Heat Dissipation Design

Similar documents
Heat Dissipation Design

CITILED CL-L270 lighting LED Datasheet

Thermal Management 5. Handling Guide

Cooling concepts for CanPAK TM * package

Chapter 11. Reliability of power module

Implementation of low inductive strip line concept for symmetric switching in a new high power module

Thermal Characterization and Modeling: a key part of the total packaging solution. Dr. Roger Emigh STATS ChipPAC Tempe, AZ

Heats Sinking for InnoSwitch

IMPROVEMENT ON MOUNTING THERMAL RESISTANCE BETWEEN A CIRCUIT BOARD WITH MANY COMPONENTS AND A LIQUID-COOLED COLD PLATE

Enhanced Breakdown Voltage for All-SiC Modules

Assembly and Handling Precautions for COB LEDs

4707 DEY ROAD LIVERPOOL, NY PHONE: (315) FAX: (315) M.S. KENNEDY CORPORATION MSK Web Site:

Motor Driver PCB Layout Guidelines. Application Note

Silvertel. Ag Features. 2 Description. Power-Over-Ethernet Module. IEEE802.3af compliant. Small SIL package size - 56mm (L) x 14mm (H) Low cost

Mounting Instruction for M404 Package

IL1117-xx. 1.0A Low Dropout Positive Voltage Regulator TECHNICAL DATA. Features. Applications. Absolute Maximum Ratings. Rev. 02

Silvertel. Ag9900M. 1. Features. 2. Description. Ultra Miniature PoE Module. Tiny SMT package (14mm x 21mm) IEEE802.3af compliant.

China - Germany - Korea - Singapore - United States - smc-diodes.com

AMS1117 1A Adjustable / Fixed Low Dropout Linear Regulator

Silvertel. Ag9912M Ultra Miniature PoE Module. 1. Features. 2. Description. Tiny SMT package (14mm x 21mm) IEEE802.3af compliant.

COLD PLATE SOFTWARE PROGRAM ANALYZES AIRCRAFT

Silver T E L E C O M. 1. Features. 2. Description. IEEE802.3af compliant. Small SIL package size - 56mm (L) x 14mm (H) Low output ripple and noise

800mA Lithium Ion Battery Linear Charger

LM , LM mA and 500mA Voltage Regulators

Silvertel. Ag5510. PoE Ultra Module. 1. Features. 2. Description. 60 Watt Output Power. Very small size. High efficiency DC/DC converter

Silvertel. Ag Features. 2. Description. Power-Over-Ethernet Module. IEEE802.3af compliant. Small SIL and SMT package available

Technical Notes. Introduction. LED Efficacy. Light Output and Efficacy. Issue 4 April The general equation for light output can be written as:

HIGH BRIGHTNESS LED LIGHT BAR PRELIMINARY SPEC. Features. Package Dimensions

Fuji IGBT Module V series Technical notes

5A LOW DROPOUT POSITIVE REGULATOR

1W, 10V - 200V Surface Mount Silicon Zener Diode

SPECIFICATION FOR White LED Light Engine

G3PE-Single-phase. Solid State Relays for Heaters

Step Motor Lower-Loss Technology An Update

TO-220. Symbol Description Max Units VIN Input Voltage 15 V IOUT DC Output Current PD/(VIN-VO) ma. -40 to 125 (* in case of IL

AT1084 5A Low Dropout Positive Voltage Regulator

(RMG50) TO-220 Low-Profile Power Resistors. Token Electronics Industry Co., Ltd. Version: January 12, Web:

XC62FJ Series GENERAL DESCRIPTION APPLICATIONS. FEATURES Maximum Output Current : 200mA TYPICAL PERFORMANCE CHARACTERISTICS

AMS Amp LOW DROPOUT VOLTAGE REGULATOR. General Description. Applications. Typical Application V CONTROL V OUT V POWER +

