TECHNICAL SPECIFICATIONS FOR. 3/5/6/8/10 kva Single phase in/out Single or parallel UNINTERRUPTIBLE POWER SUPPLY SYSTEMS

Similar documents
QUOTATION REF NO: CBK/019/2013/2014 SUPPLY, INSTALLATION, TESTING AND COMMISSIONING A 20 KVA UNINTERRUPTIBLE POWER SUPPLY UNIT (UPS) FOR

gimagination at work Technical data sheet Uninterruptible Power Supply LP Series 6 & 10 kva GE Digital Energy

Technical data sheets

Supply, testing, installation and commissioning of 5 ky A UPS system as per the following specification:

TECHNICAL DATA SHEET KVA UPS Systemss

Technical Data Sheets

Technical Data Sheets

Technical Data Sheets

EFFEKTA Power Supplies

Technical data sheet VH UL. Digital Energy Uninterruptible Power Supply. GE Digital Energy Power Quality

APC Smart-UPS. GUIDE SPECIFICATIONS FOR 1000VA & 2000VA Smart-UPS 230VAC Uninterruptible Power Supply

Technical Data Sheets

Fortress 1 Outdoor Emergency Central Lighting Inverter (CLI) Technical Specifications

Power Lynx 3 Uninterruptible Power System (UPS) Technical Specifications

Technical Data Sheets

Technical Data Sheets

Cobra 3 Stand-By Emergency Central Lighting Inverter (CLI) Technical Specifications

POWER kva

Technical Data Sheets

POWER kva

POWER kva Nominal output power (Cos φ0,8) kva Nominal output power (Cos φ1,0) kw >88 Efficiency (AC AC)

Three Phase UPS Systems Range: 10 to 500kVA

Defender Mini Online Emergency Central Lighting Inverter (CLI) Technical Specifications

TECHNICAL DATA SHEET INFINITY kva 3Ph(in) 3Ph(out)

POWERTRONIX QUASAR 5-40 KVA

ConceptpowerTM Modular kVA

Technical Data Sheets

Fortress 3 Harsh. Harsh Environment. Emergency Central Lighting Inverter (CLI) Technical Specifications

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

Technical Data Sheet. Uninterruptible Power Supply. Digital Energy. imagination at work

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

.3 Section Waste Management and Disposal.

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

Technical Specifications. Sentinel PRO 700 VA up to 3000 VA 1000 VA ER-2200 VA ER-3300 VA ER

TECHNICAL DATA SHEET B8033FXS kva 3Ph(In) 3Ph(Out)

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

TECHNICAL DATA SHEET B8031 FXS kva 3Ph(In) 1Ph(Out)

MKN-DSP SERIES - THREE PHASE

Liebert. FP 50Z kva

TELECOM- MUNICATIONS DEVICES INDUSTRIAL EMERGENCY DEVICES. (Servers Farms, ISP/ASP/POP)

n Lower energy costs and carbon footprint n Cooler operation extends internal component life n High input power factor of 0.99

Eaton 93PS 8-40kW UPS Technical Specification Manufacturer s declaration in accordance with IEC

Model ESV Uninterruptible Power System 1.5 KVA/KW KVA/KW Single Phase

Industrial PFC UPS System

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

UPS Sentry HPS. power supply sources - isolation transformers and generators over less sophisticated power systems.

TECHNICAL SPECIFICATIONS

n Lower energy costs and carbon footprint n Cooler operation extends internal component life n High input power factor of 0.99

Standard specification Galaxy PWi, three-phase, 10 to 200 kva

LanPro 11 U. Product Description. GE Digital Energy. Uninterruptible Power Supply. LanPro UPS. Technology for the Digital World.

