentration: There is a potential for elevated chemical concentration during periods of no flow, for example, during backwash in the system. Steps, such as turning the pump off, should be taken during operation or installation to prevent this. Contact your sales representative or distributor about other external control options to help mitigate this risk. Flow Indicating Device: To ensure operation of the pump it is recommended that some type of flow indicating device be installed to measure water flow rates and be appropriate for the output of the pump. Contact your distributor or sales representative for further information. Head Loss / Over Pressure Protection / Back Pressure-Anti-Siphon Valve: Milton Roy metering pumps are positive displacement. Head loss is not applicable to the pump. To ensure safe operation of the pump it is recommended that some type of safety/pressure relief valve be installed to protect the piping and other system components from failing due to excessive pressure. If you are pumping downhill or into low or no system pressure, a back pressure/anti-siphon device should be installed to prevent over pumping or siphoning. Contact your distributor or sales representative for further information. Additional Operation and Installation Instructions for 316SS or PVC Liquid Ends: Application of this pump to swimming pool/spas only evaluated to NSF/ANSI 50. There is a potential for elevated chemical concentration during periods of no flow, for example, during backwash in the system. Steps, such as turning the pump off, should be taken during operation or installation to prevent this. See your sales representative or distributor about other external control options to help mitigate this risk. Liquid Compatibility CAUTION: Determine if the materials of construction included in the liquid handling portion of your pump are adequate for the solution (chemical) to be pumped. ALWAYS wear protective clothing, face shield, safety glasses and gloves when working on or near your metering pump. Additional precautions should be taken depending on the solution being pumped. Refer to MSDS precautions from your solution supplier. Reference a Milton Roy Material Selection Chart for aid in selecting appropriate material of construction for fluids of your specific metering pump. Contact your sales representative or distributor for further information. Instruction Manual 3

TABLE OF CONTENTS SECTION 1 - PNEUMATIC CAPACITY CONTROL.... 5 SECTION 2 - DISASSEMBLY AND ASSEMBLY PROCEDURE... 7 2.1 DISASSEMBLY... 7 2.2 ASSEMBLY... 7 2.3 CALIBRATION AFTER ASSEMBLY.... 7 SECTION 3 - GENERAL PERFORMANCE.... 8 SECTION 4 - OPERATING SPECIFICATION... 9 SECTION 5 - TABLE OF EQUIVALENTS... 11 LIST OF ILLUSTRATIONS FIGURE 1. Assembly Pneumatic Capacity Control... 10 4 Instruction Manual

SECTION 1 - PNEUMATIC CAPACITY CONTROL Reference the drawing for pneumatic capacity control assembly and operating principles (pages 3 and 4) for a schematic and cross section representation of the pneumatic capacity control positioner mounted on the mroy pump. The assembly consists of three major sections as follows: 1. The Moore Products Company, Model 73N air control valve which continuously compares the location of the piston in the pneumatic cylinder with the instrument air pressure and regulates the supply air pressure imposed on one side of the piston to obtain the required piston position. 2. The pneumatic cylinder, with a differential area piston, is the device that moves the capacity control spool of the pump in response to the metered supply pressure from the air control valve. The cylinder is made of a clear impact resistant plastic, so that the position of the piston is visible at all times for comparison against a Percent Capacity decal. (Read percent capacity at the black line of the O-ring contact). 3. The mounting flange, which is used to rigidly mount the assembly onto the standard production mroy pump assembly, forms the end of the pneumatic cylinder and seals off the I.D. of the piston to establish a differential area between the two sides of the piston. At time of installation, the instrument air pressure (Pi) and the supply air pressure (Ps) are connected to the corresponding fittings in the air control valve. The supply air (Ps) is routed internally to the pilot valve and it is also routed unrestricted, internally through the cylinder wall onto the small area (pump side) of the differential area piston. The instrument air pressure (Pi) is routed to a dead end cavity formed by the flexible diaphragm assembly. As shown by the schematic, the supply pressure imposed on the small area side of the piston creates a force to move the piston until it bears against, and compresses, the range spring. The range spring in turn is supported by the flexible diaphragm assembly which bears against the stiff suppression spring. The diaphragm assembly is then a moveable element between two opposing spring forces. This movement of the diaphragm assembly is transmitted to the pilot valve which acts to either increase or decrease the metered supply air pressure (Psm) imposed on the large area side of the piston. The relationship of metered supply pressure (Psm) on one side and full supply pressure (Ps) on the other side of the differentially area piston is used to establish and maintain the required capacity control position. A fixed air bleed is incorporated in the metered supply pressure chamber which will maintain a small air flow across the pilot valve to provide instant response to any changes in the operating conditions. Instruction Manual 5