SPECIFICATION FOR White LED Light Engine

Advanced Monolithic Systems

Consideration on IGBT Module Lifetime for Electrical Vehicle (EV) Applications

CDBR-B. Instruction Manual. Dynamic Braking Unit. March 2013 Part Number: R4 Copyright 2013 Magnetek

VI Chip BCM Bus Converter Thermal Management

LM , LM mA and 500mA Voltage Regulators

TN1250 Technical note

LM ma Low Dropout Regulator

INSTALLATION MANUAL CRYSTALLINE SOLAR MODULES

Custom LitePad Handling & Mounting Guide

Silvertel. Ag Features. 2 Description. Power-over-Ethernet Plus Module. IEEE802.3at and IEEE802.3af compliant. Maximum 30W peak output power

MS868C10. Schottky Barrier Diode. Maximum Rating and Characteristics. FUJI Diode

CoolBlock LX-01-2x6 Rectangle Pin Fin LED Cooler

PIN DESCRIPTION. Enable (Input) IN GND OUT FLG ADJ LM39300T-X.X LM39300-X.X

Dragon 4 IR 12 PowerCluster

3A L.D.O. VOLTAGE REGULATOR (Adjustable & Fixed)

Performance of Solar Flat plate by using Semi- Circular Cross Sectional Tube

TECHNOLOGY DATA SHEET & SPECIFICATIONS

Your Super Pillar MCPCB Thermal Management Solution Supplier.

Mounting Instruction for M254 Package. (V-series DualXT Module)

Datasheet. Oslon10 Cluster White. LED Solutions. ILR-ON10-xxxx-SC201-xx series. Product Overview. Applications. Technical Features:

IL1117C-xxLow Dropout Positive Voltage Regulator TECHNICAL DATA

800mA Lithium Ion Battery Linear Charger

Flangeless RF Device Mounting Procedures And Power Dissipation

DUAL POSITIVE/NEGATIVE, 3 AMP, LOW DROPOUT FIXED VOLTAGE REGULATORS

Lithium Ion Battery Charger for Solar-Powered Systems

Lower-Loss Technology

Basic Concepts and Features of X-series

ESAD83M-004RR. Schottky Barrier Diode. Maximum Rating and Characteristics. FUJI Diode

Part C: Electronics Cooling Methods in Industry

Efficiency (typ.) (Range) Output Voltage Current. Input Current Load VDC VDC ma ma ma(typ.) ma(typ.) ma(typ.

APPLICATION NOTE Calculating temperature rise when mounting remote access units into Oberon s Model 1074 Ceiling Zone enclosures

Stanley 3J 1 PowerStar Whites

3rd-Generation Direct Liquid Cooling Power Module for Automotive Applications

Silvertel. Ag Features. 2. Description. Power-Over-Ethernet Module for CCTV. IEEE802.3af compliant

Low Air Process Room. Chiller Series. EPC - High & Medium Temperature Application Capacity: 2.2kW to 19.2kW

EVERLIGHT ELECTRONICS CO., LTD.

Laboratory Exercise 12 THERMAL EFFICIENCY

Basic Characteristics Data

OSLON 9 PowerCluster IR

SEMIS Simulation Tool for 6 pulse Controlled Rectifier

Metal Thermal Materials Types Applications Testing

CDBR-B. Dynamic Braking Unit Instruction Manual. April 2009 Part Number: R1 Copyright 2009 Electromotive Systems

Package Thermal Characterization

SEMIS ABB semiconductor simulation tool Web manual - two-level VSC

ACE4054C. 500mA/1.5A Standalone Linear Li-Ion Battery Charge

EV/HEV Automotive Power Modules: Innovations and trends

LOW AIR / DUAL THROW UNIT COOLER. EPC - High & Medium Temperature Application Capacity: 2.2kW to 19.2kW

CeraLux Lamp Module Assembly Instructions

Fully integrated constant current/constant voltage Li-ion battery charger

TSLC 6 UV LED 24v Strips

High-speed detection even a little liquid leak

The Sommerfeld number is also a dimensionless parameter used extensively in the design of