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

Technical Specification SENTINEL PRO

TELECOM- MUNICATIONS DEVICES INDUSTRIAL EMERGENCY DEVICES. (Servers Farms, ISP/ASP/POP)

SUPREME kva three-phase/single-phase 10-80kVA three-phase/three-phase

Illuminator Series CR NEMA 3R

GUIDE SPECIFICATIONS 15-45kVA and 15-90kVA Scalable Three-Phase Uninterruptible Power System 1.0 GENERAL

Technical Data Sheet. Uninterruptible Power Supply. Critical Power. imagination at work

Master DIALOG INDUSTRY RANGE

TLE Series UPS 400/500 kw With eboost Technology

Master Plus kva

PowerValue 11/31 T kva

Liebert GXT & 6000VA RT230 Rack-Tower models GUIDE SPECIFICATIONS 1.0 GENERAL

USER S MANUAL CONTENTS. Uninterruptible Power Supply 1. INTRODUCTION SAFTY INSTRUCTION SYSTEM DESCRIPTION... 4

TOWER MAXI T SINGLE CONVERSION ON LINE UPS SYSTEMS

Marketing Management Team of Europe

Illuminator Series CM. GUIDE SPECIFICATIONS And TECHNICAL DESCRIPTION. 500W, 1000W, 1500W and 2000W Single-Phase Emergency Power System

S2000 PRODUCT RANGE. Ultra compact

10 20KVA 3Ph/1Ph KVA 3Ph / 3Ph

SUPREME kva three-phase/single-phase 10-80kVA three-phase/three-phase

INDUSTRIAL PROCESSES TELECOM- MUNICATIONS DEVICES EMERGENCY DEVICES INDUSTRIAL

APC Smart-UPS RT. GUIDE SPECIFICATIONS FOR 2400VA and 3000VA Smart-UPS RT 100 and 120VAC Uninterruptible Power Supply

Product Specifications

POWER+ PREMIUM CBS. BS-EN Emergency electrical installations Electric power systems Emergency lighting Escape lighting

PowerScale kva Technical Specifications

U N I T Y / Three-Phase Uninterruptible Power Systems UT380 and UT Hz

EMERGENCY ELECTRO- MEDICAL INDUSTRIAL PLCS DEVICES. (Lights/Alarms)

TLE Series UPS 160/200/225/250 kw with eboost Technology

GUIDE SPECIFICATION THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

Aurora Single Phase Emergency Lighting Inverters

Liebert GXT VA RT230 Rack-Tower model GUIDE SPECIFICATIONS 1.0 GENERAL

tel: Enhanced Power Services Limited Industrial PLCs Electro Medical Devices

Power Safety. Protect 8. Industrial UPS. Protect 8.31 Single Phase output 10 kva 120 kva. Protect 8.33 Three Phase output 10 kva 120 kva

SmartOnline SUT Series 3-Phase 208/120V 220/127V 30kVA 30kW On-Line Double- Conversion UPS, Tower, Extended Run, SNMP Option

Liebert PowerSure PSI UPS

PowerScale TECHNICAL SPECIFICATIONS

Technical data sheets

D Series: UPS UPTO - 300KVA - Three / Three Phase

GUIDE SPECIFICATION THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

DELPHYS GP. Green Power 2.0 range 160 to 1000 kva/kw

SmartOnline SVTX Series 3-Phase 380/400/415V 20kVA 18kW On-Line Double-Conversion UPS, Tower, Extended Run, SNMP Option

SitePro UPS 400Vac / CE. GE Consumer & Industrial August 2004

TOSHIBA /20/25/30/50kVA Internal Battery GUIDE SPECIFICATION THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

Three Phase UPS Systems

SmartOnline SUT Series 3-Phase 208/120V 220/127V 20kVA 20kW On-Line Double- Conversion UPS, Tower, Extended Run, SNMP Option

Master MPS kva kva 3:1 3:3 VFI TYPE

Series. On-line, Single-phase Parallel Redundant UPS System. 6 and 10 kva Rack Mount. Your Tailored Power Solutions Provider TM

3. MAJOR SYSTEM COMPONENTS Emergency Lighting Power System shall consist of the following major subsystems:

UNIVERSITY OF CALCUTTA Centre for Research in Nanoscience and Nanotechnology JD-2, Sector-III, Salt Lake City Kolkata