SECTION 1 - PNEUMATIC CAPACITY CONTROL In operation, an increase in instrument air pressure (Pi) upsets the balanced forces and moves the diaphragm assembly to the left. This lifts the pilot valve above its seat to reduce the air pressure drop across the pilot valve and increases the metered supply pressure, (Psm) on the downstream side of the pilot valve, which is imposed on the large side of the air piston. The metered supply pressure will continue to increase until sufficient force is developed to move the piston to the right which increases the pump capacity. As the piston moves, the range spring feeds back a force proportional to the piston location so that when the range spring pressure plus the diaphragm force from the instrument air signal are again in balance with the suppression spring force, the pilot valve closes and maintains a balanced pressure condition. A decrease in instrument air pressure moves the diaphragm assembly to the right which seats the head of the pilot valve and lifts the pilot valve stem off the exhaust seat. This vents the pressure (Psm) on the large side of the piston at atmosphere (Pa), then the supply pressure on the small side of the piston will move the piston to the left to decrease the pump capacity. Again the range spring feeds back to the positioner the location of the air piston until the forces are again in the balanced condition. 6 Instruction Manual

SECTION 2 - DISASSEMBLY AND ASSEMBLY PROCEDURE 2.1 DISASSEMBLY 1. Disconnect the supply and instrument air pressure lines. 2. Remove the six ¼ -20 NC nuts from the air control valve hold-down studs. 3. Mark the alignment between the air control valve, gasket, cylinder and mounting flange to facilitate reassembly. 4. Remove positioner by sliding off hold-down studs. 5. Remove spring adapter plate and spring from bore of cylinder. 6. Slide plastic cylinder off mounting studs to expose piston. 7. Hold piston O.D. and remove mounting screw in center of piston. 8. Remove the mounting screw in the flange and the screw in the barrel of the flange. Now slide the flange off the pump capacity control boss. 9. Use a thin screwdriver or similar tool to remove E ring which retains the piston adapter onto the pump capacity control spool. This completes the disassembly. 2.3 CALIBRATION AFTER ASSEMBLY To calibrate the pneumatic capacity control after reassembly, apply an instrument air signal corresponding to 100% capacity setting. Remove the cover on the top of the valve positioner and use a screwdriver to turn the zero adjust until the piston seal line corresponds to the 100% graduation on the % capacity decal. Turn the adjusting screw counter clockwise to move the piston away from the pump. 2.2 ASSEMBLY For assembly follow the disassembly procedure in reverse order (descending step numbers from 9 to 1) making certain that the O-rings are lubricated with pump oil or ring lubricant before assembly of the retaining part. Make certain that parts are aligned in the same way as the original assembly. Make certain the gasket between the Moore positioner and the cylinder body is positioned so that the small hole in the gasket, adjacent to the stud hole, is aligned with the corresponding hole through the plastic cylinder. Instruction Manual 7

SECTION 3 - GENERAL PERFORMANCE The pneumatic capacity control assembly will provide accurate incremental adjustment in both directions as a linear function of the applied instrument air pressure. There is no tendency for the capacity control to drift off setting over long periods of time because 1. There is no significant force acting on the pump capacity control adjustment spool. 2. The friction from, the sealing rings act to hold the spool in position until the pneumatic capacity control applies sufficient force to overcome this friction. With 40 psi supply air pressure, the pneumatic capacity control cylinder will develop up to 40 pounds force in the direction to increase the capacity setting and up to 110 pounds force in the opposite direction. Then with 100 psi air pressure applied, these forces are increased to 100 pounds and 275 pounds respectively. There is no noticeable change in control position when the supply air pressure is varied within the specified pressure range. However, the nominal force required to overcome the seal ring friction on the control spool is in the range of 17-30 pounds, so the pneumatic capacity control should have no difficulty providing rapid, accurate adjustment of the pump capacity when the minimum specified control air pressure is applied. It should be noted that the instrument air pressure is applied to a closed chamber in the positioner valve so that the regulator or instrument system establishing the air signal must incorporate a venting air bleed to insure accurate air signal response. 8 Instruction Manual