CONSONANCE. 1A Nickel-Metal Hydride Battery Charger IC CN3085. General Description: Features: Pin Assignment. Applications:

Building Blocks and Opportunities for Power Electronics Integration

Output Current Input Current Reflected Ripple. VDC VDC ma ma(typ.) ma(typ.) ma(typ.) VDC μf %

User s Manual. For M542. High Performance Microstepping Driver. Version All Rights Reserved

OSLON SSL LED 480mm PowerLinear White

Applications. Car audio. Robo

Testing Of Fluid Viscous Damper

Item Symbols Conditions Ratings Units Repetitive peak reverse voltage VRRM V Isolating voltage Viso Terminals-to-case, AC.

Transcription:

Heat dissipation design is a precondition in order to maximize the performance of the LED. In this document, the data that is deemed necessary in the detailed heat dissipation structure of the products and the heat dissipation design of the lighting apparatus is provided as a reference for the appropriate thermal design. CONTENTS 1. Introduction 2. Package structure and thermal resistance 3. Thermal design outside the package 4. Simulation P. 2 P. 2 P. 3 P. 4 Tel. +81-555-23-4121 http://ce.citizen.co.jp Copyright 2010 All Rights reserved.

Heat dissipation structure that can conduct heat radiated from LEDs efficiently 1. Introduction Significance of the heat dissipation structure The light-emitting diode of an LED package radiates light and heat according to the input power. However, the surface area of an LED package is quite small, and the package itself is expected to release little heat into the atmosphere. An external radiator such as a heat sink is thus required. The heat dissipation structure up to the connection portion of the external radiator uses mainly heat conduction. Regarding LED packages, to control the junction temperature of the light-emitting diode Tj is important. The Tj must be kept from exceeding the absolute maximum rating in the specifications under any conditions. As direct measurement of the junction temperature of a light-emitting diode inside a package is difficult, the temperature of a particular part on the external package ( the case temperature ) [ C] is normally measured. Tj [ C] is calculated using the thermal resistance between the junction and the case [ C/W], and the emitted heat amount that is nearly equal to the input power Pd [W]. The heat generated at the light-emitting diode can be conducted to the external radiator efficiently because the package structure for the CL-L330 series minimizes the thermal resistance. This document describes the detailed heat dissipation structure of the CL-L330 series and provides data necessary for thermal design of the lighting apparatus to maximize LED performance. 2. Package structure and thermal resistance Understanding the junction temperature The cross-sectional structure example, where the package of the CL-L330 series is connected to an external heat sink, is shown in Figure-1 ( a ). The package has a laminated structure of an aluminum substrate, insulating layers and conductive copper foil patterns. A distinctive point is that the light-emitting diode is mounted directly on the well conductive aluminum substrate not on the insulating layer, which has low thermal conductivity. Thus, the heat generated at the light-emitting diode can be efficiently conducted to the outside of the package. The aluminum substrate side of the package outer shell is thermally connected to the heat sink via heat-dissipation grease ( or adhesive ). As described above, the heat generated in the junction section of the light-emitting diode is transferred mainly to the heat sink using heat conduction, through the light-emitting diode to the adhesive for die-mounting to the aluminum Figure-1 ( a ) Cross Section Cross-section diagram LED die Tj Aluminum Bond Heat Sink Rb Rh substrate to the grease ( adhesive ). The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is, and the specific thermal resistance value of the package. Therefore, the following formula is used Tj = Pd + In addition, the thermal resistance of the grease ( adhesive ) outside the package is Rb [ C/W], the thermal resistance with the heat sink is Rh [ C/W], and the ambient temperature is [ C]. Figure-2 ( b ) indicates the equivalent thermal resistance along the cross-sectional diagram in Figure-2 ( a ). As indicated, the thermal resistances, Rb, and Rh are connected in series between the junction temperature Tj and the ambient temperature. The thermal resistances outside the package Rb and Rh can be integrated into the thermal resistance Rc-a at this point. Thus, the following formula is also used: Tj = ( + Rc-a ) Pd + Figure-2 ( a ) Thermal Resistance Connection Tj Rb Rh Tj Rc-a 2 Copyright 2010 All Rights reserved.