TLE Series UPS 750/1000 kw With eboost Technology

Transcription:

Tender Paper TECHNICAL SPECIFICATIONS FOR 3/5/6/8/10 kva Single phase in/out Single or parallel UNINTERRUPTIBLE POWER SUPPLY SYSTEMS

Contents 1. General 2. Tender submission requirements 3. Environmental conditions 4. System description 5. Electrical characteristics 6. Input converter 7. Battery charger 8. Inverter 9. Electronic bypass switch 10. Maintenance bypass switch 11. Battery / Battery test 12. Instrumentation 13. Mechanical design 14. Acceptance 15. Documentation 16. Maintenance 17. Options

1. General 1.1 This specification covers the design, supply, delivery, installation, testing and commissioning of a continuous duty, 60/50 Hz, kva, 120/208/240V, single phase, three-wire uninterruptible power supply system complete with maintenance-free sealed battery. The uninterruptible power supply system, hereafter referred to as the UPS system, shall operate in conjunction with the existing power distribution system. In the event of an emergency it shall be able to supply independently at least minutes of clean and regulated uninterruptible power for computer equipment and other critical loads. Only True-On-Line technology, also called Voltage Frequency Independent Operation with By-pass (VFI), following the EN-50091 standard, are accepted. 1.2 OPTIONAL : A redundant system can be created by connecting 2, 3 or 4 complete units of the same type in parallel. This parallel redundant configuration shall have redundant batteries and a decentral bypass. The load is shared amongst the units connected in parallel. Units with a central control module are not accepted. 1.3 The UPS system and all associated equipment and components shall be manufactured in accordance with the EN-50091 standards. 1.4 The UPS manufacturer shall be ISO 9001 certified and shall have a minimum of 25 years experience in the design, manufacture, and testing of UPS systems. 2. Tender submission requirement 2.1 The tender submission shall be in sufficient details to show compliance to the specification and shall include a full set of descriptive and technical literature on the equipment and system proposed. 2.2 The following drawings and information are to be submitted with the proposal:! Functional description! Dimensions, weight and heat dissipation of units! Layout plan of front and rearpanel.! Installation drawings 3. Environmental conditions 3.1 The UPS system shall be capable of withstanding any combination of the following environment conditions in which it must operate, without mechanical or electrical damage or degradation of operating characteristics:! Ambient temperature :- 10 to 40 degrees C! Relative Humidity :Up to 95% (non-condensing)! Interference :The UPS equipment shall be provided with EMI/RFI suppression following EN-50091-2 3.2 Audible Noise - Noise generated by the UPS system under any condition of normal operation shall not exceed an allowable sound pressure level of 50 dba measured at a height of 1 metre at 1 metre from the nearest UPS cabinet surface, in according to the standard EN27779.

4. System description 4.1 The UPS system shall consist of the following major equipment: a) One inputconverter (rectifier) b) One boost converter c) One battery charger d) One outputconverter (inverter) e) One no-break static transfer switch f) One maintenance by-pass switch g) One battery bank h) One main control panel with LCD display 4.2 The UPS system shall be able to operate in any of the following modes: 4.2.1 On-line Mode - During on-line operation mode, the UPS system shall be used to provide precise regulated and transient-free power to the connected loads. The mains- or utility supply provides power to the inputconverter. The inputconverter shall provide regulated DC power to support the inverter and simultaneously supply the batterycharger to maintain the battery in a fully charged condition. The inverter shall convert the DC power into regulated AC power for the load. 4.2.2 ECO Mode - When the load does not require highest level of protection, the UPS shall be able to work in an energy saving mode. This mode shall be fully programmable to adapt it to the load and customer needs. When ECO mode is activated the UPS switches automatically to bypass as a function of the actual mains quality. In case of a mains imperfection (out of tolerances) the UPS seamlessly returns to On-line mode without compromising the guarantee of total security for the critical load. This mode will not be activated unless specifically requested by on site. 4.2.3 Battery Mode - Upon failure of the mains- or utility supply, input power for the inverter shall automatically be supplied from the connected battery. When the mains is restored or the standby generator set supply is ready, input power for the inverter and for recharging the battery shall automatically be supplied from the rectifier. If the input does not return, the UPS shall automatically shut itself down in an orderly manner when the discharge limit of the battery is reached. 4.2.4 By-pass Mode - Upon the failure of static inverter, the no-break static transfer switch shall be activated automatically to isolate the faulty inverter and at the same time maintain a continuous supply to the system load. The automatic transfer mode shall also operate in the event of system overloading or if irregular or undesirable output for the load is detected. In this case, the system shall automatically return to the original on-line mode operation if the disturbance is cleared. 4.2.5 Manual By-pass Mode - If the UPS system needs to be isolated for service or maintenance, the maintenance by-pass shall transfer the load from inverter to the mains without interruption and vice versa.