SECTION 4 - OPERATING SPECIFICATIONS Supply Pressure CDA (Instrument) Pressure Range Pump Capacity Variation over Instrument Pressure Range Minimum Pressure Change Required to Reset Capacity Linearity of Actuator Movement Repeatable Accuracy of Actuator Position Supply Air Consumption (Balanced Condition) Instrument Air Consumption Failure to Supply Pressure (Ps) Failure of Instrument Air (PI) Regulated 40-100 psi. 3-15 psi standard, other pressure ranges available on special order. 0-100% rated capacity. 0.20 psi or 0.13% of full range pressure. Within 5% of maximum capacity (maximum difference in output between calibration curve and most favorable straight line drawn through curve). Within 1% of full stroke. (Maximum difference between two positions of output for the same value of input always approached from one direction) 0.2-0.4 SCFM 0 SCFM Moves to 100% position. Moves to 0% position. Instruction Manual 9

1000 1010 980 1070 220 1140 1060 1080 1120 215 1100 150 1110 1050 1030 1090 1130 1020 1040 990 ITEM NO. DESCRIPTION 0 MROY PCC INSTRUCTION MANUAL 1145 - (ACTUATOR) 220 CLIP 1/4 E-RING EXTERNAL 150 PLUG 1 NPT LVLSL HEXS 18-8SS 150 PLUG 1/2 NPT LVLSL HEXS 18-8SS 215 ADAPTER 980 MOUNT FLANGE MROY A PNEU. 990 O-RING.921 X.139 BUNA N 1000 INT TOOTH LOCK WASHER #6 Z PL 1010 RD HD SCR #6-32NCX7/16 Z PLT 1020 5/16-18 SLOTTED SHOULDER SCREW 1030 O-RING#2-011 70 DURO URETHANE 1040 PISTON 1050 O-RING 2-226 BUNA N 1060 FIL HD SCR 1/4-20X1/2 ZPL 1070 GASKET, PNEUMATIC CYLINDER 1080 PNEUMATIC CYLINDER POLYCARBONA 1090 SPRING, ACT SH -P/N 6240-23 1100 GASKET PNEUMATIC POSITIONER 1110 STUD 1120 MOORE POSTIONER MODEL 73N12F 1140 PNEUMATIC % CAPACITY DECAL RA 1130 1/4-20 HEX NUT SS Figure 1. Assembly Pneumatic Capacity Control (102197100015) 10 Instruction Manual

SECTION 5 - TABLE OF EQUIVALENTS 1 atmosphere Equals 1.0333 kilograms/square centimeter 101.33 kilopascals 1.0135 bars 1 Btu/hour Equals 0.2928 Watts Degrees Fahrenheit Equals 1.8 Celsius + 32 1 Engler degree Equals 7.45 square millimeters/second 1 foot Equals 30.48 centimeters 12 inches 1 Ford cup #4 Equals 3.76 square millimeters/second 1 gallon (U.S.) Equals 0.1337 cubic feet 0.8333 Imperial gallons 3.785 liters 4 quarts 1 gallon/hour (U.S.) Equals 0.003785 cubic meters/hour 0.002228 cubic feet/minute 1 horsepower Equals 745.7 Watts 1 inch Equals 2.540 centimeters 1 inch of mercury Equals 0.03442 kilograms/square centimeter 3376.5 Pascals 0.4897 pounds/square inch 1 pint (liquid) Equals 0.4732 liters 16 ounces 1 pound/square inch Equals 0.06804 atmospheres 0.06897 bars 0.07029 kilograms/square centimeter 6894.8 Pascals 1 Redwood Admiralty Equals 2.340 square millimeters/second 1 Redwood Standard Equals 0.237 square millimeters/second 1 Saybolt Furol Equals 2.16 square millimeters/second 1 Saybolt Second Universal Equals 0.216 square millimeters/second Instruction Manual 11

We are a proud member of Accudyne Industries, a leading global provider of precision-engineered, process-critical, and technologically advanced flow control systems and industrial compressors. Delivering consistently high levels of performance, we enable customers in the most important industries and harshest environments around the world to accomplish their missions. info@miltonroy.com www.miltonroy.com MROY is a registered trademark of Milton Roy, LLC. 2015 Milton Roy, LLC.