Use the correlation between the thermal resistance and the ambient temperature for design of the external heat dissipation mechanism 3. Thermal design of the outside the package Point of the external heat dissipation mechanism The thermal resistance outside the package Rc-a [ C/W], which is the combination of the heatdissipation grease ( adhesive ) and the heat sink, is limited by the input power Pd [W], the ambient temperature [ C], and the thermal resistance of the package [ C/W], i.e., Tj = ( + Rc-a ) Pd + Rc-a = ( Tj - ) / Pd - Tj function converted from the above formula is Rc-a = - / Pd + Tj / Pd - and it is a straight line with the slope of -1 / Pd and the intercept of Tj / Pd -. Figure-2 is the chart showing the relationship between the ambient temperature and the thermal resistance outside the package Rc-a indicated by driving current, where Tj is assumed to be 120 C - the absolute maximum rating value in the specifications for the CL-L330-C26 package. The higher the ambient temperature and the larger the driving current, the smaller the allowable thermal resistance outside the package Rc-a = Rb + Rh. In brief, the grease ( adhesive ) and the heat sink, with smaller thermal resistance ( this means better heat dissipation ), are required in order to keep Tj from exceeding 120 C, the absolute maximum rating in the specifications, if the ambient temperature becomes higher and/or the driving current is larger. Therefore, use Figure-2 as a guide when selecting the external heat dissipation parts, and ultimately conduct thermal verification on actual devices. Figure-2 -Rc-a /W 18 =2.4 /W Rc-a 16 14 12 10 8 6 4 2 350mA 480mA 720mA 840mA 0 0 20 40 60 80 100 3 Copyright 2010 All Rights reserved.

4. Simulation Structure figure of analytical model For efficient thermal design A simulation is an effective procedure with regard to the thermal design. Simulation results from when the package of CL-L330-C26 was connected to the heat sink with a heat conductive sheet are shown in Fig.3 ( a ), ( b ). point ( Cathode ) Thermal conductive grease CL-L330-C26 Boundary conditions Ambient temperature : = 25 C Heat conductivity : 5W/m.K Heat dissipation coefficient of the heat sink : 0.2 Contact resistance : Not taken into consideration Model conditions Heat conductivity of the heat conductive sheet : 4.5W/m.K Thickness of the heat conductive sheet : t=0.12mm Heat sink material : Aluminum ( Number of fins=6 ) Dimensions : W : 64mm x H : 40mm x L : ( variable ) W H L ( Variable ) Figure-3 ( a ) Characteristic of heat sink surface area - junction temperature Tj Figure-3 ( b ) Characteristic of input power - junction temperature Tj 150 140 140 130 120 130 110 Input Power : 26.8W Rated input 120 100 110 100 90 80 70 0 90 80 70 S = 124273mm 2 60 50 40 50000 100000 150000 200000 250000 0 10 20 30 40 Surface area of the heatsink mm 2 Pd W Junction Temperature Tj Junction Temperature Tj * Above data represents simulation values and is not guaranteed to represent actual measurement values. Evaluation and verification shall be conducted under the conditions of actual use. 4 Copyright 2010 All Rights reserved.

shall not be liable for any disadvantages or damages resulting from the use of technical information or data included in this document or the impossibility of download and use, responsibility for the cause of lawsuit or any other damages or losses. This technical information or data shall be provided as is to users and CITIZEN ELECTRONICS CO., LTD. does not guarantee the absence of error or other defects in this technical information or data, conformance of this technical information or data to specific purpose, this technical information or data or its use will not infringe the rights of users or third parties or any other content. reserves the right to make changes to technical information or data without notification. Tel. +81-555-23-4121 http://ce.citizen.co.jp Requests / Inquiries inquiry@ce.citizen.co.jp Website for LEDs for lighting http://ce.citizen.co.jp/lighting_led/jp/