5. Electrical characteristics 5.1 General UPS Output Power Rating- kva, 2 wire plus earth, power factor 0,8 5.2 Input characteristics a. Input: - Voltage = 162-285 Vac or 81 141 Vac* (at full load) = 146-285 Vac or 72 141 Vac* (at half load) *= with optional 120 Volt input transformer b. - Frequency = 40-70 Hz c. - Power Factor > 0.99 lagging d. - Surge protection = IEC1000-4-5 (6kV 1.2/50"s, 3kA 8/20"s) 5.3 Output characteristics d. Output: - Voltage = 120+ 208+ 220/230/240 (user selectable) - Frequency = 50/60 Hz, + 0,1% if free running = + 2/4/6% adjustable with mains synch. e. Output voltage THD- Linear Load = < 2% f. Voltage Transients - at 100% load step = +/- 2% g. Recovery Time = <10 msec. l. Inverter Overload Capability = 110% for 20 min. = 130% for 3.5 min = 150% for 2 min k. Crest Factor Acceptance > 3:1 (according to EN-50091) 6. Input Converter 6.1 General - The inputconverter shall consist of a rectifier which converts the utility voltage into an unregulated DC voltage. This unregulated DC voltage is converted in a regulated, controlled DC voltage by a boostconverter. The boostconverter supplies power to the inverter and to the batterycharger. The boostconverter also provides a powerfactor corrected input to the UPS. 6.2 Capacity - The UPS shall have sufficient capacity to support a fully loaded inverter and at the same time maintain the battery in a fully charged condition. 6.3 Inrushcurrent - The inputconverter is not allowed to have any inrushcurrent. 7. Battery Charger 7.1 If the battery is fully discharged, the batterycharger shall recharge the battery to 90% of its fully charged condition preferably within five (5) hours and at the same time supplying full load current to the system. Otherwise the UPS supplier shall specify the charging time required

7.2 Temperature Compensated Charging - The batterycharger output voltage shall be automatically adjusted in proportion to the ambient temperature of the battery as per the battery supplier's recommendation to avoid over-charging. 7.3 Current and Voltage Limit - The rectifier/charger output current and voltage shall be limited to the battery supplier's recommendation. 7.4 Boost Mode In order to enable fast recharging of the batteries the battery charger shall be equipped with a boost mode. (charging with higher voltage) This mode is selected and deselected automatically. 8. Inverter 8.1 General - The conversion of DC to AC must be accomplished by power semiconductors of the IGBT type. Failure of any components or power stage shall not interrupt the AC output. Instead it shall disconnect itself from the configuration while transferring the load to the static transfer switch and activate an alarm. 8.2 Output - The inverter output voltage shall be controlled by microprocessor-based software (software generated sine wave) 8.3 The output voltage shall be fed through a filter circuit and protected by fast fuses. The inverter shall be able to handle short-circuit conditions without any damage. 8.4 Neutral - The neutral of the inverter output shall be electrically isolated from the UPS system chassis. 8.5 Frequency Control - The output frequency of the inverter shall be controlled by an oscillator, which can be operated as a free running unit or in synchronised operation with a separate AC source. 8.6 If the external synchronising source deviates from the pre-set frequency by + 2/4/6% (user selectable), the oscillator shall automatically revert to free-running, and the microprocessor controlled accuracy shall be + 0.1%. 9. Electronic by-pass switch 9.1 The electronic by-pass shall consist of a static SCR-switch, used to provide an uninterruptible transfer of the load to the utility in case of remarkable variation of the output voltage. 9.2 The electronic by-pass switch shall return the load automatically to the UPS when the malfunction or overload is cleared. 9.3 The electronic by-pass switch shall consist of a pair of microprocessor controlled thyristors. 9.4 The electronic by-pass switch shall be able to be activated manually by a switch/push button to test bypass operation. The switching time from inverter to reserve (bypass) and vice-versa shall be of No-Break. If there is no synchronisation this test should be disabled automatically. 10. Maintenance by-pass 10.1 The maintenance by-pass shall be based on a manually operated switch which allows the electrical isolation of the UPS from the load while still supplying the load with power directly from the utility.

11. Battery / battery test 11.1 A battery shall provide the UPS system with a stored energy source. The battery shall be of a type designed for standby power service. The cells shall be completely sealed and maintenance free. 11.2 The ampere-hour rating of the battery shall be sufficient to support the inverter for the protection time of minutes with the inverter operating at full rated load at power factor. 11.3 Tenderer shall submit full technical data of the battery offered under the tender and shall provide calculation to show the number of cells required and their capabilities which shall match the load requirement and the charging characteristics of the UPS requirement being offered. 11.4 Tenderer shall specify the recommended voltage per cell for float charging and recharging, acceptable electrolyte specific gravity when fully charged at 25 degrees C. 11.5 The design life span of the battery shall not be less than years and only batteries with proven field applications of not less than years shall be accepted. 11.6 The battery shall be mounted on/in shelves/cabinet with the following dimensions x x mm. 11.7 The UPS must be provided with an automatic battery test system performing every 500 hours. 11.8 The UPS must be provided with a (manual) deep/battery calibration test in order to track the battery performance. 11.9 The end of discharge voltage of the batteries must be load dependent in order to prevent deep discharging of the batteries whilst utilizing maximum available capacity. 12. Instrumentation 12.1 A back-lit 2 x 16 alpha-numeric characters Liquid Crystal Display (LCD), controlled by push buttons shall be provided. 12.2 The UPS system main control panel with LCD back-lit display shall include the following measurements indications:! Mains- or utility voltage and -frequency, and the power delivered! Output voltage and -frequency, and the power delivered! Temperature near the batteries, battery voltage and battery (dis)charge current! Remaining runtime (during mains failure)! The total operating time of the UPS 12.3 The UPS system main control panel with LCD back-lit display shall include the following indications or controls:! Serial number of the UPS, release number of the installed software! Service information on internal components, fan speed, internal DC voltage, internal temperature levels, battery charger

! Start of a quick battery test or deep calibration test! Forced (manual) transfer to bypass! Enable/disable autorestart! Enable/disable ECO mode 12.4 The UPS system main control panel with LCD back-lit display shall include the following settings:! Setting of the system operating frequency! Setting of the system input and output voltage! Setting of the installed battery capacity! No-load shutdown (<2%); enable/disable! Bypass enable/disable! Language on display (English/German/French/Spanish/Italian)! Frequency tracking range (1Hz/sec or 5Hz/sec) 12.5 On the system alarm panel, a common audible alarm and indicating LED s shall be initiated when any of the following conditions are present:! UPS is on battery operation! UPS is on bypass operation! UPS is on manual bypass operation! Output is not synchronized to input! Bypass input is out of limits! High temperature! Overload! Batteries need to be replaced! Batteries have low voltage (battery low)! Mains input breaker failure! Bypass input breaker failure 12.6 The UPS must be able to store up to 255 alarms or events with timestamp. Tenderer shall provide detailed information for the above-mentioned together with their tender submission. 13. Mechanical Design 13.1 Enclosure - The UPS system shall be housed in free standing steel cabinet with rollers. 13.2 Colour - The UPS cabinet colour shall be RAL 9010 13.3 Ventilation - Forced air-cooling shall be provided to ensure that all components are operated within specifications with air entry in the base and exit in the top. The air volume and fan speed must be microprocessor-controlled in relation to the inverter bridge heat-sink temperature and the load present 13.4 Cable Entry - Input to the system and outgoing cables shall be from the rear of the cabinet through a conduit box or through the optional PDU. 13.5 Modular Construction - The UPS system shall be modular in construction for ease of maintenance and to minimise downtime.

13.6 Power Connections - Adequate space for termination shall be provided for incoming and outgoing cables. The cables for interconnecting the UPS and battery cubicles shall be supplied for side by side installation. 13.7 Protection - The equipment shall meet the requirements of protection class IP 20. 14. Acceptance 14.1 The tenderer shall submit detailed acceptance procedures and checklist, which shall be designed to verify the full compliance of the installed system with this specification. 14.2 The acceptance test shall be carried out by the contractor's engineer and witnessed by the enduser's Project Engineer. 14.3 copies of the test report and commissioning certificate stating that the system has been installed and commissioned to the requirement of the specification shall be submitted to the enduser on handing over the commissioned system. 15. Documentation 15.1 All documentation shall be written in good, simple and concise English using accepted technical terms, symbols and nomenclatures. For submission, all documentation shall be bounded with hard covers. 15.2 The document shall be updated regularly as the installation progresses. All changes in the installation layout, wiring, cabling and design shall be incorporated in its final edition. copies of this final edition shall be handed over to end-user upon commissioning of the system. 15.3 The final edition of the hand-over documents shall cover design, installation, commissioning, operation and maintenance aspects of the system. 15.4 One set of basic consumable spare parts shall be supplied under the contract. 16. Maintenance 16.1 The tenderer shall be responsible for the maintenance of the system after the expiring of the warranty period. In the tender submission, the tenderer shall include a maintenance agreement for the subsequent maintenance of the system for consideration by the end-user. 16.2 The agreement shall include a fixed sum proposed for ----- years to perform regular testing and upkeeping of the system. 16.3 The tenderer shall submit a checklist on the activities to be carried out for the system regular maintenance. 16.4 The tenderer shall provide evidence and undertake that round the clock on-call service is available to attend to system failure.

17. Options 17.1 Remote Alarm Box consists of a remote panel with LED indicators and audible alarm. 17.2 Potential Free Contacts must be available on the UPS to indicate the following alarms: general alarm; bypass active; battery low; utility failure. 17.3 Input Connections for customer provided signals must be available emergency power off (to shutdown UPS and load in the event of an emergency). 17.4 SNMP adapter It shall be possible to connect the UPS to a TCP/IP network using SNMP (simple network management protocol) using the international standard UPS MIB. The SNMP adapter can be a plug-in card, an external SNMP box or a PC with a proxy agent. 17.5 UPS Data Protection Software The UPS shall have available data protection software compatible with Windows/95, Windows/98, Windows/NT, UNIX, Novell, OS/2 and other common operating systems. 17.6 Internet Information and Alarm transmitting The UPS shall be able to communicate relevant data and alarms via the Internet to multiple addresses as E-mail, FAX and SMS. The remote access to the UPS shall be protected. 17.7 Power Distribution Unit, The UPS shall have the possibility to adapt this unit that makes it possible to connect the UPS as a pluggable unit. 17.8 Redundant Parallel Kit. With this option it is possible to connect units in parallel after installation 17.9 Seismic Anchor. With this option it is possible to secure the UPS to the floor.